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Abstract

We study a decentralized channel allocation problem in an ad-hoc Internet of Things network underlaying

on the spectrum licensed to a primary cellular network. In the considered network, the impoverished channel

sensing/probing capability and computational resource on the IoT devices make them difficult to acquire the detailed

Channel State Information (CSI) for the shared multiple channels. In practice, the unknown patterns of the primary

users’ transmission activities and the time-varying CSI (e.g., due to small-scale fading or device mobility) also cause

stochastic changes in the channel quality. Decentralized IoT links are thus expected to learn channel conditions online

based on partial observations, while acquiring no information about the channels that they are not operating on. They

also have to reach an efficient, collision-free solution of channel allocation with limited coordination. Our study maps

this problem into a contextual multi-player, multi-armed bandit game, and proposes a purely decentralized, three-stage

policy learning algorithm through trial-and-error. Theoretical analyses shows that the proposed scheme guarantees the

IoT links to jointly converge to the social optimal channel allocation with a sub-linear (i.e., polylogarithmic) regret

with respect to the operational time. Simulations demonstrate that it strikes a good balance between efficiency and

network scalability when compared with the other state-of-the-art decentralized bandit algorithms.
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I. INTRODUCTION

The global proliferation of the Internet-connected devices has spawned a high demand for the research

into supporting Internet-of-Things (IoT) communications towards next-generation wireless technologies. In

novel IoT-centric use cases such as advanced metering and monitoring infrastructures for smart city/industry,

the IoT networks are typically based on the co-channel deployment of the computation/power-limited

Machine-Type Communication (MTC) devices [1], [2] over unlicensed frequency bands. Meanwhile, these

applications demand frequent transmission of small-size data either directly between MTC devices [3] or

from these devices to IoT gateways. As a result, the unique characteristics of IoT imposes a series of

challenges to the adaptation of the off-the-shelf Media Access Control (MAC) protocols in network design.

Especially, the IoT networks are expected to support applications requiring a relatively high degree of

efficiency and scalability, but on a basis of light-weight MAC mechanisms and minimum infrastructure,

mainly due to the constraints of complexity and power resources on the devices.

In this paper, we investigate the problem of handling an anarchy group of low-complexity IoT devices

for their connections underlaying over the multiple bands of a primary network. In a typical setting of

heterogeneous narrow-band IoT networks, the underlaying IoT transmission can retain an efficient data rate

by adopting a proper resource-block spreading factor, while causing negligible interference to the licensed

cellular users by scaling the transmit power accordingly [4]. However, due to the impoverished resources

of the low-power, light-weight IoT devices, it is impractical for them to perform simultaneous, real-time

channel estimation for multiple bands with unknown, time-varying activities of the licensed users. Also, due

to the limited signaling capability of the IoT devices, a pure contention-based or reservation-based channel

allocation scheme (e.g., random access or coordinated access) may not be able to meet the requirements of

scalability, efficiency and reliability at the same time. For this reason, we aim to design a low-complexity,

purely decentralized allocation scheme that associates the logical channels over the unlicensed bandwidth

with each ad-hoc IoT link, while guaranteeing the social performance of the entire IoT network.

To achieve the two-fold goal of decentralization and social optimal performance for channel allocation, we

propose a framework of decentralized strategy learning for channel association based on Multi-Player (MP)

Multi-Armed Bandits (MAB). Under the proposed learning framework, the IoT devices gradually learn their

link quality over each channel and then resolve the channel contention problem without explicit signaling.

More specifically, we formulate the IoT devices as the players of an MAB game, and the fading channels

as the stochastic arms of the MAB. To address the interference from the co-existing primary transmissions,

we further extend our MP-MAB formulation by considering the underlying arm-value distribution to be



non-stationary. In particular, the instantaneous quality of an IoT link established over a primary channel1 is

determined by not only the stochastic channel state, but also the context of primary transmissions that the

coexisting licensed users happen to operate upon. This leads to a multi-player extension of the contextual

MAB [5], where the reward of each arm for every player is jointly determined by the context (i.e., the radio

environment information) and the players’ actions. The goal of investigating this contextual MP-MAB is to

find optimal policies mapping from the random samples of context-reward pairs over the licensed channels

to a sequence of actions of channel association, to maximize the accumulated sum of achievable throughput

(i.e., received reward) by the IoT links along the time horizon.

The rest of the paper is organized as follows: Section II discusses the related works in the recent literature.

Section III mathematically transform the considered channel-allocation problem into a contextual MP-MAB

game, based on which we propose the purely decentralized social-optimal policy learning algorithm in

Section III-A. The efficiency of the proposed algorithm is mathematically analyzed in Sections V and VI,

where Section V provides the theoretical bound on the regret of the proposed algorithm for contextual

MP-MAB, and Sections VI analyzes the efficiency of the proposed algorithm when the contexts are

not observable to the players. Section VII provides a series of experiment/simulation results regarding

the proposed algorithm for heterogeneous IoT networks over unlicensed spectrum. Finally, Section VII

concludes the paper.

II. RELATED WORK

A. Channel Access Mechanisms for IoT Networks

The reservation-based MAC protocols, such as the canonical F/T/C-DMA or OFDMA schemes, are able

to achieve deterministic Quality of Service (QoS). However, the need of coordination over a dedicated

feedback/control channel by the Access Points (APs) (e.g., [6]) limits their deployment to those scenarios

in a cellular infrastructure. Comparatively, the contention-based protocols, e.g., ALOHA and CSMA/CA,

are able to support larger scale M2M networks but face the issue of providing only opportunistic QoS

guarantee. As a result, the hybrid MAC scheme is studied by a number of works in the literature [7],

[8] when a centralized coordinator (e.g., AP) is available in the IoT network. The hybrid MAC schemes

are featured by the aggregation of the contention-based and the reservation-based protocols. They allow

the network to guarantee fairness among contending users with ALOHA/CSMA-like schemes. The rate

1In what follows, we use the pairs of terms “channel” and “arms”, and “links” and “players” interchangeably.



efficiency is then provided with pre-allocated orthogonal resources (e.g., time slots or sub-carriers) to a

selected group of devices that win the resource request contention.

When APs (namely, infrastructure) are non-existent for the IoT networks over shared spectrum, random-

access based on contentions becomes more suitable than the reservation-based schemes. In the scenario

of multi-channel association with a dedicated common control channel, channel-contention resolutions

based on the RTS/CTS dialog over the control channel are designed for devices equipped with multiple

antennas/sensors [9]. Alternatively, decentralized channel swapping mechanisms are proposed for the cases

in which no coordination channel is accessible for time-synchronized nodes [10], [11] or for nodes even

without global synchronization [12]. Usually, nodes over each channel are assumed to be fully connected to

avoid the hidden terminal problem. In different studies, an operational phase of broadcasting beacon packets

over randomly selected channels is commonly adopted to either determine the level of congestion [10] or to

locate free bands [11], [12] for collision avoidance. Particular mechanisms such as master node (known as

SYNC node in [10]) election are proposed to designate the IDs of nodes and channels that swapping/hopping

is allowed for, in order to achieve a convergent solution among the decentralized devices [10], [11].

