
Vol:.(1234567890)

The Journal of Supercomputing (2019) 75:4894–4917

https://doi.org/10.1007/s11227-019-02765-1

1 3

Decentralized iterative approaches for community
clustering in the networks

Amhmed Bhih1 · Princy Johnson1 · Martin Randles1

Published online: 9 February 2019

© The Author(s) 2019

Abstract

In this era of big data, as the data size is scaling up, the need for computing power

is exponentially increasing. However, most of the community detection algorithms

in the literature are classified as global algorithms, which require access to the

entire information of the network. These algorithms designed to work on a single

machine cannot be directly parallelized. Hence, it is impossible for such algorithms

working in stand-alone machines to find communities in large-scale networks and

also the required processing power far exceeds the processing capabilities of single

machines. In this paper, a set of novel Decentralized Iterative Community Clustering

Approaches to extract an efficient community structure for large networks are pro-

posed and devalued using the LFR benchmark model. The approaches have the abil-

ity to identify the community clusters from the entire network without global knowl-

edge of the network topology and will work with a range of computer architecture

platforms (e.g., cluster of PCs, multi-core distributed memory servers, GPUs).

Detecting and characterizing such community structures is one of the fundamental

topics in network systems’ analysis, and it has many important applications in differ-

ent branches of science including computer science, physics, mathematics and biol-

ogy ranging from visualization, exploratory and data mining to building prediction

models.

Keywords Community detection · Connectivity-based graph clustering · Distributed

algorithm

 * Amhmed Bhih
 a.a.bhih@2011.ljmu.ac.uk; Amhmed_bhih@hotmail.com

 Princy Johnson
 P.Johnson@ljmu.ac.uk

 Martin Randles
 M.J.Randles@ljmu.ac.uk

1 Department of Electronics and Electrical Engineering/Computer Science, LJMU,
Liverpool L3 3AF, UK

http://orcid.org/0000-0001-6122-6925
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02765-1&domain=pdf

4895

1 3

Decentralized iterative approaches for community clustering…

1 Introduction

Many real-world complex systems can be represented as networks (also referred

to as graphs), with nodes representing functional units and links describing the

interactions between nodes.

Recently, it has become common to analyse interactions in the real-world by

looking at the networks that underlie these interactions [1]. Real-world networks

are not random networks, they usually exhibit inhomogeneity and reveal a high

level of order and organization [2]. An interesting feature that real-world networks

usually present is the community structure property, under which the topology of

network is organized into modules commonly called communities or clusters [3].

Detecting and characterizing such community structures is one of the fundamental

topics in network systems’ analysis. The determination of communities in networks

can help people better understand the structural makeup of the networks. Thus, the

outcome of this research work has valuable applications in several fields such as

biology, social science, physics, computer science, business science, etc. [4, 5].

In social networks, for example, clustering of communities can be beneficial for a

range of applications including finding a common research area in collaboration net-

works and finding a set of likeminded users for marketing and recommendations [6].

Community structure is important not only in social networks, but also in various other

networks. For example, determination of community structure in the Internet can address

questions such as how to route data as packets in an efficient way, how to reduce the time

consumption for such traffic, what is the fast and safe path to consider to reach the desti-

nation, etc. It can go further in depth, by elucidating questions like how computer viruses

are spreading through the Internet, what mechanisms they follow to hit organizations,

etc. Also in dark networks, community structure can reveal the hidden relationships

between individual terrorists [7]. Similarly, in the case of the World Wide Web (WWW)

pages related to the same subject are typically organized into communities, so that the

identification of these communities can help the task of seeking for identifying the cate-

gory of the network as well as understanding its dynamic evolution and organization [8].

Thus, the problem of finding the community structure of networks has attracted a huge

amount of research work and the range of proposed algorithms is rich and diverse. How-

ever, most of the research on community detection algorithms has been designed to work

on a single machine employing a form of basic random access to the entire network, so

they require access to the entire network at all times [3, 9].

Driven by the recent emergence of big data, clustering of real-world networks

using traditional methods and algorithms is almost impossible to be processed

in a single machine. The existing methods are limited by their computational

requirements, and most of them cannot be directly parallelized. Furthermore, in

many cases the data set is very big and does not fit into the main memory of a sin-

gle machine and therefore needs to be distributed among several machines [10].

Faced with the challenge of a big data set, many researchers pay great attention

to parallel clustering algorithms that would improve the bottleneck of traditional

clustering methods on a single machine. To cope with this scenario, a distributed

and parallel computing model is needed to process a large data set by scaling

4896 A. Bhih et al.

1 3

the data set out to multiple machines across a cluster and process it. Some novel

parallel computing frameworks shine, of which MapReduce is one of the most

popular [11]. However, the traditional clustering algorithms are centralized (need

global information) and do not have the capability to process data across multiple

servers in parallel (or distributed manner).

The main goal of this work is to design and implement novel techniques and

algorithms for the problem of clustering and community detection in large and

undirected networks. The proposed approaches all assume that the given network

structure is needed to be divided into communities in such a way that every node

belongs to one of the communities (non-overlapping communities).

The following summary provides a short overview of the key contributions of

this work:

1. A novel Decentralized Iterative Community Clustering Approach (DICCA) to

extract an efficient community structure for large networks is proposed. A major

advantage of this approach is eliminating the need for the global knowledge of

the network in order to efficiently cluster networks. This allows the DICCA to

be run in parallel and the network data need not be loaded into a single memory.

Hence, the proposed approach is adapted to cluster communities in large networks

without the penalties involved. This cannot be done in the majority of the existing

community detection algorithms as they implicitly assume that the entire struc-

ture of the big network is known and is available. Another perspective of DICCA

approach is reducing the problem size by aggregating the nodes in the network

to cluster the large-scale data set efficiently.

2. A Parallel Decentralized Iterative Community Clustering Approach (PDICCA) that

transforms the operations of the DICCA approach from a serial process into a paral-

lelized approach is presented. The PDICCA is a pipelined parallel implementation

and maintains the overall structure of the serial method (DICCA). The novelty of

the design comes from the following fact: even though the PDICCA solves the same

problem and maintains the overall structure as does the serial method, the PDICCA

is distinguished due to the features of exploiting the use of distributed memory and

extracting parallelism under the MapReduce framework. The proposed algorithm

does not require any global knowledge of the network topology, is scalable and will

work with a range of computer architecture platforms (e.g., cluster of PCs, multi-

core distributed memory servers, GPUs), where the master and slave workers could

represent either different threads in a single machine or different machines in a com-

puting cluster. Also, one of the main contributions of this work is to take advantage

of the graph partitioning when performing parallel community clustering in order

to speed up the process by minimizing the communication between slave–work-

ers. Furthermore, a parallel implementation of PDICCA based on the most popular

MapReduce model to accelerate processing in large-scale networks is proposed.

