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Abstract

In this era of big data, as the data size is scaling up, the need for computing power 

is exponentially increasing. However, most of the community detection algorithms 

in the literature are classified as global algorithms, which require access to the 

entire information of the network. These algorithms designed to work on a single 

machine cannot be directly parallelized. Hence, it is impossible for such algorithms 

working in stand-alone machines to find communities in large-scale networks and 

also the required processing power far exceeds the processing capabilities of single 

machines. In this paper, a set of novel Decentralized Iterative Community Clustering 

Approaches to extract an efficient community structure for large networks are pro-

posed and devalued using the LFR benchmark model. The approaches have the abil-

ity to identify the community clusters from the entire network without global knowl-

edge of the network topology and will work with a range of computer architecture 

platforms (e.g., cluster of PCs, multi-core distributed memory servers, GPUs). 

Detecting and characterizing such community structures is one of the fundamental 

topics in network systems’ analysis, and it has many important applications in differ-

ent branches of science including computer science, physics, mathematics and biol-

ogy ranging from visualization, exploratory and data mining to building prediction 

models.
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1 Introduction

Many real-world complex systems can be represented as networks (also referred 

to as graphs), with nodes representing functional units and links describing the 

interactions between nodes.

Recently, it has become common to analyse interactions in the real-world by 

looking at the networks that underlie these interactions [1]. Real-world networks 

are not random networks, they usually exhibit inhomogeneity and reveal a high 

level of order and organization [2]. An interesting feature that real-world networks 

usually present is the community structure property, under which the topology of 

network is organized into modules commonly called communities or clusters [3]. 

Detecting and characterizing such community structures is one of the fundamental 

topics in network systems’ analysis. The determination of communities in networks 

can help people better understand the structural makeup of the networks. Thus, the 

outcome of this research work has valuable applications in several fields such as 

biology, social science, physics, computer science, business science, etc. [4, 5].

In social networks, for example, clustering of communities can be beneficial for a 

range of applications including finding a common research area in collaboration net-

works and finding a set of likeminded users for marketing and recommendations [6]. 

Community structure is important not only in social networks, but also in various other 

networks. For example, determination of community structure in the Internet can address 

questions such as how to route data as packets in an efficient way, how to reduce the time 

consumption for such traffic, what is the fast and safe path to consider to reach the desti-

nation, etc. It can go further in depth, by elucidating questions like how computer viruses 

are spreading through the Internet, what mechanisms they follow to hit organizations, 

etc. Also in dark networks, community structure can reveal the hidden relationships 

between individual terrorists [7]. Similarly, in the case of the World Wide Web (WWW) 

pages related to the same subject are typically organized into communities, so that the 

identification of these communities can help the task of seeking for identifying the cate-

gory of the network as well as understanding its dynamic evolution and organization [8]. 

Thus, the problem of finding the community structure of networks has attracted a huge 

amount of research work and the range of proposed algorithms is rich and diverse. How-

ever, most of the research on community detection algorithms has been designed to work 

on a single machine employing a form of basic random access to the entire network, so 

they require access to the entire network at all times [3, 9].

Driven by the recent emergence of big data, clustering of real-world networks 

using traditional methods and algorithms is almost impossible to be processed 

in a single machine. The existing methods are limited by their computational 

requirements, and most of them cannot be directly parallelized. Furthermore, in 

many cases the data set is very big and does not fit into the main memory of a sin-

gle machine and therefore needs to be distributed among several machines [10].

Faced with the challenge of a big data set, many researchers pay great attention 

to parallel clustering algorithms that would improve the bottleneck of traditional 

clustering methods on a single machine. To cope with this scenario, a distributed 

and parallel computing model is needed to process a large data set by scaling 



4896 A. Bhih et al.

1 3

the data set out to multiple machines across a cluster and process it. Some novel 

parallel computing frameworks shine, of which MapReduce is one of the most 

popular [11]. However, the traditional clustering algorithms are centralized (need 

global information) and do not have the capability to process data across multiple 

servers in parallel (or distributed manner).

The main goal of this work is to design and implement novel techniques and 

algorithms for the problem of clustering and community detection in large and 

undirected networks. The proposed approaches all assume that the given network 

structure is needed to be divided into communities in such a way that every node 

belongs to one of the communities (non-overlapping communities).

The following summary provides a short overview of the key contributions of 

this work:

1. A novel Decentralized Iterative Community Clustering Approach (DICCA) to 

extract an efficient community structure for large networks is proposed. A major 

advantage of this approach is eliminating the need for the global knowledge of 

the network in order to efficiently cluster networks. This allows the DICCA to 

be run in parallel and the network data need not be loaded into a single memory. 

Hence, the proposed approach is adapted to cluster communities in large networks 

without the penalties involved. This cannot be done in the majority of the existing 

community detection algorithms as they implicitly assume that the entire struc-

ture of the big network is known and is available. Another perspective of DICCA 

approach is reducing the problem size by aggregating the nodes in the network 

to cluster the large-scale data set efficiently.