However, most contention/swapping-based decentralized MAC schemes in the literature prioritize non-

colliding allocation over social-optimal network performance. Another obstacle for designing an efficient

and decentralized IoT MAC scheme over multi-channels lies in the lack of CSI in an unknown time-varying

wireless environment. As a result, the demand for efficient decentralized MAC schemes in IoT networks

inspires the adoption of distributed stochastic learning algorithms, which range from decentralized stochastic

learning automata in repeated channel allocation games [13] to channel allocation in a framework of MP-

MAB based on distributed auction [14] or hopping [15], [16] with different levels of message exchanges.

B. MP-MAB for Resource Allocation in Wireless Networks

In wireless networking, the MAB-based formulation was first introduced for the single-user-multi-channel

selection problem in Cognitive Radio Networks (CRNs), where channel states are stochastic and not fully

observable due to the unknown activities of the primary user [17], [18]. In the single-player scenario, the

player’s goal is to maximize the expected accumulated reward, namely, the achievable transmit rate in the

long run. When the pulled arm yields i.i.d. random rewards following a stationary but unknown distribution,

such a distribution can be learned from repeated plays for abstracting the unknown wireless environment,

i.e., the quality of each orthogonal channel [19]. Unlike supervised learning, the value of each arm in the

MAB is not known in advance, and the player is only able to observe the value of the pulled arm, one at

each time. Therefore, it is necessary to infer the best arm-values from such historical partial observation



through trial and error. Essentially, the solution to this well-know problem is about striking a trade-off

between policy exploitation and exploration. Namely, the player needs to properly choose whether to gain

the myopic optimal reward, or to further improve its arm-value estimation in order to avoid choosing a

sub-optimal arm in the long run. The former goal is achieved by selecting the best arm/channel according

to the available observation record, while the latter is achieved through proper policy exploration.

It is natural to extend the problem formulation from single-player MAB to the case of MP-MAB [20],

especially in the multi-link context of CRNs, which have to frequently deal with unknown stochastic

channels due to the unpredictable activities of primary users [21], [22]. With decentralized and simultaneous

arm selection, collisions have to be handled when more than one player choose the same arm. At each

round of play in the MP-MAB, every player chooses one arm to pull according to its own observation

history of arm-value feedback, while a certain level of coordination (i.e., messaging between devices) may

be allowed based on different assumptions of information exchange capabilities [23]–[25] for collision

resolution. The rewards of the same arm observed by different players are frequently assumed to be drawn

from different and unknown i.i.d. distributions (e.g., [11]), which reflects the independent pathloss and

shadowing properties of different user links over the same channel. With such a multi-player formulation,

a repeated game of heterogeneous players evaluating player-dependent rewards over the candidate channels

can be developed (e.g., [22], [26]).

C. Contribution

Compared with the existing studies in the literature, our research further extends the expressiveness

of the MP-MAB formulation with a new dimension of freedom brought by the environmental context

information [27]. In the considered scenario of coexisting IoT network operation over spectrum licensed

to primary users, we employ a discrete set of contexts to quantitatively reflect the interference caused

to the ad-hoc IoT links by the primary transmissions. Such formulation allows us to further address the

randomness of the network environment, which can be widely observed in different wireless networking

protocol layers such as user hand-off between cells in a CRN [28] and multi-task execution with different

levels of QoS [29]. However, the introduction of the discrete context requires the MP-MAB algorithm

designer to reconsider the regret propagation from the very beginning of the learning process as well as the

collision avoidance mechanism among the decentralized links. Bearing these challenges in mind, the main

contributions of this paper are summarized as follows:

• We model the dynamic channel allocation problem in an ad-hoc IoT network over shared spectrum

as a multi-player contextual MAB. Especially, we address the problem of unknown stochasticity in



both channel states and non-controllable activities of the underlying licensed users at the same time.

We propose a novel decentralized online learning algorithm, which achieves social-optimal channel

allocation with no need of the a-priori knowledge about channel statistics and radio context evolution.

• We study a generalized scenario where IoT links observe heterogeneous achievable rates over the

same channel in the same radio context (e.g., due to different distances from the primary transmitter).

Extended from a typical exploration-exploitation framework for single-player contextual MAB [30],

theoretical analysis is provided regarding the convergence property and the network performance, under

the framework of efficient pure Nash Equilibrium (NE) selection with log-linear learning [31].

• Theoretically, we show that the proposed algorithm achieves polynomial logarithmic regret over time

and can handle a large number of discrete contexts. Our simulation experiments demonstrates this by

comparing the proposed algorithm with a number of state-of-the-art MP-MAB algorithms.

III. PROBLEM FORMULATION

A. Network Model

We consider M ad-hoc IoT links attempting to access L (L≥M ) uncorrelated unlicensed channels2 in

the underlay mode. Each link independently chooses a channel to transmit over, and each channel supports

no more than one link at the same time. During the network operation, the primary users cause a random

level of interference on the channels. The received signal of link m over channel l can be expressed as

ylm(t) = hlm(t)sm(t) + hlp,m(t)sp(t) + nl(t), (1)

where hlm(t) and hlp,m(t) are the coefficients of channel l for the IoT link m and its received interference

from the primary transmission, each of which is sampled from an unknown i.i.d. probability distribution

over time, determined by both the unknown stochastic device-mobility patterns and small-scale fading.

sm(t) and sp(t) are the transmit signals of the IoT link and the primary link, respectively. nl(t) is the

Additive White Gaussian Noise (AWGN) with an unknown variance σ2
l . We consider that the IoT links

operate in a synchronous time-slotted manner, and the operating slot is set to be of the same timescale

as the coherence time of the fading channel. We adopt the mild assumption that the primary interference

dominates the perceivable interference plus noise at the IoT receivers. At the beginning of a time slot, the

IoT devices are able to sense the instantaneous, discrete levels of the licensed transmission power over

2We assume that the MTC transmissions can be delayed or advanced to avoid overwhelming the available number of bands. Otherwise, all

channels are occupied when L < M , and collision avoidance techniques are thus needed in addition to bandit-based learning.
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Fig. 1. Topology of a fixed-size cognitive ad-hoc IoT network and the three phases of decentralized policy learning in synchronized time

slots.

the spectrum either by employing a simple energy detector or through the feedback of the primary base

station. For example, without the presence of the IoT transmission, the finite discrete power level of the

primary user over channel l is measured by Y l
m =

∑Ns
i=1 ‖ylm(i)‖2 as xl, where Ns is the number of samples

collected during the sensing sub-slot. However, the IoT links do not know the stochastic activity (e.g.,

power-selection) patterns of the licensed users. The network structure is shown in Figure 1.

Due to the limited signal processing capability, an IoT device is only able to measure the link QoS in

best-effort bitrate over its selected channel at the end of a time slot. When no collision happens during

time slot t, this can be upper-bounded by the achievable throughput, which is proportional to:

rlm(t) = log2

(
1 +

‖hlm(t)‖2
Pm

‖hlp,m(t)‖2Pp + σ2
l

)
, (2)

where Pm and Pp are the transmit power of IoT link m and the primary link, respectively. Otherwise, link

m will fail to deliver any data on the colliding channel and observe zero throughput. The IoT transmitter-

receiver pairs are expected to (implicitly) learn device-mobility and the interference patterns from only the

QoS measurement of its selected channels over time. In addition, they have to infer the channel-selection

policies of the other links without inter-link messaging, not only to avoid collisions with other devices but

also to learn its policies toward the social optimal allocation.