The rest of this paper is organized as follows: Sect. 2 presents a brief overview of

the related literature on graph partitioning and community detection algorithms. Sec-

tions 3 gives a detailed description of Decentralized Iterative Community Clustering

4897

1 3

Decentralized iterative approaches for community clustering…

Approach, for detecting communities. Section 4 centres around the design and imple-

mentation of the parallel framework version of the DICCA approach. In this section,

the principle and implementation of the proposed PDICCA approach is detailed. The

mathematical model to obtain optimal parameter values for the proposed approaches

is presented in Sect. 5. The data benchmarks and experimental results are presented in

Sects. 6 and 7 respectively. Finally, discussion and future work are presented in Sect. 8.

2 Related work

2.1 Graph partitioning and community detection

Community detection is an active area of network science research, and over the years,

a wide variety of community detection algorithms have been proposed to find the com-

munities in the network. Community detection is also named as graph partitioning, in

much of the literature [12, 13]. It is tempting to suggest that this community detection

and graph partitioning are really addressing the same question; in both, their aim is to

identify groups of nodes on a network that are better connected to each other than to

the rest of the network. However, it is very important to stress that the task of graph

partitioning and community detection can be distinguished from one another based

on whether the experimenter fixes the number and size of the groups or it is unspeci-

fied [14]. Graph partitioning is the problem of partitioning a graph into a predefined

number and size of clusters. It has been pursued particularly in computer science and

related fields with applications in parallel computing and very-large-scale integration

(VLSI) design. However, in the community detection, which has been pursued by

sociologists and more recently by physicists and applied mathematicians, with applica-

tions especially to social and biological networks, the number and size of clusters are

unspecified. Furthermore, the goal in the former is usually to identify the best division

of a network regardless of whether or not a good division existed. In case there are no

good divisions exist, the least bad one will be done as a solution. On the other hand,

in community detection, the algorithm only divides the network when good divisions

exist and leave the network undivided in case there are no existing good divisions [14].

The community detection algorithms can be classified into different ways, and

depending on the selected criteria, one algorithm can belong to more than one cat-

egory. Among them, those based on modularity maximization form the most promi-

nent family of community detection algorithms such as Fastgreedy algorithm [15]

and Louvain algorithm [16].

Fastgreedy algorithm is an agglomerative hierarchical clustering method proposed

by Newman [15]. The algorithm greedily maximizes the modularity function Q and

starts the process by assigning a different community to each node in the network.

Then at each stage in the process, the pair of clusters that yields greatest increase of

modularity or smallest decrease is merged until only one cluster remains containing all

nodes in the network. The whole procedure can be represented by a dendrogram (hier-

archical tree) that illustrates the order of the mergers. Cuts through the dendrogram

at different levels give different partitions into communities. The optimal community

cluster can be found by cutting the dendrogram at the level of maximum Q.

4898 A. Bhih et al.

1 3

Louvain algorithm is a hierarchical agglomerative optimization method proposed

by Blondel et al. [16] and attempts to optimize the modularity of a partition of the

network. The optimization is performed in two steps that are repeated iteratively. This

algorithm starts with each node in the network belonging to its own community. Then

in the first step and for each node in the network, the algorithm uses the local moving

heuristic to obtain an improved community structure by moving each node from its

own community to its neighbours’ community and evaluating the gain of modularity

associated with the moving of the node. The node is then placed in the community for

which the modularity change is the most positive. If none of these modularity changes

is positive, the node stays in its original community. This process is applied repeatedly

and sequentially for each node until all the nodes in the network are considered, and no

further improvement can be achieved. This concludes the first step. The second step of

the algorithm consists of building a new network from the communities discovered in

the first step whose nodes are the communities. The weight of the links between com-

munities is the total weight of the links between the nodes of these communities. Once

the second step is completed, it is possible to replay the first step and iterate again if

necessary. The two steps repeat iteratively and stop when there is no more change in

the modularity gain and consequently a maximum modularity is obtained.

Another popular method widely used to find communities in the network is

based on the random walk. An example includes Walktrap (WT) algorithm which

is proposed by Pons and Latapy [17]. Walktrap algorithm is based on the principle

that random walks on a network tend to get “trapped” into densely connected parts

defining the communities. In this method, the authors propose using a node similar-

ity measure based on short walks to capture structural similarities between nodes

instead of modularity to identify community via hierarchical agglomeration. The

algorithm starts by assigning each node to its own community, and the distance for

every pair of communities is computed. Communities are merged according to the

minimum of their distances and the process iterated. After n − 1 steps, the algorithm

finishes and gives a hierarchical structure of communities called a dendrogram. The

best partition is then considered to be the one that maximizes modularity.

Information theoretic algorithms are another major type of community detection

clustering algorithms that use the concept of information theory to find community

clusters in the networks. Infomap algorithm is an example of information theoretic

algorithms proposed by Rosvall and Bergstrom [18]. Infomap algorithm character-

izes the problem of finding the optimal community clustering in the network as the

problem of finding the most compressed (shortest) description length of the random

walks on the network. It uses a random walk as a proxy for information flow in a

network and minimizes a map equation, which measures the description length of

a random walker, over all the network clusters to reveal its community structure.

To represent the community structure, the algorithm uses a two-level nomenclature

based on Huffman coding: a level to distinguish communities in the network and the

other to distinguish nodes in the community. In practice, the random walker is likely

to stay longer inside communities; therefore, in the process of finding a community

containing few inter-community links, only the second level is needed to describe its

path, leading to a compact representation.

4899

1 3

Decentralized iterative approaches for community clustering…

Recently, there have been several studies [19–22] proposed to find the proper

cluster for specific applications. For example in [20, 22], an intelligent clustering

method for energy-efficient cluster-based routing of data packets in a wireless sensor

network application have been proposed. However, the above-mentioned algorithms

are classified as global algorithms, which require access to the entire information of

the network and are designed to work on a single machine [3].