2. A Parallel Decentralized Iterative Community Clustering Approach (PDICCA) that 

transforms the operations of the DICCA approach from a serial process into a paral-

lelized approach is presented. The PDICCA is a pipelined parallel implementation 

and maintains the overall structure of the serial method (DICCA). The novelty of 

the design comes from the following fact: even though the PDICCA solves the same 

problem and maintains the overall structure as does the serial method, the PDICCA 

is distinguished due to the features of exploiting the use of distributed memory and 

extracting parallelism under the MapReduce framework. The proposed algorithm 

does not require any global knowledge of the network topology, is scalable and will 

work with a range of computer architecture platforms (e.g., cluster of PCs, multi-

core distributed memory servers, GPUs), where the master and slave workers could 

represent either different threads in a single machine or different machines in a com-

puting cluster. Also, one of the main contributions of this work is to take advantage 

of the graph partitioning when performing parallel community clustering in order 

to speed up the process by minimizing the communication between slave–work-

ers. Furthermore, a parallel implementation of PDICCA based on the most popular 

MapReduce model to accelerate processing in large-scale networks is proposed.

The rest of this paper is organized as follows: Sect. 2 presents a brief overview of 

the related literature on graph partitioning and community detection algorithms. Sec-

tions 3 gives a detailed description of Decentralized Iterative Community Clustering 
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Approach, for detecting communities. Section 4 centres around the design and imple-

mentation of the parallel framework version of the DICCA approach. In this section, 

the principle and implementation of the proposed PDICCA approach is detailed. The 

mathematical model to obtain optimal parameter values for the proposed approaches 

is presented in Sect. 5. The data benchmarks and experimental results are presented in 

Sects. 6 and 7 respectively. Finally, discussion and future work are presented in Sect. 8.

2  Related work

2.1  Graph partitioning and community detection

Community detection is an active area of network science research, and over the years, 

a wide variety of community detection algorithms have been proposed to find the com-

munities in the network. Community detection is also named as graph partitioning, in 

much of the literature [12, 13]. It is tempting to suggest that this community detection 

and graph partitioning are really addressing the same question; in both, their aim is to 

identify groups of nodes on a network that are better connected to each other than to 

the rest of the network. However, it is very important to stress that the task of graph 

partitioning and community detection can be distinguished from one another based 

on whether the experimenter fixes the number and size of the groups or it is unspeci-

fied [14]. Graph partitioning is the problem of partitioning a graph into a predefined 

number and size of clusters. It has been pursued particularly in computer science and 

related fields with applications in parallel computing and very-large-scale integration 

(VLSI) design. However, in the community detection, which has been pursued by 

sociologists and more recently by physicists and applied mathematicians, with applica-

tions especially to social and biological networks, the number and size of clusters are 

unspecified. Furthermore, the goal in the former is usually to identify the best division 

of a network regardless of whether or not a good division existed. In case there are no 

good divisions exist, the least bad one will be done as a solution. On the other hand, 

in community detection, the algorithm only divides the network when good divisions 

exist and leave the network undivided in case there are no existing good divisions [14].

The community detection algorithms can be classified into different ways, and 

depending on the selected criteria, one algorithm can belong to more than one cat-

egory. Among them, those based on modularity maximization form the most promi-

nent family of community detection algorithms such as Fastgreedy algorithm [15] 

and Louvain algorithm [16].

Fastgreedy algorithm is an agglomerative hierarchical clustering method proposed 

by Newman [15]. The algorithm greedily maximizes the modularity function Q and 

starts the process by assigning a different community to each node in the network. 

Then at each stage in the process, the pair of clusters that yields greatest increase of 

modularity or smallest decrease is merged until only one cluster remains containing all 

nodes in the network. The whole procedure can be represented by a dendrogram (hier-

archical tree) that illustrates the order of the mergers. Cuts through the dendrogram 

at different levels give different partitions into communities. The optimal community 

cluster can be found by cutting the dendrogram at the level of maximum Q.
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Louvain algorithm is a hierarchical agglomerative optimization method proposed 

by Blondel et  al. [16] and attempts to optimize the modularity of a partition of the 

network. The optimization is performed in two steps that are repeated iteratively. This 

algorithm starts with each node in the network belonging to its own community. Then 

in the first step and for each node in the network, the algorithm uses the local moving 

heuristic to obtain an improved community structure by moving each node from its 

own community to its neighbours’ community and evaluating the gain of modularity 

associated with the moving of the node. The node is then placed in the community for 

which the modularity change is the most positive. If none of these modularity changes 

is positive, the node stays in its original community. This process is applied repeatedly 

and sequentially for each node until all the nodes in the network are considered, and no 

further improvement can be achieved. This concludes the first step. The second step of 

the algorithm consists of building a new network from the communities discovered in 

the first step whose nodes are the communities. The weight of the links between com-

munities is the total weight of the links between the nodes of these communities. Once 

the second step is completed, it is possible to replay the first step and iterate again if 

necessary. The two steps repeat iteratively and stop when there is no more change in 

the modularity gain and consequently a maximum modularity is obtained.