B. Decentralized Channel Allocation as a Contextual MP-MAB

Based on the network model described in Section III-A, we formulate the decentralized channel selection

problem as an M -player, L-arm contextual bandit game. Following the discussion above, let x denote the

context variable describing the power level of the licensed user over the bandwidth. From (1), we note that

with the licensed user evenly distributing its power over the entire spectrum, the primary interference to



an IoT link is homogeneous over each logic channel3. However, It varies for different IoT receivers due to

their different distances from the primary transmitter. We consider that x is discretized into a finite context

space X with the cardinality |X | = X . The context evolution of the primary transmission power level is

independent of the IoT links’ choices of channel association, and follows an unknown stationary random

process. When no collision over the channels occurs, the players receive rewards from their selected arms

by measuring the normalized QoS feedbacks according to (1) over that channel. The players repeatedly play

the bandit game by simultaneously selecting the channels to operate on without any inter-link coordination.

Our aim of designing the bandit-based learning mechanism is to maximize the sum of best-effort transmit

rates of all the players, which is accumulated over a finite but unknown time horizon T . Mathematically,

we abstract the contextual MP-MAB game for channel allocation in the ad-hoc IoT network as follows.

Definition 1 (Contextual MP-MAB). In an M -player, L-arm contextual bandit game, there is a distribution

Dm for each player m (1≤m≤M ) over the context and arm-values (x, rm,1, . . . , rm,L). rm,l∈ [0, 1] is the

normalized reward of player m on arm l∈{1, . . . , L}. During the repeated play, xt is drawn and revealed

from the independent, unknown context distribution before round t, and the arm rewards for each player

m are sampled from Dm. After the players take simultaneous actions at=[at1, . . . , a
t
M ]>, player m receives

a reward rtm,atm∈ [0, 1] when no collision occurs over its selected arm l=atm. Otherwise, it receives 0.

Let vt = [vt1, . . . , v
t
M ]> denote the vector of instantaneous rewards received by the M players in round

t. Then, by taking into account the collision of players over a pulled arm, we obtain the reward of player

m, ∀m ∈ {1, . . . ,M} as

vtm(at) = rm,atm1

(
M∑
i=1

1(ati, a
t
m), 1

)
, (3)

where 1(a, b) is the indicator function with 1(a, b) = 1 if a = b and 1(a, b) = 0 otherwise. rm,atm is

the normalized achievable throughput of link m based on (2) when no collision occurs over the selected

channel according to action atm. Let rt = [rtm,l]
>
1≤m≤M,1≤l≤L denote the vector of the players’ arm values

with respect to context x, and D be the arbitrary distribution of the pair (x, r). Then, we aim to develop

an algorithm that determines the joint policy π(x) : X → {1, . . . , L}M to maximize the social utility,∑T
t=1 E(xt,rt)∼D

{∑M
m=1 v

t
m(π(xt))

}
, i.e., the expected accumulated reward of all the IoT links. To help

examining the performance of our algorithm, we introduce the concept of regret as follows.

3For heterogeneous power levels over different channels obtained through the feedback of the primary base station, the context can be

represented by a vector x = [x1, . . . , xL]
T, which does not affect our discussion in this paper.



Definition 2 (Regret for Observable Contexts). Let V (π) = E(xt,rt)∼D

{∑M
m=1 v

t
m(π(xt))

}
denote the

expected reward of a joint policy π. Let ZT = {(x1, r1), . . . , (xT , rT )} denote a series of T context-value

pairs drawn from the distribution D. Then, for an algorithm B that generates a corresponding series of

policies B = {π̃1, . . . , π̃T}, the expected regret of B with respect to a policy π is

∆R(B, π, T ) = TV (π)− EZT∼D

[
T∑
t=1

M∑
m=1

vtm(π̃tm)

]
. (4)

The regret of algorithm B with respect to policy space Π is

∆R(B,Π, T ) = sup
π∈Π

TV (π)− EZT∼D

[
T∑
t=1

M∑
m=1

vtm(π̃tm)

]
. (5)

An efficient decentralized policy-learning algorithm B has to achieve a sublinear regret ∆R(B,Π, T ) in

T , namely, lim
T→∞

∆R(B,Π, T )/T = 0. Due to the partial observability that rewards are only revealed for the

pulled arms, an efficiently algorithm needs to form the unbiased estimation of arm values in order to learn

the accurate matching between the arms and the players. Furthermore, a purely decentralized algorithm

needs to avoid requesting excessive exchange of action information among players. Thus, learning the

optimal arm-allocation schemes solely based on their local information is preferred.

IV. EPOCH-BASED POLICY LEARNING ALGORITHM

Since the number of playing rounds T is not known in advance, we divide the process of decentralized

learning B in repeated plays into epochs/mini-batches, each of which contains three explicit phases of policy

exploration, optimal-policy learning and policy exploitation. The right-hand side of Figure 1 shows the

structure of one epoch of plays from the perspective of synchronized IoT devices. During the exploration

phase, the players independently try different arms uniformly at random in order to estimate the mean

value of the payoff obtained on each arm when no collision occurs. Consequently, with the observation

accumulated in the exploration phase, the players adopt a purely decentralized learning scheme through trial-

and-error from [31] to learn the optimal arm association. This is achieved through distributively searching the

social optimal equilibria of a group of intermediate non-cooperative games, which are constructed based on

the arm-value estimation obtained in the exploration phase for different contexts. In the exploitation phase,

the players stick to the policies derived from the policy-learning phase for multiple rounds. Intuitively, the

estimation of the expected reward for each arm-player pair may introduce errors, and the arm allocation

learned in the policy learning phase may be sub-optimal as well. As a result, the main goal of our study

is to analyze the error propagation from the first two phases and determine the bound of the regret of the

entire learning process subsequently.



The policy-learning algorithm in the mini-batch framework shown in Figure 1 is formally presented in

Algorithm 1. In the k-th epoch, the number of rounds needed for a player in the phases of exploration, trial-

and-error learning and exploitation are functions of the epoch number, i.e., f(k), g(k) and h(k), respectively.

In the exploration phase (Lines 3-9 in Algorithm 1), a single player learns independently its expected

payoff over each arm by randomly selecting its actions. In the trial-and-error learning phase, a group of

intermediate non-cooperative games are formulated based on the arm-values estimated in the exploration

phase for each context (see Lines 11-17 in Algorithm 1). The optimal player-arm matching scheme in each

context is learned in a purely decentralized manner with respect to the intermediate game (Lines 18-21 in

Algorithm 1). More specifically, instead of updating the policies according to the immediate feedback of

the random arm-values in each round, the players learn their policies in the intermediate game by fixing

the value of each arm as the estimated rewards obtained from the previous exploration phase. Following

Algorithm 2, the optimal policies are learned as the efficient Nash Equilibria (NE) of the intermediate

games. For a context x ∈ X appearing in epoch k, we use the vector of the estimated expected arm-values

[µkm,l(x)]>1≤m≤M,1≤l≤L in (7) to construct an intermediate M -player non-cooperative game G(x) as follows.

Definition 3 (Intermediate Non-cooperative Game). The intermediate game G(x) at the k-th epoch for

context x can be expressed in a three-tuple: G(x) = 〈M,×Am, {uxm}m∈M〉, where M = {1, . . . ,M} is

the set of players, Am = {1, . . . , L} is player m’s action set corresponding to the candidate arms, and

uxm = uxm(a) is the payoff of player m ∈M under a joint action a = [a1, . . . , aM ]>:

uxm(a) = µkm,am(x)1

(
M∑
i=1

1(ai, am), 1

)
, (6)

where µkm,am(x) is the expected reward of arm l = am that player m estimates in the k-th exploration

phase, derived following (7).