2.2 Clustering without global knowledge

There are other algorithms apart from DICCA [23] and PDICCA that achieve some

degree of locality within the graph by considering partial information instead of

global information. The examples include Connectivity-based Decentralized Node

Clustering scheme (CDC) proposed by Ramaswamy et al. [24], Distributed Diffusive

Clustering algorithm (DiDiC) proposed by Joachim and Henning [25] and Ja-be-Ja

[10]. CDC is a distributed and scalable algorithm for discovering clusters in peer-to-

peer networks. However, the nodes executing CDC algorithm need to communicate

with their direct neighbours and require knowledge of all the neighbouring nodes.

Similarly, though DiDiC is designed to work based on the method of distributed

diffusion to eliminate global operations, DiDiC communication takes place between

neighbouring graph nodes thus requiring the knowledge about all the neighbouring

nodes. Ja-be-Ja is a decentralized local algorithm that uses local search for graph

partitioning; however, it is designed to find balanced size partitions rather than

good-shaped partitions. This is usually not the case for real-world networks.

3 Decentralized Iterative Community Clustering Approach for graph
clustering (DICCA)

DICCA is an agglomerative clustering algorithm based on random walk and reacha-

bility, which is carried out through message propagation between neighbours. There

are two phases, local clustering and network reduction, that are run in an iterative

fashion. The former phase is used to define an originator node for each community

cluster and associate each node in the network to the best-fit originator. The reduc-

tion phase is used to rebuild the network using the communities resulting from the

previous phase, where each detected community becomes a node and the weight of

the edges in the new network represent the sum of the edges between two communi-

ties. The DICCA algorithm uses two parameters named threshold value and time to

live (TTL) [23]. The concept of the DICCA approach is presented in Algorithm 1.

Each round of the iteration process comprises of choosing a node randomly to

be an originator. The originator node acts as a cluster head and advertises itself by

sending a message (Msg) to all its neighbours in the network. This message contains

three fields, Originator node ID (OnID), Message Weight (WMsg) and TTL. OnID

represents the node id of the originator of the message. WMsg is the weight carried

by the message that represents the estimated probability of reaching any node in the

network starting from the originator node. TTL represents the maximum distance in

4900 A. Bhih et al.

1 3

hops before a message (Msg) expires. It is worth noting that, in order to avoid the

originator being assigned to any other clusters, the WMsg is set to 1 at the originator.

4901

1 3

Decentralized iterative approaches for community clustering…

Consider two nodes, the originator O
i
 and its neighbouring node V

i
 , the model

used to compute the weight of the message sent from the originator O
i
 to node V

i

depends on the weight of the edges between O
i
 and V

i
 . This is defined as [23]:

Every single node in the network maintains the information about the origi-

nator IDs and the total weights of the messages it has received for each origi-

nator. This information is represented as Total Message Weight. When the node

V
i
 receives a message Msg from its neighbouring node, it first updates the Total

Message Weight value and then checks whether TTL > 0. If TTL > 0, it decre-

ments the TTL of the message by one and forwards the message to all its neigh-

bours except the sender.

The weight of the new message WMsg(Vi, Vk) sent from node V
i
 to its neighbour-

ing node V
k
 is defined as [23]:

However, if TTL = 0 or WMsg becomes insignificantly low compared to the pre-

defined threshold value, the Node V
k
 processes the message and stops the forwarding

phase.

The nodes join the closest originator O
i
 if the total weight of the message from

the originator is greater than the specified threshold value. If not, those nodes will

remain as outliers and do not join any cluster.

This procedure is iteratively repeated by adding one more originator and updat-

ing communities and outlier nodes until there is no outlier node remains left. How-

ever, some nodes may receive multiple messages generated from different originator

nodes. In that case, each node attaches itself to the cluster lead by the originator

from which it has received the highest total message weight.

The second phase of the algorithm uses the communities that are found in the

first phase to build a new network, with each community from the previous phase

represented as a node in the new network. Multiple edges between any two commu-

nities are collapsed into a single edge in the new network, and its weight being the

sum of the edges between them. The edges within each community in the first phase

are represented as self-loops in the new network [23].

Once the second phase is completed, the first phase process is repeated with the

new network. The two phases are iteratively applied until there is no more change

in the communities between two iterations, and consequently optimized community

clusters are obtained.

Although the exact computational complexity of DICCA is harder to formalize,

this algorithm behaves as O(m log(n m)2)), in which n is the total number of nodes

in the network and m the number of edges. However, the most effort is in the first

phase of the algorithm.

(1)WMsg
�

Oi, Vi

�

=
W
�

Oi, Vi

�

∑

Vj∈Nbr(Oi)
W
�

Oi, Vj

�

(2)WMsg
�

Vi, VK

�

= WMsg ×
W
�

Vi, Vk

�

∑

Vj∈Nbr(Vi)
W
�

Vi, Vj

�

4902 A. Bhih et al.

1 3

4 Description of the Parallel Decentralized Iterative Community
Clustering Approach (PDICCA)

The core idea of PDICCA is to divide the data set into blocks and then iteratively

repeat the following three phases: clustering, re-clustering and rebuilding phase: the

clustering phase is responsible for finding local community clusters for each block

independently and in parallel. In the second phase, the local clusters thus extracted

from the individual blocks are aggregated to find the initial community clustering

for the entire network. The third phase involves building a new, but smaller net-

work for each block of data based on the initial community clustering. Each cycle

of this process through all the three phases is referred to as an iteration. The three

phases iterate until the old and the new community clustering list does not converge

anymore.

4.1 Framework of the PDICCA approach

The PDICCA approach consists of two worker schemes: master and slave-clustering

workers. The master worker creates the blocks as it reads the data set, and passes

them to slave-clustering workers. The master worker is also responsible for receiving

and aggregating the cluster assignment results from all the slave-clustering workers,

perform some computation, assign the overlapped nodes into the best community

and return the final solution. On the other hand, slave-clustering worker’s function-

ality is to identify local communities by going through its own data set and apply-

ing the first phase of the DICCA approach. The overview of PDICCA approach is

shown in Fig. 1.

Slave-clustering worker runs in parallel and stores the community clustering lists

in its local memory. However, since each slave-clustering worker has some part of

the data and does not have a global knowledge of the network, consequently, differ-

ent slave-clustering workers could cluster the same node into different communi-

ties. Thereby, when all the blocks are clustered and the local communities have been

identified, the master worker loads the local community clustering lists to aggregate.