Another popular method widely used to find communities in the network is 

based on the random walk. An example includes Walktrap (WT) algorithm which 

is proposed by Pons and Latapy [17]. Walktrap algorithm is based on the principle 

that random walks on a network tend to get “trapped” into densely connected parts 

defining the communities. In this method, the authors propose using a node similar-

ity measure based on short walks to capture structural similarities between nodes 

instead of modularity to identify community via hierarchical agglomeration. The 

algorithm starts by assigning each node to its own community, and the distance for 

every pair of communities is computed. Communities are merged according to the 

minimum of their distances and the process iterated. After n − 1 steps, the algorithm 

finishes and gives a hierarchical structure of communities called a dendrogram. The 

best partition is then considered to be the one that maximizes modularity.

Information theoretic algorithms are another major type of community detection 

clustering algorithms that use the concept of information theory to find community 

clusters in the networks. Infomap algorithm is an example of information theoretic 

algorithms proposed by Rosvall and Bergstrom [18]. Infomap algorithm character-

izes the problem of finding the optimal community clustering in the network as the 

problem of finding the most compressed (shortest) description length of the random 

walks on the network. It uses a random walk as a proxy for information flow in a 

network and minimizes a map equation, which measures the description length of 

a random walker, over all the network clusters to reveal its community structure. 

To represent the community structure, the algorithm uses a two-level nomenclature 

based on Huffman coding: a level to distinguish communities in the network and the 

other to distinguish nodes in the community. In practice, the random walker is likely 

to stay longer inside communities; therefore, in the process of finding a community 

containing few inter-community links, only the second level is needed to describe its 

path, leading to a compact representation.
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Recently, there have been several studies [19–22] proposed to find the proper 

cluster for specific applications. For example in [20, 22], an intelligent clustering 

method for energy-efficient cluster-based routing of data packets in a wireless sensor 

network application have been proposed. However, the above-mentioned algorithms 

are classified as global algorithms, which require access to the entire information of 

the network and are designed to work on a single machine [3].

2.2  Clustering without global knowledge

There are other algorithms apart from DICCA [23] and PDICCA that achieve some 

degree of locality within the graph by considering partial information instead of 

global information. The examples include Connectivity-based Decentralized Node 

Clustering scheme (CDC) proposed by Ramaswamy et al. [24], Distributed Diffusive 

Clustering algorithm (DiDiC) proposed by Joachim and Henning [25] and Ja-be-Ja 

[10]. CDC is a distributed and scalable algorithm for discovering clusters in peer-to-

peer networks. However, the nodes executing CDC algorithm need to communicate 

with their direct neighbours and require knowledge of all the neighbouring nodes.

Similarly, though DiDiC is designed to work based on the method of distributed 

diffusion to eliminate global operations, DiDiC communication takes place between 

neighbouring graph nodes thus requiring the knowledge about all the neighbouring 

nodes. Ja-be-Ja is a decentralized local algorithm that uses local search for graph 

partitioning; however, it is designed to find balanced size partitions rather than 

good-shaped partitions. This is usually not the case for real-world networks.

3  Decentralized Iterative Community Clustering Approach for graph 
clustering (DICCA)

DICCA is an agglomerative clustering algorithm based on random walk and reacha-

bility, which is carried out through message propagation between neighbours. There 

are two phases, local clustering and network reduction, that are run in an iterative 

fashion. The former phase is used to define an originator node for each community 

cluster and associate each node in the network to the best-fit originator. The reduc-

tion phase is used to rebuild the network using the communities resulting from the 

previous phase, where each detected community becomes a node and the weight of 

the edges in the new network represent the sum of the edges between two communi-

ties. The DICCA algorithm uses two parameters named threshold value and time to 

live (TTL) [23]. The concept of the DICCA approach is presented in Algorithm 1.

Each round of the iteration process comprises of choosing a node randomly to 

be an originator. The originator node acts as a cluster head and advertises itself by 

sending a message (Msg) to all its neighbours in the network. This message contains 

three fields, Originator node ID (OnID), Message Weight (WMsg) and TTL. OnID 

represents the node id of the originator of the message. WMsg is the weight carried 

by the message that represents the estimated probability of reaching any node in the 

network starting from the originator node. TTL represents the maximum distance in 
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hops before a message (Msg) expires. It is worth noting that, in order to avoid the 

originator being assigned to any other clusters, the WMsg is set to 1 at the originator.
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Consider two nodes, the originator O
i
 and its neighbouring node V

i
 , the model 

used to compute the weight of the message sent from the originator O
i
 to node V

i
 

depends on the weight of the edges between O
i
 and V

i
 . This is defined as [23]:

Every single node in the network maintains the information about the origi-

nator IDs and the total weights of the messages it has received for each origi-

nator. This information is represented as Total Message Weight. When the node 

V
i
 receives a message Msg from its neighbouring node, it first updates the Total 

Message Weight value and then checks whether TTL > 0. If TTL > 0, it decre-

ments the TTL of the message by one and forwards the message to all its neigh-

bours except the sender.