The design of the intermediate games in Definition 3 is based on the presumption that the most efficient

equilibria of the constructed intermediate games for each x coincide with the social-optimal policies of the

MP-MAB game. The detailed discussion on the validity of this presumption is inspired by the analysis of

log-linear learning in [31] and will be presented in Section V. To develop a purely decentralized policy-

learning scheme in Algorithm 2 for obtaining the social-optimal equilibrium of the intermediate game G(x),

we introduce the auxiliary state of player m regarding context x at time slot t from [31] as follows:

ztm(x) =
(
otm(x), atm(x), utm(x)

)
, (10)

where otm(x) ∈ {C,H,W,D} indicates the moods of player m: content (C), hopeful (H), watchful (W )



Algorithm 1 Policy learning at player m in the contextual multi-player bandit game.
Initialization: Set Wm = {} and ukm,l(x) = 0 ∀l ∈ {1, . . . , L} and ∀x ∈ X . Choose ε ∈ [0, 1]

1: for Epoch k = 1, . . . , kT do
2: Exploration phase:

3: for t = 1, . . . , f(k) do
4: Sample an arm atm ∈ {1, . . . , L} uniformly at random and observe the feedback (xt, atm, v

t
m(at))

5: if vtm(at) 6= 0 then
6: Wm ←Wm ∪ {(xt, atm, vtm(at))}
7: Estimate the expected value of arm l = atm at xt:

µk
m,l(x

t)←
∑

(x,am,vm)∈Wm
vtm1(am, l)1(x, x

t)∑
(x,am,vm)∈Wm

1(am, l)1(x, xt)
(7)

8: end if
9: end for

10: Trial-and-error learning phase:

11: ∀x∈X , construct game G(x) as in Definition 3. Namely, ∀m∈M, l ∈Am, fix the perturbed arm-value as µ̃k
m,l(x) =

µk
m,l(x) + ξm,l(x)/k, where ξm,l(x) is randomly sampled over [−ξ, ξ] with 0 < ξ < 1

12: if k = 1 then
13: ∀x∈X , set the auxiliary state at t=0 in (10) as z0m(x)=(o0m(x)=D, a0m(x), u0m(x)=0) with a random action a0m(x)

14: else
15: ∀x∈X , initialize z0m(x) with the exploitation policy in epoch k − 1 as z0m(x)=(o0m(x)=C, a∗,k−1m (x), u0m(x)=0)

16: end if
17: ∀am∈Am, set the count of times for getting a content mood with am as νkm,x(am) = 0

18: for t = 1 . . . , g(k) do
19: Update atm and ztm(xt) according to Algorithm 2 for xt based on µ̃k

m,l(x
t), and ∀x′ 6= xt, set ztm(x′)← zt−1m (x′)

20: Update the frequency of visits to the content states aligned with benchmark values as

νkm,xt(atm)← νkm,xt(atm) + 1(otm, C)1(u
t
m(xt), ukm(xt)), (8)

where utm(xt) is the observed payoff in the intermediate game G(xt) by player m according to (6)

21: end for
22: Exploitation phase:

23: for t = 1, . . . , h(k) do
24: For xt, play a∗,km with the maximum number of state visits according to νkm,xt(l),∀l:

a∗,km (xt) = arg max
1≤l≤L

νkm,xt(l) (9)

25: end for
26: end for

and discontent (D). atm(x) represents the benchmark action and utm(x) represents the benchmark payoff

adopted by player m in round t, respectively. For simplicity, we omit x in the expressions for the same

game and define the following transition map of a finite behavior state machine for each type of players:



Algorithm 2 A single round of state transition by player m in G(x) at the k-th epoch.
Initialization: ∀l ∈ {1, . . . , L}, retrieve the fixed, perturbed arm-value in the current context x as µ̃k

m,l(x)

1: Select atm according to state zt−1m (x) of the player, and observe utm(x) = uxm(at) following (6)

2: if ot−1m (x) = C then

3: if atm 6= at−1m and utm(x) ≤ ut−1m (x) then ztm(x)← zt−1m (x) end if

4: if atm 6= at−1m and utm(x) > ut−1m (x) then

5: Update the state ztm(x) with probability

pm(ztm(x)← (C, atm, u
t
m(x))) = εG(ut

m(x)−ut−1
m (x)) (12)

6: end if

7: if atm = at−1m and utm(x) > ut−1m (x) then ztm(x)← (H, at−1m (x), ut−1m (x)) end if

8: if atm = at−1m and utm(x) = ut−1m (x) then ztm(x)← zt−1m (x) end if

9: if atm = at−1m and utm(x) < ut−1m (x) then ztm(x)← (W,at−1m (x), ut−1m (x)) end if

10: else if ot−1m (x) = H then

11: if utm(x) > ut−1m (x) then ztm(x)← (C, at−1m (x), utm(x)) end if

12: if utm(x) = ut−1m (x) then ztm(x)← (C, at−1m (x), ut−1m (x)) end if

13: if utm(x) < ut−1m (x) then ztm(x)← (W,at−1m (x), ut−1m (x)) end if

14: else if ot−1m (x) =W then

15: if utm(x) > ut−1m (x) then ztm(x)← (H, at−1m (x), ut−1m (x)) end if

16: if utm(x) = ut−1m (x) then ztm(x)← (C, at−1m (x), ut−1m (x)) end if

17: if utm(x) < ut−1m (x) then

18: ztm(x)← (D, at−1m (x), ut−1m (x)) end if

19: else if ot−1m (x) = D then

20: Set ztm(x)← zt−1m (x) when utm(x) = 0. Otherwise, update ztm(x) with probability pm(ztm(x)← (C, atm, u
t
m(x))) = εF (ut

m(x)),

pm(ztm(x)← (D, at−1m (x), ut−1m (x))) = 1− εF (ut
m(x))

(13)

21: end if

• A content player updates its action as atm ∈ Am with a probability:

pm(atm) =


ε

L− 1
, atm 6= at−1

m ,

1− ε, aTm = at−1
m .

(11)

• A hopeful player or a watchful player always plays the previous benchmark action, i.e., atm ← at−1
m .

• A discontent player selects a new action uniformly at random, namely, ∀atm ∈ Am, pm(atm) = 1/L.

With the auxiliary states defined in (10), we introduce enhanced trial-and-error learning from [31] in

Algorithm 2. Note that in Algorithm 2, G(u) and F (u) are strictly monotonically decreasing linear functions



for any observed utility u ∈ [0, 1], and the conditions 0 < G(u) < 1/2 and 0 < F (u) < 1/2M are to be

satisfied (see Theorem 2 for the details).

V. ANALYSIS OF THE REGRET FOR ALGORITHM 1

We note that in Algorithm 1, the regret is mainly due to sub-optimal actions in the exploration phase and

the trial-and-error learning phase. In the latter phase, each player is supposed to learn the optimal matching

policies while avoiding collisions in |X | intermediate games following the rules defined in Algorithm 2.

In each game G(x) (x ∈ X ), the learning processes of all the players jointly define a large discrete-time

Markov chain over the set of all possible auxiliary states (see also [31]). Therefore, the regret analysis

regarding Algorithm 1 is expected to mathematically determine the regret due to the arm-value estimation

in the exploration phase and the regret due to the sub-optimal policies derived in Algorithm 2. For ease

of exposition, we first provide the main result of the theoretical bound on the regret of Algorithm 1 in

Theorem 1, before presenting the analytical procedures for the two phases in concern.