Since the PDCCA approach is proposed to find non-overlapping clusters, the par-

tition C of N nodes should form a partition such that N = ∪k

i=1
 Ci and Ci ∩ Cj = Ø

for any i ≠ j. So, the master worker is responsible for finding the set of overlapping

nodes. The overlapping node list is then sent back to the slave workers to calcu-

late the strength of clustering solutions for each overlapped node among different

machines. This is then sent back to the master worker for the re-clustering phase. In

the re-clustering phase, the master worker finds out the best solution for overlapped

nodes, the solution corresponding to the highest strength of clustering, and updates

the community clustering list. At the end of the re-clustering phase, the network is

partitioned into a number of communities.

Next step is the rebuild phase, which involves building a new network by each

of slave-clustering workers. Using the same method presented in Sect. 3 where

the nodes in the new network are the communities from the re-clustering phase.

4903

1 3

Decentralized iterative approaches for community clustering…

The weight of the link between two nodes in this new network is the total weight

of the links between the nodes of the two corresponding communities in the

original network. The links between the nodes of the same community become

self-loops of the corresponding node in the new network. The iteration is then

repeated until a stable set of community clusters (fulfilling the convergence con-

dition) is obtained.

It is to be noted that each slave-clustering worker has its own private non-

shareable memory, and there are no communications between the workers in the

clustering phase. Thus, each slave-clustering worker operation is independent of

the others and each of the slave-clustering worker’s operations can be performed

in parallel.

To calculate the strength of overlapped nodes, the clustering strength of over-

lapped node V
m
 is formalized in the following definition:

De�nition 1 (Cluster strength)

Given a network set G = (V, E), with n = |V| nodes and m = |E| edges is presented.

During the clustering phase, each slave-clustering worker clusters these nodes into C

clusters and assigns V
m
 node to different communities. To find the best community

that fits Vm node, the proposed scheme carries out the following two steps.

First, the node V
m
 obtains two sets of information from each of its neighbours,

namely the degree of the neighbour node and the cluster to which it belongs to and

then calculates the neighbour attraction between V
m
 and its neighbour Vi, which is

defined as:

Convergence?

End

Slave

worker 1

Slave

worker 2

Slave

worker N

Master

worker

Slave

worker 1

Slave

worker 2

Slave

worker N

Master

worker

Slave

worker 1

Slave

worker 2

Slave

worker N

Master

worker

Split N

Split 1

Split3

Split 2

….

Yes

No

Data

records

Run next iteration

….

Find the local

communities

Find strength of

clustering for

overlapping

nodes

Updated community

clustering list and

Rebuild the network

Clustering

aggrega�on and

find overlapped

nodes

Find out the best

solution for

overlapped

nodes

Convergence

test

One Iteration

Fig. 1 Framework of the PDICCA approach

4904 A. Bhih et al.

1 3

where W
(

V
m

, V
i

)

 represents the weight of the edge between V
m
 and V

i
.

Then the strength value of V
m
 for all the clusters (C) where V

m
 belongs to is cal-

culated by computing the sum of the attractions for V
m
 towards its neighbours (Nbr

Attraction) within these C clusters and as follows:

(3)Nbr Attraction V
m

�

V
i

�

=
W
�

V
m

, V
i

�

∑

V
k∈Nbr(Vi)

W
�

V
i
, V

k

�

(4)
Cluster strength

(

V
m

, C1
)

=
∑

V
i
∈C1&V

i
∈Nbr(Vm)

Nbr Attraction V
m

(

N
i

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

C
lu

st
er

in
g
 A

cc
u
ra

cy

(Q
 \

N
M

I)

TTL

n={500,1000}

NMI,n=500 Modularity, n=500

NMI, n=1000 Modularity, n=1000

Fig. 2 Performance of the DICCA algorithm using different TTL values

Fig. 3 Comparison between computing time and the message complexities over different TTL values

4905

1 3

Decentralized iterative approaches for community clustering…

5 Setting the optimal values for the parameters

As mentioned in Sects. 3 and 4, DICCA and PDICCA use two parameters to be

defined. The first parameter TTL is defined as the number of hops that a message

is permitted to travel before being discarded. The next parameter is threshold value

that determines the difficulty of merging communities.

5.1 Time to live

Each message has a time to live (TTL) field that is initiated with some value

T > 0 that limits the number of times the message is forwarded. In reality, care

needs to be applied in choosing an appropriate TTL value, because a small TTL

value means the message may expire before reaching all relevant nodes in the

network. On the other hand, a large TTL means more nodes than needed are vis-

ited, thus increasing both the message load on the network and the running time

of the algorithm. Therefore, in this work, it is proposed to rebuild the network

before starting a new iteration to address this issue. Furthermore, based on the

real-world network properties, it is stated that networks from real-world applica-

tions are often small-world networks [26, 27]. The small-world concept in simple

terms describes the fact that even if the network has many nodes, there exists a

relatively small number of intermediate steps (short path) connecting any pair of

nodes within the network [28]. For example in social networking sites, it is stated

that people (and things and places) in the world are just six or fewer interpersonal

connections away from each other [29]. This is known as six degrees of separa-

tion theory.

In order to determine the effect of TTL value on the community clustering

accuracy, the TTL value ranging from 1 to 4 has been used in this evaluation.

Figures 2 and 3 present the accuracy values of synthetic networks with 500 and

1000 nodes and the message complexity, respectively. The results demonstrate

that the DICCA yields good community clusters when the TTL is set to be 3.

Increasing the TTL value does not have significant impact on the quality of com-

munity detection but may result in a very high communication load. However,

selecting a small TTL value can reduce the broadcast overhead but will compro-

mise the accuracy.

In this work to achieve good trade-off between high modularity and low message

complexity (running time), TTL is set to a value of 3.

5.2 Threshold value

The threshold value is a parameter set at the beginning of the process in a range

between 0 and 1. If the total weight of the message received by the node from

originator O
i
 is equal to or greater than the threshold value, then the node is able

to join the cluster led by the O
i
 . This means the higher the threshold value there

is less chance for the node to be merged into the community. For example, setting

4906 A. Bhih et al.

1 3

the threshold value close to zero will produce a single community cluster contain-

ing all the nodes in the network. On the other hand, setting the threshold value

close to one will make each node to be in its own cluster. In other words, low

threshold value produces high number of small-sized clusters; meanwhile higher

value will produce lower number of larger sized clusters. Therefore, the threshold

value has an important effect on clustering accuracy as well as the size of the

detected clusters. Obviously tuning the threshold value could be seen as a pos-

sible practical remedy to control the desired size and the number of communities.