The weight of the new message WMsg(Vi, Vk) sent from node V
i
 to its neighbour-

ing node V
k
 is defined as [23]:

However, if TTL = 0 or WMsg becomes insignificantly low compared to the pre-

defined threshold value, the Node V
k
 processes the message and stops the forwarding 

phase.

The nodes join the closest originator O
i
 if the total weight of the message from 

the originator is greater than the specified threshold value. If not, those nodes will 

remain as outliers and do not join any cluster.

This procedure is iteratively repeated by adding one more originator and updat-

ing communities and outlier nodes until there is no outlier node remains left. How-

ever, some nodes may receive multiple messages generated from different originator 

nodes. In that case, each node attaches itself to the cluster lead by the originator 

from which it has received the highest total message weight.

The second phase of the algorithm uses the communities that are found in the 

first phase to build a new network, with each community from the previous phase 

represented as a node in the new network. Multiple edges between any two commu-

nities are collapsed into a single edge in the new network, and its weight being the 

sum of the edges between them. The edges within each community in the first phase 

are represented as self-loops in the new network [23].

Once the second phase is completed, the first phase process is repeated with the 

new network. The two phases are iteratively applied until there is no more change 

in the communities between two iterations, and consequently optimized community 

clusters are obtained.

Although the exact computational complexity of DICCA is harder to formalize, 

this algorithm behaves as O(m log(n m)2)), in which n is the total number of nodes 

in the network and m the number of edges. However, the most effort is in the first 

phase of the algorithm.

(1)WMsg
�

Oi, Vi

�

=
W
�

Oi, Vi

�

∑

Vj∈Nbr(Oi)
W
�

Oi, Vj

�

(2)WMsg
�

Vi, VK

�

= WMsg ×
W
�

Vi, Vk

�

∑

Vj∈Nbr(Vi)
W
�

Vi, Vj

�
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4  Description of the Parallel Decentralized Iterative Community 
Clustering Approach (PDICCA)

The core idea of PDICCA is to divide the data set into blocks and then iteratively 

repeat the following three phases: clustering, re-clustering and rebuilding phase: the 

clustering phase is responsible for finding local community clusters for each block 

independently and in parallel. In the second phase, the local clusters thus extracted 

from the individual blocks are aggregated to find the initial community clustering 

for the entire network. The third phase involves building a new, but smaller net-

work for each block of data based on the initial community clustering. Each cycle 

of this process through all the three phases is referred to as an iteration. The three 

phases iterate until the old and the new community clustering list does not converge 

anymore.

4.1  Framework of the PDICCA approach

The PDICCA approach consists of two worker schemes: master and slave-clustering 

workers. The master worker creates the blocks as it reads the data set, and passes 

them to slave-clustering workers. The master worker is also responsible for receiving 

and aggregating the cluster assignment results from all the slave-clustering workers, 

perform some computation, assign the overlapped nodes into the best community 

and return the final solution. On the other hand, slave-clustering worker’s function-

ality is to identify local communities by going through its own data set and apply-

ing the first phase of the DICCA approach. The overview of PDICCA approach is 

shown in Fig. 1.

Slave-clustering worker runs in parallel and stores the community clustering lists 

in its local memory. However, since each slave-clustering worker has some part of 

the data and does not have a global knowledge of the network, consequently, differ-

ent slave-clustering workers could cluster the same node into different communi-

ties. Thereby, when all the blocks are clustered and the local communities have been 

identified, the master worker loads the local community clustering lists to aggregate.

Since the PDCCA approach is proposed to find non-overlapping clusters, the par-

tition C of N nodes should form a partition such that N = ∪k

i=1
 Ci and Ci ∩ Cj = Ø 

for any i ≠ j. So, the master worker is responsible for finding the set of overlapping 

nodes. The overlapping node list is then sent back to the slave workers to calcu-

late the strength of clustering solutions for each overlapped node among different 

machines. This is then sent back to the master worker for the re-clustering phase. In 

the re-clustering phase, the master worker finds out the best solution for overlapped 

nodes, the solution corresponding to the highest strength of clustering, and updates 

the community clustering list. At the end of the re-clustering phase, the network is 

partitioned into a number of communities.

Next step is the rebuild phase, which involves building a new network by each 

of slave-clustering workers. Using the same method presented in Sect.  3 where 

the nodes in the new network are the communities from the re-clustering phase. 
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The weight of the link between two nodes in this new network is the total weight 

of the links between the nodes of the two corresponding communities in the 

original network. The links between the nodes of the same community become 

self-loops of the corresponding node in the new network. The iteration is then 

repeated until a stable set of community clusters (fulfilling the convergence con-

dition) is obtained.

It is to be noted that each slave-clustering worker has its own private non-

shareable memory, and there are no communications between the workers in the 

clustering phase. Thus, each slave-clustering worker operation is independent of 

the others and each of the slave-clustering worker’s operations can be performed 

in parallel.