Theorem 1 (Main Theorem on the Algorithm Regret). Consider a multi-player bandit game with a finite

set of contexts, i.e., |X | = X , as defined in Definition 1. With T rounds of plays and a sufficiently small

policy-learning parameter ε ∈ [0, 1] in Algorithm 1, the regret of Algorithm 1 is upper-bounded by

∆RT ≤ O(M log1+δ
2 (T )), (14)

if we set f(k) = c1, g(k) = c2k
δ (δ > 1) and h(k) = 2k, where c1 ≥ 16L(L+η/3)

η2
with η ∈ [0, 1].

Proof Sketch: Since rtm,l ∈ [0, 1], the network-wise regret of the exploration phase and the trial-and-

error learning phase in the k-th epoch can be easily upper-bounded by M(c1 + c2k
δ) in the worst case, in

which every player at each round in these two phases produces the maximum regret of 1. Then, to bound

the regret in exploitation, we only need to bound the error probability Prke of the arm-value estimation in the

exploration phase and the probability Prkl of learning sub-optimal allocation policies in the trial-and-error

learning phase. Thus, we obtain the upper bound of the total regret of all the players in the following form:

∆Rk ≤M(c1 + c2k
δ) +M(Prke + Prkl )c32k. (15)

The complete proof of Theorem 1 relies on the analysis of the error probability of the exploration phase

in Section V-A and that of the trial-and-error learning phase in Section V-B. Based on such a two-step

analysis, the detail of the proof to Theorem 1 will be given in Section V-C.



A. Error Probability of the Exploration Phase

The goal of the exploration is for every player to obtain the unbiased estimation of the mean values of all

arms in each context x ∈ X . Then, the total sampling period in the exploration phase has to be sufficiently

long since the expected sum of regret incurred by the uniformly random exploration of one round for all

players can be as large as O(M). Denote Nm = |Wm| (cf., Line 6 of Algorithm 1) as the number of

samples accumulated by player m until the end of the current exploration phase in Algorithm 1. We note

that for a certain policy πm(x) of an individual player m, the unbiased estimator of the reward based on

the collected reward observation Wm in Algorithm 1 can be determined using inverse propensity scoring:

µ̂m(πm) =
1

Nm

Nm∑
i=1

1(πm(xi), aim)vim
1/L

, (16)

where 1/L represents the uniformly random action sampling. Let µ̂im(πm) = 1(πm(xi),aim)vim
1/L

. Then, we have

E{µ̂m(πm)} = E(x,rm)∼Dm{rm,πm}, and from (16),

Var
{
µ̂im(πm)

}
≤ E

{
(µ̂im(πm))2

}
= L2E

{
1(πm(xi), am,i)(v

i
m)2
}
≤ LE

{
(vim)2

}
≤ L. (17)

The analysis of the upper bound of the arm-value estimation error relies on two inequalities [32] as follows.

Fact 1 (Bernstein Inequality). If for a sequence of random variables Y1, . . . , YN , Pr(|Yi| ≤ c) = 1 and

E(Yi) = 0, then for any N > 0,

Pr

(
1

N

N∑
i=1

Yi ≥ η

)
≤ 2 exp

(
− Nη2

2σ2 + 2cη/3

)
, (18)

where c is a constant and σ2 = 1
N

∑N
i=1 Var(Yi).

Fact 2 (Chernoff Inequality). If for a sequence of random variables Y1, . . . , YN , |Yi| ≤ 1, then for any

N > 0 and 0 < η < 1,

Pr

(
N∑
i=1

Yi≤(1−η)E

{
N∑
i=1

Yi

})
≤exp

(
−η2E

{
N∑
i=1

Yi

}
/2

)
. (19)

Based on (17)-(19) we obtain Lemma 1 as follows.

Lemma 1. With Algorithm 1, all the players have a sufficiently accurate arm-value estimation after T0

explorations, with T0 given by:

T0 ≥ max

(
16LX

L+ cη/3

η2
ln

(
4ML

γ

)
, 32L ln

(
2M

γ

))
. (20)

where γ is the pre-determined exploration error probability for a maximum estimation error η.



Proof:

For player m which has undergone at least C rounds of valid explorations (i.e., explorations with no

collisions), the probability of not having sufficiently accurate arm-value estimations for a non-colliding

policy πm (∀m ∈M) adopted in the exploitation phase in Algorithm 1 is bounded by

Pr

(
sup

m∈M,πm

{
(µ̂m(πm)−E{rm,πm})>η

∣∣∣∀m : |Wm|≥C
})

(a)
≤

M∑
m=1

∑
πm∈Πm

Pr
(
µ̂m(πm)− E{rm,πm} > η

∣∣∣|Wm| ≥ C
)

(b)
≤

M∑
m=1

∑
πm∈Πm

∞∑
Nm=C

Pr
(
µ̂m(πm)−E{rm,πm}>η

∣∣|Wm|=Nm

)
Pr(|Wm|=Nm)

Pr (|Wm| ≥ C)

≤
M∑
m=1

∑
πm∈Πm

∞∑
Nm=C

Pr
(
µ̂m(πm)−E{rm,πm}>η

∣∣∣|Wm|=Nm

)
× Pr

(
|Wm|=Nm

∣∣∣|Wm| ≥ C
)

(c)
≤

M∑
m=1

∑
πm∈Πm

∞∑
Nm=C

e−
Nmη

2

2L+2cη/3 Pr
(
|Wm|=Nm

∣∣∣|Wm| ≥ C
)

≤2MLXe−
Cη2

2L+2cη/3

∞∑
N=C

Pr
(
|W|=Nm

∣∣∣Nm≥C
)
≤ 2MLX exp

(
− Cη2

2L+ 2cη/3

)
,

(21)

where Πm is the set of deterministic policies for player m and |Πm| = LX , (a) is obtained by the union

bound, (b) is obtained following the Partition Theorem and (c) is obtained following the Bernstein Inequality

in Fact 1. To satisfy the condition of sufficient accuracy η with an error probability γ1, we have

2MLX exp

(
− Cη2

2L+ 2cη/3

)
≤ γ1 ⇒ C ≥ 2L+ 2cη/3

η2
ln

(
2MLX

γ1

)
. (22)

Note that the above condition in (22) is obtained when the players sample the arms uniformly at random

and no collision occurs. To obtain the condition for accumulating sufficiently large number of valid arm

observations for each player, we denote Aim as the event that a player m observes any arm l ∈ Am without

experiencing collision at the i-th sample. During the exploration phase, whether experiencing a collision is

independent of the context that the game is in. Then, ∀i = 1, 2, . . ., we have Pr(Aim) = (1− 1
L

)M−1. For a

sequence of N i.i.d. samples {Aim}Ni=1, we have

Pr

(
∃m s.t.

N∑
i=1

Aim ≤
N

2
E{Aim}

)
union bound
≤

M∑
m=1

Pr

(
N∑
i=1

Aim ≤
N

2
E{Aim}

)
Fact 2
≤ M exp

(
−N

8
(1− 1

L
)M−1

)
.