The choice of selecting a suitable threshold value is very crucial and requires

a priori knowledge of network structure. However, generating a priori knowledge

is usually time-consuming since networks are usually big and have large amounts

of information [29]. Hence, in this work a mathematical model to automatically

calculate the threshold value is proposed by the authors. The model makes use of

density, size and layout structure of the network to find the optimal threshold value.

The set of Eqs. (5 to 11) presented below define the mathematical model for

setting the threshold value for undirected network:

where i is the main node, j represents all other nodes, A is the adjacency matrix

where the entry Aij represents the connectivity if the value is 1; otherwise, it is 0, n

is the total number of nodes in the network, t is the iteration number, K
i
 is the degree

of node i and C is network clustering coefficient which is defined as:

where L
i
 is the number of edges between neighbours of node i [8].

A fully connected network is a simple undirected graph in a network of n nodes,

in which every pair of distinct nodes is connected by a unique edge. Based on the

graph theory, the network clustering coefficient for a fully connected network is 1

and the degree of each node is defined as:

Thus, the total edges of the complete network having n nodes will be:

Using Eq. (5) to calculate the threshold value for complete network:

(5)Threshold value = avg_t + (t − 1) × ((1 − C) × avg_t)

(6)avg_t =
log (log (n))

log (n)

n
∑

i=1

(

1

K
i

+
K

i
− 1

K
2
i

+
K

i
− 2

K
3
i

)

(7)Ki =

n
∑

j=0

Aij

(8)C =

1

n

n
∑

i=1

2L
i

K
i

[

K
i
− 1

]

(9)K
i
= n−1

(10)

n
∑

i=0

K
i
= n(n − 1)

4907

1 3

Decentralized iterative approaches for community clustering…

In Eq. (11), the first part
(

log (log (n))

log (n)

)

 is always less than 1. Whereas, the second

part of equation
�

∑n

i=1

�

1

K
i

+
K

i
−1

K
2

i

+
K

i
−2

K
3

i

��

 represents the maximum weight of mes-

sages received by node i, when the TTL = 3. For a fully connected network and

using Eqs. (5–11) to set the threshold parameter, the proposed algorithm will pro-

duce one cluster containing all the nodes in the network. This is acceptable since

there is no meaningful subsets that are clusters in the fully connected network.

It is worthwhile mentioning that, in each iteration, the threshold value for a given

network is stepwise increased by (t − 1) × ((1 − C) × avg_t) as seen in Eq. (5), so that

it becomes progressively difficult for clusters that are not so densely connected to

join with each other. Only the strongly connected ones will be able to merge. Addi-

tionally, the maximum threshold value cannot be larger than 1 [23].

6 Experimental data sets

To analyse the efficiency of the community detection algorithm on a range of net-

work size and due to the scarce availability of real networks that have ground-truth

communities, LFR benchmark is used to generate synthetic data sets. The LFR

benchmark model was proposed by Lancichinetti et al. [30] to generate undirected

and unweighted networks that closely resemble real-world networks with com-

munity structure. LFR model has become a popular choice for assessing the per-

formance of community detection algorithms, and the model was subsequently

extended to generate weighted and/or directed networks, with the possibility of over-

lapping communities.

Most of the real-life network have been defined and modelled as undirected

and unweighted/weighted networks. This paper focuses on this type of networks

with non-overlapping communities. The LFR model is proposed to address most

characteristics of real networks, e.g., size of the network and heterogeneous degree

distribution. In the LFR benchmark, both the node degrees of a network and the size

of each community are controlled by a power-law distribution with exponent γ and

β, respectively. However, it has been observed that real-world graphs have such a

power-law degree distribution [28] with typical values of: 2 ≤ γ ≤ 3, 1 ≤ β ≤ 2 [30].

LFR model provides some other parameters to control the network topology,

including the number of nodes, maximum degrees and mixing parameter μ. Mixing

parameter μ ∈ [0, 1] is used to control the fraction of intra-cluster and inter-cluster

edges on the network. For small values of μ, there will be small number of edges

going outside the communities, which indicates that there are clear clusters available

in the networks. The larger the μ value, the more challenging it is to detect com-

munities in the network. The code of LFR mode is made publicly available by the

authors [31].

(11)
Threshold Value =

log (log (n))

log (n)

n
∑

i=1

(

1

K
i

+
K

i
− 1

K
2
i

+
K

i
− 2

K
3
i

)

4908 A. Bhih et al.

1 3

7 Analysis of results and discussion

7.1 Environment setup

Using the LFR networks a set of undirected networks are generated. The default

benchmark parameter values are used as the benchmark parameters for the expo-

nents of the degree distribution and community size, viz. γ = 2, β = 1. The average

degree and the maximal degree are 25 and 50, respectively. The mixing parameter is

varied from 0.1 to 0.75 and the number of nodes is varied from 500 to 5000.

The DICCA and PDICCA are implemented in Matlab and the experiments are

performed on a system configured with 4® Core™ i7 6700 K CPU 4.00 GHz and

16 RAM available memory running windows. Because the approaches initialize the

originator randomly, and in order to neglect the effect of randomness in our method

each result is averaged over 100 runs.

7.2 Accuracy measure for graph clustering

The true community structure (ground truth) is known for the benchmark network.

Therefore, Normalized Mutual Information (NMI) [32] is used to evaluate the per-

formance of DICCA and PDICCA by comparing the obtained partitions in the

experiments with the ground truth for the LFR benchmark. NMI metric quantifies

the accuracy of the proposed methods by evaluating the level of correspondence

between detected and ground-truth communities. In addition, modularity measure-

ment introduced by Newman and Girvan in [33] is used to evaluate the effectiveness

of the algorithms in terms of modularity optimization.

De�nition 2 [Normalized Mutual Information (NMI)]

Normalized Mutual Information (NMI) is a similarity measure for comparing two

partitions based on the information theory concept. It is introduced in the commu-

nity detection domain by Danon et al. [32], and since then it has been widely used to

evaluate the accuracy of community detection algorithms.

For an n-node network with two partitions X = {X1, X2, X3, …, Xk} and

Y = {Y1, Y2, Y3, …, Y
K̄

 } where X and Y represent the real communities and found

communities, respectively, the normalized mutual information NMI(X, Y) of two

divisions X and Y of a network is defined as follows [34]:

where
(

K, K̄
)

=
X

K
∩Y

K̄

n
 , P(K) =

X
K

n
 and P

(

K̄
)

=

Y
K̄

n
.