To calculate the strength of overlapped nodes, the clustering strength of over-

lapped node V
m
 is formalized in the following definition:

De�nition 1 (Cluster strength)

Given a network set G = (V, E), with n = |V| nodes and m = |E| edges is presented. 

During the clustering phase, each slave-clustering worker clusters these nodes into C 

clusters and assigns V
m
 node to different communities. To find the best community 

that fits Vm node, the proposed scheme carries out the following two steps.

First, the node V
m
 obtains two sets of information from each of its neighbours, 

namely the degree of the neighbour node and the cluster to which it belongs to and 

then calculates the neighbour attraction between V
m
 and its neighbour Vi, which is 

defined as:
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where W
(

V
m

, V
i

)

 represents the weight of the edge between V
m
 and V

i
.

Then the strength value of V
m
 for all the clusters (C) where V

m
 belongs to is cal-

culated by computing the sum of the attractions for V
m
 towards its neighbours (Nbr 

Attraction) within these C clusters and as follows:

(3)Nbr Attraction V
m

�

V
i

�

=
W
�

V
m

, V
i

�

∑

V
k∈Nbr(Vi)

W
�

V
i
, V

k

�

(4)
Cluster strength

(

V
m

, C1
)

=
∑

V
i
∈C1&V

i
∈Nbr(Vm)

Nbr Attraction V
m

(

N
i

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

C
lu

st
er

in
g
 A

cc
u
ra

cy

(Q
 \

N
M

I)

TTL

n={500,1000}

NMI,n=500 Modularity, n=500

NMI, n=1000 Modularity, n=1000

Fig. 2  Performance of the DICCA algorithm using different TTL values

Fig. 3  Comparison between computing time and the message complexities over different TTL values
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5  Setting the optimal values for the parameters

As mentioned in Sects.  3 and 4, DICCA and PDICCA use two parameters to be 

defined. The first parameter TTL is defined as the number of hops that a message 

is permitted to travel before being discarded. The next parameter is threshold value 

that determines the difficulty of merging communities.

5.1  Time to live

Each message has a time to live (TTL) field that is initiated with some value 

T > 0 that limits the number of times the message is forwarded. In reality, care 

needs to be applied in choosing an appropriate TTL value, because a small TTL 

value means the message may expire before reaching all relevant nodes in the 

network. On the other hand, a large TTL means more nodes than needed are vis-

ited, thus increasing both the message load on the network and the running time 

of the algorithm. Therefore, in this work, it is proposed to rebuild the network 

before starting a new iteration to address this issue. Furthermore, based on the 

real-world network properties, it is stated that networks from real-world applica-

tions are often small-world networks [26, 27]. The small-world concept in simple 

terms describes the fact that even if the network has many nodes, there exists a 

relatively small number of intermediate steps (short path) connecting any pair of 

nodes within the network [28]. For example in social networking sites, it is stated 

that people (and things and places) in the world are just six or fewer interpersonal 

connections away from each other [29]. This is known as six degrees of separa-

tion theory.

In order to determine the effect of TTL value on the community clustering 

accuracy, the TTL value ranging from 1 to 4 has been used in this evaluation. 

Figures 2 and 3 present the accuracy values of synthetic networks with 500 and 

1000 nodes and the message complexity, respectively. The results demonstrate 

that the DICCA yields good community clusters when the TTL is set to be 3. 

Increasing the TTL value does not have significant impact on the quality of com-

munity detection but may result in a very high communication load. However, 

selecting a small TTL value can reduce the broadcast overhead but will compro-

mise the accuracy.

In this work to achieve good trade-off between high modularity and low message 

complexity (running time), TTL is set to a value of 3.

5.2  Threshold value

The threshold value is a parameter set at the beginning of the process in a range 

between 0 and 1. If the total weight of the message received by the node from 

originator O
i
 is equal to or greater than the threshold value, then the node is able 

to join the cluster led by the O
i
 . This means the higher the threshold value there 

is less chance for the node to be merged into the community. For example, setting 
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the threshold value close to zero will produce a single community cluster contain-

ing all the nodes in the network. On the other hand, setting the threshold value 

close to one will make each node to be in its own cluster. In other words, low 

threshold value produces high number of small-sized clusters; meanwhile higher 

value will produce lower number of larger sized clusters. Therefore, the threshold 

value has an important effect on clustering accuracy as well as the size of the 

detected clusters. Obviously tuning the threshold value could be seen as a pos-

sible practical remedy to control the desired size and the number of communities.

The choice of selecting a suitable threshold value is very crucial and requires 

a priori knowledge of network structure. However, generating a priori knowledge 

is usually time-consuming since networks are usually big and have large amounts 

of information [29]. Hence, in this work a mathematical model to automatically 

calculate the threshold value is proposed by the authors. The model makes use of 

density, size and layout structure of the network to find the optimal threshold value.

The set of Eqs.  (5 to 11) presented below define the mathematical model for 

setting the threshold value for undirected network:

where i is the main node, j represents all other nodes, A is the adjacency matrix 

where the entry Aij represents the connectivity if the value is 1; otherwise, it is 0, n 

is the total number of nodes in the network, t is the iteration number, K
i
 is the degree 

of node i and C is network clustering coefficient which is defined as:

where L
i
 is the number of edges between neighbours of node i [8].