(23)

For the probability in (23) to be upper-bounded by γ2, we need

M exp

(
−N

8
(1− 1

L
)M−1

)
≤ γ2 ⇒ N ≥ 8(1− 1

L
)−(M−1) ln

(
M

γ2

)
. (24)



Then, with probability (1−γ2), we have ∀m ∈M,
∑N

i=1 A
i
m ≥ N

2
E{Aim}. To ensure that every player has

a sufficient number of valid observations, we also need

N

2
E{Aim} ≥ C

(22)
≥ 2L+ 2cη/3

η2
ln

(
2MLX

γ1

)
⇒ N ≥ 2(1− 1

L
)−(M−1) 2L+ 2cη/3

η2
ln

(
2MLX

γ1

)
.

(25)

Since for any L > 1, (1− 1
L

)M−1 ≥ 1
4L

, we have

N ≥ max

(
16L

L+ cη/3

η2
ln

(
2MLX

γ1

)
, 32L ln

(
M

γ2

))
. (26)

Let the event supm,πm (µ̂m(πm)−E{rm,πm})> η be denoted by A, and the event ∀m : |Wm| ≥ C be

denoted by B. Then, (21) provides the upper bound of Pr(A|B), and (23) leads to the upper bound of

Pr(B). To guarantee that all players have satisfactory estimation errors of η for each arm, we have the

following bound:

Pr(A) = Pr(A|B) Pr(B) + Pr
(
A|B

)
Pr
(
B
)
≤ Pr(A|B) + Pr

(
B
)

= γ1 + γ2. (27)

Then, having γ1 = γ2 = γ/2, (26) guarantees that with more than N rounds of exploration, any policy is

estimated with an error within η with probability 1− γ. This leads to (20).

From (20) in Lemma 1, we note that for an error probability of arm-value estimation with maximum

bias η, Prke = γ, Algorithm 1 needs to undergo at least T0 rounds of exploration as

T0 = 16L
L+ cη/3

η2
ln

(
4MLX

γ

)
. (28)

If the exploration has at least c1 = 16L(L+cη/3)
η2

turns at each epoch, then, at k-th epoch, for a maximum

estimation error η the error probability can be bounded as follows

c1k =
16L(L+ cη/3)

η2
k ≥ 16L(L+ cη/3)

η2
ln

(
4MLX

γ

)
⇒ Prke = γ ≤ 4MLXe−k. (29)

Note that with the normalized arm-values, we can simply choose c = 1 in (29).

B. Error Probability in the Trial-and-error Phase

In addition to Lemma 1 and (29), we need to further analyze the impact of the arm-value estimation

errors on the learning results in the trial-and-error phase. Specifically, we expect that the optimal contextual

bipartite matching policy derived based on the biased arm-value estimation is the same as the optimal policy

derived based on the real expected arm-values. Lemma 2 confirms this presumption.

Lemma 2. Assume that the expected reward estimated by player m for a non-colliding policy πm, µ̂m,πm(x),

satisfies |µ̂m,πm(x) − E{rm,πm|x}| ≤ η. Consider two intermediate games (cf., Definition 3): G(x), which



is constructed upon the real expected arm-values E{rm,l|x}, and Ĝ(x), which is constructed upon the

estimated arm-values µ̂m,l, respectively. For G(x) where Vπ(x) =
∑M

m=1E{rm,πm|x}, we denote an optimal

joint policy as π∗ and a best non-optimal joint policy as π̃. Then, if

η <
Vπ∗(x)− Vπ̃(x)

2M
, (30)

for Ĝ(x) where V̂π(x) =
∑M

m=1 µ̂m,πm(x), we have V̂π∗(x)>V̂π̃(x) as well.

Proof: Since L ≥ M , π∗ and π̃ must be collision-free. By inequality construction of the condition

at the beginning of Lemma 2 and the definitions of Vπ(x) and V̂π(x), we have (note that we omit x for

conciseness)

−Mη ≤
M∑
m=1

(µ̂m,πm − E{rm,πm}) ≤Mη. (31)

Then, for π∗ we have
M∑
m=1

µ̂m,π∗m ≥
M∑
m=1

E{rm,π∗m} −Mη = Vπ∗ −Mη. (32)

For any non-optimal policy π, its value can be bounded by the best non-optimal policy π̃ as follows:
M∑
m=1

µ̂m,πm≤
M∑
m=1

E{rm,πm}+Mη=Vπ+Mη≤Vπ̃ +Mη. (33)

Subtracting (32) by (33), we obtain the following inequality with the condition η < Vπ∗ (x)−Vπ̃(x)
2M

:

V̂π∗ − V̂π̃ ≥ Vπ∗ − Vπ̃ − 2Mη > 0. (34)

(34) shows that for game Ĝ(x), any optimal joint policy π∗(x) in game G(x) also achieves strictly higher

social reward than the non-optimal policies in G(x). Therefore, a social optimal policy in game Ĝ(x) must

also be optimal in G(x).

Lemmas 1 and 2 guarantee that as long as the estimation error η is small enough, the true social optimal

policy can be derived based on the biased estimation of arm-values after sufficiently long exploration in

Algorithm 1. Therefore, we only need to examine the policy efficiency of the trial-and-error learning phase

based on the rules defined in Algorithm 2. Regarding the intermediate game G(x) in context x, we have

Lemma 3. The social-optimal payoff by the players in game G(x) is achieved at a pure NE.

Proof: Lemma 3 relies on the assumption of L ≥ M . We note that at epoch k, game G(x) with

fixed arm values for m ∈ M, µkm,l(x), belongs to the category of one-sided matching games with user

preferences [33]. Then, by randomly ordering the players in a list, and sequentially assigning each player



in the list their best available arm, we are able to obtain a non-colliding allocation ak = [ak1, . . . , a
k
M ]>. It

is straightforward to check that ∀m ∈ M, akm is a best response to the joint actions of the other players

ak−m.Thus, ak constructs a pure NE, and we know that more than one pure NE exists in G(x).

Furthermore, with L ≥ M , player m’s better response to ak−m can only be pulling a free arm. Indeed,

a player’s better response always leads to a Pareto improvement, since no other players changes their

payoffs. Then, we can check by contradiction that the social optimal policy ak,∗ in G(x), where V x(ak,∗) =

max
a

∑M
m=1 u

x,k
m (a), is also an NE. Firstly, with L ≥M , the optimal action ak,∗ has no collision. Otherwise,

a colliding player can always find a free arm as the better response, which constitutes a Pareto improvement.

Secondly, at ak,∗ no player is able to find a better response. Otherwise, at least one player m can find some

free arm a′m, that leads to a joint action a′ = (a′m, a
k,∗
−m) s.t. V x(ak,∗) < V x(a′) =

∑
i 6=m u

x,k
i (ak,∗i )+ux,km (a′m),

contradicting with the optimality assumption. Therefore, by the definition of an NE, we obtain Lemma 3.

With Lemma 3, we are left to show that the policies obtained from Algorithm 2 converge to not only

an NE, but also the most efficient NE of the intermediate game. Note that following the rules of state

transition defined in Algorithm 2, the state-updating dynamics of each player m jointly constitute a large

discrete-time Markov chain over the set of the joint auxiliary states z(x) = [z1(x), . . . , zM(x)]> as defined

in (10). Following the approach of the Markov chain-based analysis for log-linear learning in [31], we are

able to examine the efficiency of the trial-and-error learning phase in Algorithm 1 for a given intermediate

game G(x). Before proceeding, we introduce the concepts of regular perturbation and stochastically stable

states from [31], [34] for Markov chains in Definitions 4 and 5.