(12)NMI(X, Y) =

−2
∑k

K=1

∑K̄

K̄=1
P
�

K, K̄
�

Log
�

P(K,K̄))

P(K)P(K̄)

�

∑K

K=1
P(K)Log[P(K)] +

∑K̄

K̄=1
P
�

K̄
�

Log
�

P
�

K̄
��

4909

1 3

Decentralized iterative approaches for community clustering…

If the found partition by the algorithm is identical to the real community, then

NMI takes its maximum value of 1. If the partition found is totally independent of

the real partition then NMI = 0 [34].

De�nition 3 [Modularity (Q)]

Modularity (Q) is a prominent measure for the quality of a community structure,

and it has become a widely accepted quality of measure for community detection.

Modularity states that a good cluster should have a bigger-than-expected number of

connections between the nodes within modules and a smaller-than-expected number

of connections between nodes in different modules. The higher the value of modu-

larity, the better is its community strength.

The general concept of modularity optimization algorithms is to detect the best

community structure in terms of modularity by searching over possible divisions of

a network that have high modularity.

Formally, modularity can be defined as [3]:

where Aij is an element of the adjacency matrix, K
i
 is the degree of node i. �ci cj

 is the

Kronecker delta symbol, which is equal to 1 if ci = cj and 0 otherwise, and ci is the

label of the community to which node i is assigned.

7.3 Experimental results

In this section, the results from the experiments conducted using synthetic networks

are presented, analysed and discussed in detail.

7.3.1 Horizontal scalability in relation to the number of parallel cores

To demonstrate how well the proposed approaches handle data sets when more

workers are available, the number of nodes in the network used in this evaluation

is kept constant and the number of workers is varied from 1 to 4. It is worth men-

tioning that if the number of workers is 1, the algorithm simply represents DICCA.

Figure 4 shows the results of different cores when the number of nodes is constant,

n ∈ {500, 1000}.

7.3.1.1 Quality From Fig. 4, the approaches show a good scalability close to the opti-

mal value, which is indicated by average modularity and NMI values. In addition, it is

clear that using more than one worker to parallelize the algorithm does not adversely

affect the accuracy of the result. Consequently, the results prove that the algorithm is

effective and able to achieve very high-quality results in a parallel manner. More espe-

cially, PDICCA is capable of exploiting multi-core architecture efficiently.

(13)Q =

1

2|m|
∑

ij

[
Aij −

KiKj

2|m|

]
�cicj

4910 A. Bhih et al.

1 3

7.3.1.2 Message complexity Considering the number of exchanged messages for

each worker, Fig. 5 shows the percentage of exchanged messages at each iteration

by each worker processor. As can be observed in each iteration, each worker gener-

ates almost the same number of messages; this can be clarified by the fact that the

data has been partitioned equally among the workers so each worker has to process

the same size of data. Hence, at each iteration, the master worker must wait until all

workers have completed their processes. So, splitting the data equally over workers

can significantly reduce the expected time needed to wait until the slowest machine

worker returned data.

For more in-depth analysis, Fig. 6 shows the average percentage of exchanged

messages in each iteration. It can be easily observed from the figure that data

exchange for the algorithm is much greater at the first stage of iteration when each

node is in its own cluster. Just after 2 to 3 initial iterations, most nodes have their

cluster labels and the algorithm has merged the nodes belonging to the same cluster

to be one node. It also becomes clear from the percentage of exchanged messages

between master and slaves as seen in Table 1, the communication cost is negligible.

However, this is less compared with the cost of information exchanged locally in

slaves, which is costly and constitutes the main body of the time consumption of the

algorithm.

7.3.2 Clustering results for increasing network size

To demonstrate the performance influenced by scalability, the number of nodes is

increased linearly from 500 to 5000 and the number of workers is kept constant at

1 and 3. All other parameters and factors remain the same as previous evaluations.

7.3.2.1 Quality The modularity values of the solutions obtained by the DICCA and

PDICCA are presented in Fig. 7. It can be observed from the figure that the perfor-

mance of the both DICCA and PDICCA are consistently good and close to the opti-

mal value with NMI above 0.90 on average.

(a) (b)

Fig. 4 NMI, Q-PDICCS and ground-truth Q scores (y-axis) as number of workers (x-axis) changes num-
ber of nodes: a 500 and b 1000

4911

1 3

Decentralized iterative approaches for community clustering…

7.3.2.2 Evaluating repeatability of the performance To further investigate the abil-

ity of the DICCA and PDICCA to produce consistent results across random starts

across random data partitioning and initialization, the standard deviation of the clus-

tering results is measured where both the DICCA and PDICCA are run 100 times

each time with different random data partitioning and algorithm initialization. The

standard deviation value of both NMI and modularity for the data sets with different

network size are displayed in Fig. 8, which is relatively very small and in some cases

around zero variation.

7.3.2.3 Evaluation of complexity of the DICCA and PDICCA approaches To investi-

gate the relationship between the number of nodes and complexity of approach, the

total number of exchanged messages as a function of the network size is presented in

Fig. 9. Since the DICCA and PDICCA require a large number of exchanged messages

between nodes, which is the most time-consuming part during execution, the perfor-

mance of DICCA and PDICCA highly depended on the total number of exchanged

messages. Therefore, the number of exchanged messages increases with the network

size. For example, the total number of messages exchanged by PDICCA for n ∈ {500;

5000} is {1,344,282; 15,633,691}, respectively.

0

0.5

1

1.5

2

2.5

N
u

m
b

er
 o

f
 M

es
sa

g
es

(i
n

 m
il

li
n
o
n
s)

n=1000, 1 worker

1 worker

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
u

m
b

er
 o

f
 M

es
sa

g
es

(i
n

 m
il

li
n
o
n
s)

n=1000, 2 workers

1 worker 2 workers

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

N
u

m
b

er
 o

f
 M

es
sa

g
es

(i
n

 m
il

li
n
o
n
s)

n=1000, 3 workers

1 worker 2 workers 3 workers

0
0.1
0.2
0.3
0.4
0.5

N
u

m
b

er
 o

f
 M

es
sa

g
es

(i
n

 m
il

li
n
o
n
s)

n=1000, 4 workers

1 worker 2 workers

3 workers 4 workers

Fig. 5 Number of message exchanged in each iterations and for each worker with respect to the number
of workers varied from 2 to 4 for number of nodes 1000