A fully connected network is a simple undirected graph in a network of n nodes, 

in which every pair of distinct nodes is connected by a unique edge. Based on the 

graph theory, the network clustering coefficient for a fully connected network is 1 

and the degree of each node is defined as:

Thus, the total edges of the complete network having n nodes will be:

Using Eq. (5) to calculate the threshold value for complete network:

(5)Threshold value = avg_t + (t − 1) × ((1 − C) × avg_t)

(6)avg_t =
log (log (n))

log (n)

n
∑

i=1

(

1

K
i

+
K

i
− 1

K
2
i

+
K

i
− 2

K
3
i

)

(7)Ki =

n
∑

j=0

Aij

(8)C =

1

n

n
∑

i=1

2L
i

K
i

[

K
i
− 1

]

(9)K
i
= n−1

(10)

n
∑

i=0

K
i
= n(n − 1)
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In Eq. (11), the first part 
(

log (log (n))

log (n)

)

 is always less than 1. Whereas, the second 

part of equation 
�

∑n

i=1

�

1

K
i

+
K

i
−1

K
2

i

+
K

i
−2

K
3

i

��

 represents the maximum weight of mes-

sages received by node i, when the TTL = 3. For a fully connected network and 

using Eqs. (5–11) to set the threshold parameter, the proposed algorithm will pro-

duce one cluster containing all the nodes in the network. This is acceptable since 

there is no meaningful subsets that are clusters in the fully connected network.

It is worthwhile mentioning that, in each iteration, the threshold value for a given 

network is stepwise increased by (t − 1) × ((1 − C) × avg_t) as seen in Eq. (5), so that 

it becomes progressively difficult for clusters that are not so densely connected to 

join with each other. Only the strongly connected ones will be able to merge. Addi-

tionally, the maximum threshold value cannot be larger than 1 [23].

6  Experimental data sets

To analyse the efficiency of the community detection algorithm on a range of net-

work size and due to the scarce availability of real networks that have ground-truth 

communities, LFR benchmark is used to generate synthetic data sets. The LFR 

benchmark model was proposed by Lancichinetti et al. [30] to generate undirected 

and unweighted networks that closely resemble real-world networks with com-

munity structure. LFR model has become a popular choice for assessing the per-

formance of community detection algorithms, and the model was subsequently 

extended to generate weighted and/or directed networks, with the possibility of over-

lapping communities.

Most of the real-life network have been defined and modelled  as undirected 

and  unweighted/weighted networks. This paper focuses on this  type of networks 

with non-overlapping communities. The LFR model is proposed to address most 

characteristics of real networks, e.g., size of the network and heterogeneous degree 

distribution. In the LFR benchmark, both the node degrees of a network and the size 

of each community are controlled by a power-law distribution with exponent γ and 

β, respectively. However, it has been observed that real-world graphs have such a 

power-law degree distribution [28] with typical values of: 2 ≤ γ ≤ 3, 1 ≤ β ≤ 2 [30].

LFR model provides some other parameters to control the network topology, 

including the number of nodes, maximum degrees and mixing parameter μ. Mixing 

parameter μ ∈ [0, 1] is used to control the fraction of intra-cluster and inter-cluster 

edges on the network. For small values of μ, there will be small number of edges 

going outside the communities, which indicates that there are clear clusters available 

in the networks. The larger the μ value, the more challenging it is to detect com-

munities in the network. The code of LFR mode is made publicly available by the 

authors [31].

(11)
Threshold Value =

log (log (n))

log (n)

n
∑
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7  Analysis of results and discussion

7.1  Environment setup

Using the LFR networks a set of undirected networks are generated. The default 

benchmark parameter values are used as the benchmark parameters for the expo-

nents of the degree distribution and community size, viz. γ = 2, β = 1. The average 

degree and the maximal degree are 25 and 50, respectively. The mixing parameter is 

varied from 0.1 to 0.75 and the number of nodes is varied from 500 to 5000.

The DICCA and PDICCA are implemented in Matlab and the experiments are 

performed on a system configured with  4® Core™ i7 6700 K CPU 4.00 GHz and 

16 RAM available memory running windows. Because the approaches initialize the 

originator randomly, and in order to neglect the effect of randomness in our method 

each result is averaged over 100 runs.

7.2  Accuracy measure for graph clustering

The true community structure (ground truth) is known for the benchmark network. 

Therefore, Normalized Mutual Information (NMI) [32] is used to evaluate the per-

formance of DICCA and PDICCA by comparing the obtained partitions in the 

experiments with the ground truth for the LFR benchmark. NMI metric quantifies 

the accuracy of the proposed methods by evaluating the level of correspondence 

between detected and ground-truth communities. In addition, modularity measure-

ment introduced by Newman and Girvan in [33] is used to evaluate the effectiveness 

of the algorithms in terms of modularity optimization.