Definition 4 (Regular Perturbation). Let P 0 denote the transition matrix for a stationary Markov chain

over a finite state space Z , and P ε (ε 6= 0) be a family of perturbed Markov chains corresponding to P 0,

where ε is a scalar measuring the perturbation level. P ε is a regular perturbation of P 0 if (a) P ε is ergodic

for all sufficiently small ε, (b) lim
ε→∞

P ε(z, z′) = P 0(z, z′), and (c) P ε(z, z′) > 0 for ε implying that ∃r(z, z′)

s.t. 0 < lim
ε→0

P ε(z, z′)/ε−r(z,z
′) <∞. The function r(z, z′) is known as the resistance of transition z→ z′.

Definition 5 (Stochastically Stable States). Let P ε be a regular perturbation of P 0 and pε be its unique

stationary distribution. z ∈ Z is a stochastically stable state iff lim
ε→0

pε(z) > 0.

Recall the action updating rule for a content player in (11) and the auxiliary state updating rules for a

content/discontent player in (12) and (13) of Algorithm 2. We obtain the unperturbed Markov process P 0

for the joint auxiliary states z(x) in game G(x) by setting ε = 0 in (11), (12) and (13). Alternatively, for a



very small ε (ε > 0), we obtain the perturbed Markov chain P ε, where the larger the exponents of ε is in (12)

and (13) (e.g., G(utm(x)− ut−1
m (x)) and F (utm(x))), the smaller the potential transition probability of P ε is

from a current joint state to another reachable state in Algorithm 2. Therefore, we know that the resistance

of a feasible transition (cf., Definition 4) is partially determined by the values of G(utm(x)− ut−1
m (x)) and

F (utm(x)) of each link m. This paves the way for identifying the stochastically stable states of the perturbed

Markov chain P ε by analyzing the rooted trees spanned from the directed graph with the vertices and edges

corresponding to the joint states and feasible transitions of the Markov chain P ε. By [31], we know that

for a perturbed Markov process P ε with a set of stochastically stable states Z∗, there exists εα > 0 for

any small α > 0 s.t. whenever 0 < ε ≤ εα, z(t) ∈ Z∗ for at least 1 − α of all periods in the process.

Therefore, it is natural to desire that the social optimal NE of a game G(x) (see Lemma 3) constitute the

stochastically stable states of the Markov process defined by the rules given in Algorithm 2 when ε > 0.

This is guaranteed by the following theorem.

Theorem 2. Suppose that all players in an intermediate game G(x) follow the updating rules in Algo-

rithm 2 with the experimentation parameter ε and the acceptance functions F (u) and G(u) using the same

parameters α11, α21 > 0, α12 and α22, s.t. 0 < G(u) < 1/2 and 0 < F (u) < 1/2M : F (u) = −α11u+ α12

G(u) = −α21u+ α22.
(35)

Then, based on (10), every stochastically stable state z∗(x) = (z∗1(x), . . . , z∗M(x)) maximizes the social

welfare of the game in the form of
∑M

m=1 u
x
m(a∗m(x)), where a∗m(x) is the benchmark action in z∗m(x) and

constitutes an NE in G(x).

Proof: Lemma 3 guarantees that the social optimal policy of game G(x) is also a pure NE. Therefore,

the learning scheme defined in Algorithm 2 satisfies condition (i) of [31, Theorem 1]. Let P ε(x) denote the

family of (perturbed) Markov processes defined in Algorithm 2 in a single epoch for context x. Following

the same approach of proving [31, Theorem 1], we only need to show that the social optimal NE are

stochastically stable states of P ε(x), namely

(a) these social welfare-maximizing NE are aligned with some states contained in the recurrent commu-

nication classes of the unperturbed process P 0(x), and

(b) in the sub-graph of states constructed over the directed transitions between the recurrence classes of

P 0(x), these NE minimize the stochastic potential (see [34] for the formal definition). Namely, there

exists a state-tree spanned on each NE state that minimizes the sum resistance of the edges (see also



Definition 4) in the tree among all the possible spanning trees in this recurrence graph.

Condition (a) relies on the identification of recurrence classes (cf. [31, Lemma 1]). Condition (b) requires

enumerating the minimum resistance of the edges ended on different states in the considered sub-graph

(cf. [31, Lemmas 2-6]).

The proof to Theorem 2 strictly follows the approach of proof to [31, Theorem 1], except the slight

difference in the interdependence property4 between game G(x) and the non-cooperative game considered

in [31]. In G(x), we note that a player i can only cause another non-colliding, non-experimenting player j’s

payoff to decrease or remain the same (both with non-zero probability) by altering its own action. Such a

“partial interdependence” property indicates that only the sub-set of non-colliding players are interdependent

on the action of the other players due to potential collision. This eliminates any path in a state graph of

the Markov process P ε(x) s.t. a non-colliding, non-experimenting player j’s state transits to mood oj = H

(i.e., observing reward increase) due to another player i’s action experimentation. Therefore, we only need

to consider the O(1) probability that one player’s experimenting action collides with another player in the

original proof to [31, Lemma 1] and obtain the following result:

Proposition 1 (Lemma 1 in [31]). Denote by D0(x) the set of the joint states z(x) ∈ Z(x), where

∀m, om(x) = D and C0(x) the set of z(x) where ∀m, om(x) = C. The recurrence classes of the unperturbed

Markov process P 0(x) are D0(x) (as a single state) and every singleton z(x) ∈ C0(x).

Following the approach of the proof to [31, Theorem 1], we denote E0(x) as the subset of C0(x) where

the benchmark actions align with a pure NE. Then, to analyze the minimum resistance of an edge out-going

from zE(x) ∈ E0(x) in the transition graph of the recurrence states, we only need to consider a single case

regarding the path between zE(x) and zD(x) ∈ D0(x). Due to partial interdependence in G(x), one single

player experimenting two consecutive times can only lead to a path of transitions C → W → D due to

twice collisions with a probability of O(ε2). Since any state z(x) with at least one player being discontent

has 0 resistance to D0(x) [31, Claim 1], this leads to a simplified version of the proof to [31, Lemma 2]

and thus the following proposition:

Proposition 2 (Lemma 2 in [31]). In the state graph of perturbed transitions constructed on the recurrence

classes of P 0(x), ∀ze(x) ∈ E0(x), ze(x)→ D(x) is an easy edge. Namely, ze(x)→ D(x) has a minimized

resistance of 2 among all possible out-going edges from ze(x).

4By [31], a multi-player game is interdependent if for any joint action a and any subset of players J , there exists some player i /∈ J and

two joint actions of J , aJ and a′J , s.t. when fixing the actions of the players not in J , player i’s payoff w.r.t. aJ and a′J are different.



The rest part of the proof follows exactly the same approach of the proof to [31, Theorem 1], where

the resistance of edges out-going from both non-equilibrium content states and discontent states are also

identified, and then the easy trees (i.e., those with the minimum sum of resistance) are constructed on each

recurrence state. Since we do not need to make any change to the intermediate proofs to [31, Lemmas 3-

6], for conciseness, we omit the details of the proof and suggest the readers to refer to [31, Section 6].

Because [31, Theorem 1] holds, by Lemma 3 we know that the stochastically stable states of P ε coincide

with the social optimal NE strategies of the considered game, which completes the proof to Theorem 2.