4912 A. Bhih et al.

1 3

7.3.3 Evaluation of clustering performance using mixing parameter

To investigate the ability of the DICCA and PDICCA to detect community clusters

when the community structure is weakened by highly increasing the number of inter-

community links (occurs when μ of the LFR benchmark has high values), the DICCA

and PDICCA are evaluated with varying values of mixing parameter between

0.1 and 0.75, µ ∈ {0.1, 0.15, …, 0.75}, and keeping the number of nodes constant,

91.65%

5.82%

1.19%
1.34%

n=1000, 1 worker

1st Iteration 2nd Iteration

3rd Iteration The rest

85%

11%

2% 2%
n=1000,2 workers

1st Iteration 2nd Iteration

3rd Iteration The rest

72%

19%

5% 4%

n=1000, 3 workers

1st Iteration 2nd Iteration

3rd Iteration The rest

52%

28%

10%

10%

n=1000,4 workers

1st Iteration 2nd Iteration

3rd Iteration The rest

Fig. 6 Average percentage of message exchanged per each iteration with number of cores varied from 1
to 4 workers for network size 1000

Table 1 Comparison with message exchanged locally in hosts and messages exchanged between master
and hosts

Number of nodes 500 1000

No. of workers % Messages
exchanged locally
among slaves

% Messages
exchanged between
master and slaves

% Messages
exchanged locally
among slaves

% Messages
exchanged between
master and slaves

1 100 0 100 0

2 99.9767 0.0233 99.9760 0.0240

3 99.9636 0.0364 99.9631 0.0369

4 99.9599 0.0401 99.9629 0.0371

4913

1 3

Decentralized iterative approaches for community clustering…

0.5

0.6

0.7

0.8

0.9

1

C
lu

st
er

in
g
 A

cc
u
ra

cy

(Q
 \

N
M

I)

Number of Nodes

NMI-PDICCA Q-PDICCA Ground-truth Q

NMI-DICCA Q-DICCA

Fig. 7 NMI, Q and ground-truth Q scores (y-axis) as number of nodes (x-axis) changes

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Number of Nodes

Std(NMI)-PDICCA Std(Q)-PDICCA

Std(NMI)-DICCA Std(Q)-DICCA

Fig. 8 Standard deviation of final modularity/NMI with network sizes

0

5

10

15

20

N
u

m
b
er

 o
f

M
es

sa
g
es

(i
n
 m

il
li

o
n
s)

Number of Nodes

Number of Messages-PDICCA

Number of Messages-DICCA

Fig. 9 Total number of exchanged messages (y-axis) as number of nodes (x-axis) changes

4914 A. Bhih et al.

1 3

n ∈ {1000}. Figure 10 shows the results obtained for both modularity and NMI accu-

racy as a function of the mixing parameter for network sizes 1000 nodes. As can be

clearly seen, the natural partitions of the network are always found (in principle) for

the mixing parameter value of up to 0.5, after which the method starts to fail where

the quality of DICCA and PDICCA was rather poor. The reason for this behaviour is

that a small value of mixing parameter indicates well-defined community structures

in the generated network. The reason is that most of the edges fall inside the com-

munities. This is in line with the definition of a community that each node should

have more connections within the community than with the rest of the graph [27].

On the other hand, networks with higher values of mixing parameter are more chal-

lenging to cluster accurately, as there are no clear divisions between communities in

these networks as most of the edges fall outside the communities. Furthermore, the

performance comparison of the proposed algorithms, the ground-truth network and

the fast greedy modularity optimization proposed by Clauset et al. [35] in terms of

modularity is shown in Fig. 10. This comparison shows low values of Q for all the

algorithms considered here and the ground-truth network, when the mixing param-

eter value ≥ 0.5. This low value of Q indicates that the communities in the network

are indistinguishable due to the network structure rather than poor performance.

8 Conclusion

In this paper, a novel Decentralized Iterative Community Clustering Approach

(DICCA) and its parallel version (PDICCA) to extract an efficient community

structure for large networks are presented. An important property of the proposed

approaches is their ability to identify optimal community clusters from an entire net-

work without the global knowledge of the network topology. This ability means that

(a) (b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
.1

0
.1

5
0

.2
0
.2

5
0

.3
0
.3

5
0

.4
0
.4

5
0

.5
0
.5

5
0

.6
0
.6

5
0

.7
0
.7

5

C
lu

st
er

in
g

 A
cc

u
ra

cy

(Q
 \

N
M

I)

Mixing parameter

n=1000

NMI-DICCA Q-DICCA

Ground Modularity NMI-Fast Greedy

0

0.5

1

0
.1

0
.1

5
0

.2
0

.2
5

0
.3

0
.3

5
0

.4
0

.4
5

0
.5

0
.5

5
0

.6
0

.6
5

0
.7

0
.7

5

C
lu

st
er

in
g

 A
cc

u
ra

cy

(Q
 \

N
M

I)

Mixing parameter

n=1000

NMI-PDICCA Q-PDICCA

Ground-truth Q NMI-Fast greedy

Fig. 10 Performance of the proposed algorithm using mixing parameter μ. a DICCA and b PDICCA

4915

1 3

Decentralized iterative approaches for community clustering…

the entire network does not need to be loaded into one memory and could be easily

adapted to run in parallel on as many processors as available to find community

clusters in big networks. This cannot be done using the majority of existing com-

munity detection algorithms that implicitly assume that the entire structure of the

network is known and is available.

The DICCA and PDICCA are based on the random walk procedure and reach-

ability of nodes in the network. In addition, the proposed approaches address the

issues surrounding computational demands for dealing with big data sets. They

optimally utilize the hardware capabilities of modern multi-core systems for faster

execution by processing multiple blocks in a parallel manner. Furthermore, when

scalability issues occur as the data size grows beyond the processing power of a sin-

gle machine, the proposed distributed approach based on the MapReduce comput-

ing platform will help address this. Finally, the effectiveness and complexity of the

approaches are tested and analysed using synthetic networks with ground-truth com-

munities. The experimental results of the approaches prove to be very promising.