De�nition 2 [Normalized Mutual Information (NMI)]

Normalized Mutual Information (NMI) is a similarity measure for comparing two 

partitions based on the information theory concept. It is introduced in the commu-

nity detection domain by Danon et al. [32], and since then it has been widely used to 

evaluate the accuracy of community detection algorithms.

For an n-node network with two partitions X = {X1, X2, X3,  …,  Xk} and 

Y = {Y1, Y2, Y3, …, Y
K̄

 } where X and Y represent the real communities and found 

communities, respectively, the normalized mutual information NMI(X,  Y) of two 

divisions X and Y of a network is defined as follows [34]:

where 
(

K, K̄
)

=
X

K
∩Y

K̄

n
 , P(K) =

X
K

n
 and P

(

K̄
)

=

Y
K̄

n
.
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If the found partition by the algorithm is identical to the real community, then 

NMI takes its maximum value of 1. If the partition found is totally independent of 

the real partition then NMI = 0 [34].

De�nition 3 [Modularity (Q)]

Modularity (Q) is a prominent measure for the quality of a community structure, 

and it has become a widely accepted quality of measure for community detection. 

Modularity states that a good cluster should have a bigger-than-expected number of 

connections between the nodes within modules and a smaller-than-expected number 

of connections between nodes in different modules. The higher the value of modu-

larity, the better is its community strength.

The general concept of modularity optimization algorithms is to detect the best 

community structure in terms of modularity by searching over possible divisions of 

a network that have high modularity.

Formally, modularity can be defined as [3]:

where Aij is an element of the adjacency matrix, K
i
 is the degree of node i. �ci cj

 is the 

Kronecker delta symbol, which is equal to 1 if ci = cj and 0 otherwise, and ci is the 

label of the community to which node i is assigned.

7.3  Experimental results

In this section, the results from the experiments conducted using synthetic networks 

are presented, analysed and discussed in detail.

7.3.1  Horizontal scalability in relation to the number of parallel cores

To demonstrate how well the proposed approaches handle data sets when more 

workers are available, the number of nodes in the network used in this evaluation 

is kept constant and the number of workers is varied from 1 to 4. It is worth men-

tioning that if the number of workers is 1, the algorithm simply represents DICCA. 

Figure 4 shows the results of different cores when the number of nodes is constant, 

n ∈ {500, 1000}.

7.3.1.1 Quality From Fig. 4, the approaches show a good scalability close to the opti-

mal value, which is indicated by average modularity and NMI values. In addition, it is 

clear that using more than one worker to parallelize the algorithm does not adversely 

affect the accuracy of the result. Consequently, the results prove that the algorithm is 

effective and able to achieve very high-quality results in a parallel manner. More espe-

cially, PDICCA is capable of exploiting multi-core architecture efficiently.

(13)Q =

1

2|m|
∑

ij

[
Aij −

KiKj

2|m|

]
�cicj
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7.3.1.2 Message complexity Considering the number of exchanged messages for 

each worker, Fig. 5 shows the percentage of exchanged messages at each iteration 

by each worker processor. As can be observed in each iteration, each worker gener-

ates almost the same number of messages; this can be clarified by the fact that the 

data has been partitioned equally among the workers so each worker has to process 

the same size of data. Hence, at each iteration, the master worker must wait until all 

workers have completed their processes. So, splitting the data equally over workers 

can significantly reduce the expected time needed to wait until the slowest machine 

worker returned data.

For more in-depth analysis, Fig.  6 shows the average percentage of exchanged 

messages in each iteration. It can be easily observed from the figure that data 

exchange for the algorithm is much greater at the first stage of iteration when each 

node is in its own cluster. Just after 2 to 3 initial iterations, most nodes have their 

cluster labels and the algorithm has merged the nodes belonging to the same cluster 

to be one node. It also becomes clear from the percentage of exchanged messages 

between master and slaves as seen in Table 1, the communication cost is negligible. 

However,  this is less compared with the cost of  information exchanged locally in 

slaves, which is costly and constitutes the main body of the time consumption of the 

algorithm.  

7.3.2  Clustering results for increasing network size

To demonstrate the performance influenced by scalability, the number of nodes is 

increased linearly from 500 to 5000 and the number of workers is kept constant at 

1 and 3. All other parameters and factors remain the same as previous evaluations.

7.3.2.1 Quality The modularity values of the solutions obtained by the DICCA and 

PDICCA are presented in Fig. 7. It can be observed from the figure that the perfor-

mance of the both DICCA and PDICCA are consistently good and close to the opti-

mal value with NMI above 0.90 on average.

(a) (b)

Fig. 4  NMI, Q-PDICCS and ground-truth Q scores (y-axis) as number of workers (x-axis) changes num-
ber of nodes: a 500 and b 1000
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7.3.2.2 Evaluating repeatability of the performance To further investigate the abil-

ity of the DICCA and PDICCA to produce consistent results across random starts 

across random data partitioning and initialization, the standard deviation of the clus-

tering results is measured where both the DICCA and PDICCA are run 100 times 

each time with different random data partitioning and algorithm initialization. The 

standard deviation value of both NMI and modularity for the data sets with different 

network size are displayed in Fig. 8, which is relatively very small and in some cases 

around zero variation.

7.3.2.3 Evaluation of complexity of  the DICCA and PDICCA approaches To investi-

gate the relationship between the number of nodes and complexity of approach, the 

total number of exchanged messages as a function of the network size is presented in 

Fig. 9. Since the DICCA and PDICCA require a large number of exchanged messages 

between nodes, which is the most time-consuming part during execution, the perfor-

mance of DICCA and PDICCA highly depended on the total number of exchanged 

messages. Therefore, the number of exchanged messages increases with the network 

size. For example, the total number of messages exchanged by PDICCA for n ∈ {500; 

5000} is {1,344,282; 15,633,691}, respectively.
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7.3.3  Evaluation of clustering performance using mixing parameter

To investigate the ability of the DICCA and PDICCA to detect community clusters 

when the community structure is weakened by highly increasing the number of inter-

community links (occurs when μ of the LFR benchmark has high values), the DICCA 

and PDICCA are evaluated with varying values of mixing parameter between 

0.1 and 0.75, µ ∈ {0.1, 0.15, …, 0.75}, and keeping the number of nodes constant, 

91.65%

5.82%

1.19%
1.34%

n=1000, 1 worker

1st  Iteration 2nd Iteration

3rd Iteration The rest

85%

11%

2% 2%
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28%
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10%
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1st  Iteration 2nd Iteration

3rd Iteration The rest

Fig. 6  Average percentage of message exchanged per each iteration with number of cores varied from 1 
to 4 workers for network size 1000

Table 1  Comparison with message exchanged locally in hosts and messages exchanged between master 
and hosts

Number of nodes 500 1000

No. of workers % Messages 
exchanged locally 
among slaves

% Messages 
exchanged between 
master and slaves

% Messages 
exchanged locally 
among slaves

% Messages 
exchanged between 
master and slaves

1 100 0 100 0

2 99.9767 0.0233 99.9760 0.0240

3 99.9636 0.0364 99.9631 0.0369

4 99.9599 0.0401 99.9629 0.0371
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n ∈ {1000}. Figure 10 shows the results obtained for both modularity and NMI accu-

racy as a function of the mixing parameter for network sizes 1000 nodes. As can be 

clearly seen, the natural partitions of the network are always found (in principle) for 

the mixing parameter value of up to 0.5, after which the method starts to fail where 

the quality of DICCA and PDICCA was rather poor. The reason for this behaviour is 

that a small value of mixing parameter indicates well-defined community structures 

in the generated network. The reason is that most of the edges fall inside the com-

munities. This is in line with the definition of a community that each node should 

have more connections within the community than with the rest of the graph [27]. 

On the other hand, networks with higher values of mixing parameter are more chal-

lenging to cluster accurately, as there are no clear divisions between communities in 

these networks as most of the edges fall outside the communities. Furthermore, the 

performance comparison of the proposed algorithms, the ground-truth network and 

the fast greedy modularity optimization proposed by Clauset et al. [35] in terms of 

modularity is shown in Fig. 10. This comparison shows low values of Q for all the 

algorithms considered here and the ground-truth network, when the mixing param-

eter value ≥ 0.5. This low value of Q indicates that the communities in the network 

are indistinguishable due to the network structure rather than poor performance.

8  Conclusion

In this paper, a novel Decentralized Iterative Community Clustering Approach 

(DICCA) and its parallel version (PDICCA) to extract an efficient community 

structure for large networks are presented. An important property of the proposed 

approaches is their ability to identify optimal community clusters from an entire net-

work without the global knowledge of the network topology. This ability means that 
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the entire network does not need to be loaded into one memory and could be easily 

adapted to run in parallel on as many processors as available to find community 

clusters in big networks. This cannot be done using the majority of existing com-

munity detection algorithms that implicitly assume that the entire structure of the 

network is known and is available.

The DICCA and PDICCA are based on the random walk procedure and reach-

ability of nodes in the network. In addition, the proposed approaches address the 

issues surrounding computational demands for dealing with big data sets. They 

optimally utilize the hardware capabilities of modern multi-core systems for faster 

execution by processing multiple blocks in a parallel manner. Furthermore, when 

scalability issues occur as the data size grows beyond the processing power of a sin-

gle machine, the proposed distributed approach based on the MapReduce comput-

ing platform will help address this. Finally, the effectiveness and complexity of the 

approaches are tested and analysed using synthetic networks with ground-truth com-

munities. The experimental results of the approaches prove to be very promising.

Real-world networks often do not contain perfect communities, and in reality 

nodes may belong to multiple communities simultaneously. Identifying such over-

lapping communities (also known as fuzzy) is crucial for understanding the struc-

ture as well as the function of real-world networks. A further direction is to extend 

the proposed approaches to be able to detect such fuzzy communities. Further, in 

this work, only the undirected networks have been taken into consideration. There-

fore, considering the directed networks may be an interesting direction for further 

research.
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