Real-world networks often do not contain perfect communities, and in reality

nodes may belong to multiple communities simultaneously. Identifying such over-

lapping communities (also known as fuzzy) is crucial for understanding the struc-

ture as well as the function of real-world networks. A further direction is to extend

the proposed approaches to be able to detect such fuzzy communities. Further, in

this work, only the undirected networks have been taken into consideration. There-

fore, considering the directed networks may be an interesting direction for further

research.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

 1. Chen J, Zaiane OR, Goebel R (2009) Detecting communities in large networks by iterative local
expansion. In: International Conference on Computational Aspects of Social Networks, 2009.
CASON’09, pp 105–112. IEEE

 2. Mahata D, Patra C (2016) Detecting and analyzing invariant groups in complex networks. In:
Behera H, Mohapatra D (eds) Computational intelligence in data mining, vol 1. Springer, New
Delhi, pp 85–93

 3. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3):75–174
 4. Orman GK, Labatut V, Cherifi H (2011) On accuracy of community structure discovery algorithms.

ArXiv preprint arXiv :1112.4134
 5. Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27–64
 6. Khatoon M, Banu WA (2015) A survey on community detection methods in social networks. Int J

Educ Manag Eng 5(1):8
 7. Warnke SD (2016) Partial information community detection in a multilayer network. Naval Post-

graduate School, Monterey
 8. Costa LF, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks:

a survey of measurements. Adv Phys 56(1):167–242

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1112.4134

4916 A. Bhih et al.

1 3

 9. Qi G-J, Aggarwal CC, Huang T (2012) Community detection with edge content in social media
networks. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE), pp 534–545.
IEEE

 10. Rahimian F, Payberah AH, Girdzijauskas S, Jelasity M, Haridi S (2013) Ja-be-ja: a distributed algo-
rithm for balanced graph partitioning. In: 2013 IEEE 7th International Conference on Self-Adaptive
and Self-Organizing Systems (SASO), pp 51–60. IEEE

 11. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun
ACM 51(1):107–113

 12. Wang M, Wang C, Yu JX, Zhang J (2015) Community detection in social networks: an in-depth
benchmarking study with a procedure-oriented framework. Proc VLDB Endow 8(10):998–1009

 13. Aggarwal CC, Wang H (2010) A survey of clustering algorithms for graph data. In: Managing and
mining graph data, pp 275–301. Springer, Boston, MA

 14. Newman M (2010) Networks: an introduction. Oxford University Press, Oxford
 15. Newman ME (2004) Fast algorithm for detecting community structure in networks. Phys Rev E

69(6):066133
 16. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in

large networks. J Stat Mech: Theory Exp 2008(10):P10008
 17. Pons P, Latapy M (2006) Computing communities in large networks using random walks. J Graph

Algorithms Appl 10(2):191–218
 18. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community

structure. Proc Natl Acad Sci 105(4):1118–1123
 19. Ganapathy S, Kulothungan K, Yogesh P, Kannan A (2012) A novel weighted fuzzy C-means clus-

tering based on immune genetic algorithm for intrusion detection. Proc Eng 38:1750–1757
 20. Munuswamy S, Saravanakumar JM, Sannasi G, Harichandran KN, Arputharaj K (2018) Virtual

force-based intelligent clustering for energy-efficient routing in mobile wireless sensor networks.
Turk J Electr Eng Comput Sci 26(3):1444–1452

 21. Priya P, Ghosh D, Kannan A, Ganapathy S (2014) Behaviour analysis model for social networks
using genetic weighted fuzzy c-means clustering and neuro-fuzzy classifier. Int J Soft Comput
9(3):138–142

 22. Thangaramya K, Logambigai R, SaiRamesh L, Kulothungan K, Ganapathy AKS (2017) An
energy efficient clustering approach using spectral graph theory in wireless sensor networks. In:
2017 Second International Conference on Recent Trends and Challenges in Computational Models
(ICRTCCM), pp 126–129. IEEE

 23. Bhih A, Johnson P, Nguyen T, Randles M (2017) Decentralized Iterative Community Clustering
Approach (DICCA). In: 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC), pp 1–7. IEEE

 24. Ramaswamy L, Gedik B, Liu L (2005) A distributed approach to node clustering in decentralized
peer-to-peer networks. IEEE Trans Parallel Distrib Syst 16(9):814–829

 25. Gehweiler J, Meyerhenke H (2010) A distributed diffusive heuristic for clustering a virtual P2P
supercomputer. In: 2010 IEEE International Symposium on Parallel and Distributed Processing,
Workshops and Ph.D. Forum (IPDPSW), pp 1–8. IEEE

 26. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature
393(6684):440–442

 27. Silva TC, Zhao L (2016) Machine learning in complex networks. Springer, Berlin
 28. Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256
 29. Griffiths MD, Kuss DJ, Demetrovics Z (2014) Social networking addiction: an overview of pre-

liminary findings. In: Rosenberg KP, Feder LC (eds) Behavioral addictions. Elsevier, New York, pp
119–141

 30. Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection
algorithms. Phys Rev E 78(4):046110

 31. Fortunato S. Benchmark graphs for testing community detection algorithms. www.santo .fortu nato.
googl epage s.com/bench mark.tgz

 32. Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification.
J Stat Mech: Theory Exp 2005(09):P09008

 33. Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev
E 69(2):026113

 34. Labatut V (2015) Generalised measures for the evaluation of community detection methods. Int J
Soc Netw Min 2(1):44–63

http://www.santo.fortunato.googlepages.com/benchmark.tgz
http://www.santo.fortunato.googlepages.com/benchmark.tgz

4917

1 3

Decentralized iterative approaches for community clustering…

 35. Clauset A, Newman ME, Moore C (2004) Finding community structure in very large networks.
Phys Rev E 70(6):066111

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Decentralized iterative approaches for community clustering in the networks
	Abstract
	1 Introduction
	2 Related work
	2.1 Graph partitioning and community detection
	2.2 Clustering without global knowledge

	3 Decentralized Iterative Community Clustering Approach for graph clustering (DICCA)
	4 Description of the Parallel Decentralized Iterative Community Clustering Approach (PDICCA)
	4.1 Framework of the PDICCA approach

	5 Setting the optimal values for the parameters
	5.1 Time to live
	5.2 Threshold value

	6 Experimental data sets
	7 Analysis of results and discussion
	7.1 Environment setup
	7.2 Accuracy measure for graph clustering
	7.3 Experimental results
	7.3.1 Horizontal scalability in relation to the number of parallel cores
	7.3.1.1 Quality
	7.3.1.2 Message complexity

	7.3.2 Clustering results for increasing network size
	7.3.2.1 Quality
	7.3.2.2 Evaluating repeatability of the performance
	7.3.2.3 Evaluation of complexity of the DICCA and PDICCA approaches

	7.3.3 Evaluation of clustering performance using mixing parameter

	8 Conclusion
	References