Together with Lemma 2, Theorem 2 indicates that for the intermediate game G(x) constructed directly

upon the estimated arm-values µkm,l, we can always find an εα and a sufficiently large number of rounds

s.t. each player visits the real social optimal actions of the underlying bandit game for at least 1−α of the

total trial-and-error rounds. However, if G(x) has multiple social optimal NE5, the non-cooperative players

may reach a sub-optimal joint allocation with solely the action selection scheme in Line 24 of Algorithm 1.

We overcome this uncertainty by replacing the estimated arm-values in G(x) with the randomly perturbed

values µ̃km,l(x) = µkm,l(x)+ξm,l(x), where ξm,l(x) is independently sampled following a uniform distribution

over [−ξ, ξ] for context x.

Therefore, we obtain a condition that ∀l ∈ Am, |µkm,l(x)− µ̃km,l(x)| ≤ ξ. Applying the same approach of

proving Lemma 2, we can always find a sufficiently small ξ, s.t. for the optimal policy π∗ and the best

non-optimal policy π̃, the following inequality is satisfied

ξ <

M∑
m=1

(
µkm,π∗m(x)− µkm,π̃m(x)

)
2M

. (36)

Thereby, any optimal NE policy of game G(x) becomes the candidate optimal NE policies of the new game

G̃(x) constructed upon the perturbed arm-value µ̃km,l(x). We consider two different and non-colliding actions

a and a′ s.t. they achieve equal social rewards in G(x), i.e.,
∑

m∈M µkm,am =
∑

m∈M µkm,a′m . Omitting x

again, we consider the probability that a and a′ also achieve the same social reward in game G̃(x):

Pr

( ∑
m∈M

µ̃km,am =
∑
m∈M

µ̃km,a′m

)
= Pr

( ∑
m∈M

(
µ̂km,am + ξm,am

)
=
∑
m∈M

(
µ̂km,a′m + ξm,a′m

))
= Pr

( ∑
m∈M

(ξm,am − ξm,a′m) = 0

)
.

(37)

Since at least one player i ∈ M adopts different actions ai 6= a′i,
∑
m∈M

(ξm,am − ξm,a′m) is a sum of at

least two independent continuous random variables. Then, we have Pr

( ∑
m∈M

(ξm,am − ξm,a′m) = 0

)
= 0.

5We can construct such a game by setting the expected rewards of M arms to be uniformly 0 < µ < 1 for each player and the other arms

to be always 0, with the non-zero arm-values sampled from discrete distribution.



Therefore, the perturbation ∀m, l : ξm,l(x) guarantees that the social optimal SE of G̃(x) is unique with

probability 1. This leads to the operation in Line 11 of Algorithm 16 and Proposition 3.

Proposition 3. With a sufficiently small perturbation parameter ξ satisfying (36), the trial-and-error phase

in Algorithm 1 reaches a unique social-optimal NE of the intermediate game with probability 1.

We consider g(k) = T1 rounds of plays in the k-th trial-and-error learning phase, which contains X

independent perturbed Markov processes. Now, we are ready to examine the inherent error probability of not

reaching stochastically stable states in P ε(x). Suppose that each process P ε(x) continues for T1(x) rounds,

then we have
∑

x∈X T1(x) = T1. We denote E∗(x) the singleton of stochastically stable state that aligns with

the unique social optimal NE in context x. Then, with Line 24 of Algorithm 1, the probability of players

selecting optimal actions in the exploitation phase is determined by the frequency that ∀x ∈ X : E∗(x) are

visited. We denote Ax as the event that for context x the optimal policy is adopted after the trial-and-error

phase and A the event that for all contexts the optimal policies are adopted. Then, we have

Pr(A) = 1− Pr
(
A
)
≥ 1− Pr

(
∪
x∈X

Ax

)
union bound
≥ 1−

∑
x∈X

Pr
(
Ax
)
. (38)

To bound Pr
(
Ax
)
, we apply the approach of analyzing the accumulated weights of random walks on

general (irreversible) finite-state Markov chains from [35]. At epoch k, with the initialization step in Line 12

of Algorithm 1, the trial-and-error learning process for a game G(x) constitutes a random walk of T1(x) steps

with an arbitrary initial distribution φ(x) over the states on the Markov process P ε(x). Let 1(zt(x), E∗(x))

indicate that the stationary stable state E∗(x) is visited at the t-th sample in the subsequence of plays

corresponding to G(x). Let αx denote the expected frequency of not visiting the stable state. Then, the

stationary distribution of P ε(x) is ψx(E∗(x)) = 1− αx. We can treat 1(zt(x), E∗(x)) as a weight function

of the random walk, s.t. the expected total weight is

E

 1

T1(x)

T1(x)∑
t=1

1(zt(x), E∗(x))

 = 1− αx, (39)

as T1(x)→∞.

According to (9), we know that an optimal NE is guaranteed to be played during the exploration phase

when the majority of trial-and-error learning plays visit E∗(x). Namely, Pr(Ax) is larger than the probability

6Since the gaps between the optimal and the secondary social optimal rewards is not known in advance, we adopt a decaying factor 1/k

for the perturbation in Algorithm 1.



of the event
∑T1(x)

t=1 1(zt(x), E∗(x)) ≥ T1(x)/2. Equivalently, we obtain

Pr
(
Ax
)

= 1− Pr(Ax) ≤ Pr

L1(x)∑
t=1

1(zt(x), E∗(x)) ≤ T1(x)

2

. (40)

Then, following [35, Theorem 3.1], we have

Pr
(
Ax
) (a)

≤ Pr

L1(x)∑
t=1

1(zt(x), E∗(x)) ≤ (1− ρ)ψx(E∗(x))T1(x)

 ≤ cx‖φx‖ψx exp

(
−ρ2ψx(E∗(x))T1(x)

72τx(
1
8
)

)
,

(41)

where (a) follows (40) by setting (1− ρ)ψx(E∗(x)) ≥ 1
2
, ‖φx‖ψx ,

√∑
z(x)∈Z(x)

ψ2
x(z(x))
φx(z(x))

, and τx(
1
8
) is the

mixing time of the Markov process P ε(x) for an accuracy of 1/8 (see [35, Theorem 3.1]). By selecting

a sufficiently small ε for each P ε(x), we are able to adopt a unique target stable probability ∀x ∈ X :

ψx(E∗(x)) ≥ ψ, where ψ is a constant. We note that the right-hand side of (41) is a monotonically decreasing

function of ψx(E∗(x)). Then, we can set ψx(E∗(x)) = ψ. To ensure 0 < ρ < 1, from (1 − ρ)ψ ≥ 1
2

we

obtain ρ ≤ 1− 1
2ψ

and ψ > 1
2
. Then, we can choose ρ = 1− 1

2ψ
and obtain

Pr
(
Ax
)
≤ cx‖φx‖ψx exp

(
−

(1− 1
2ψ

)2ψT1(x)

72τx(
1
8
)

)
. (42)

We know that (1− 1
2ψ

)2ψ is a monotonically increasing function if ψ > 1
2
. Denote cmax

X = max
x∈X

cx‖φx‖ψx ,

and T1(x) = ω(x)T1, where
∑
x∈X

ω(x) = 1. Then, for ψ > 1
2
, the right-hand side of (42) is a monotonically

decreasing function of ψ. Thereby, we can pick ψ ≥ 2
3

(consequently, ρ ≤ 1
4
), and obtain

Pr
(
Ax
)
≤ cx‖φx‖ψx exp

(
−
ψ − 1 + 1

4ψ

72τx(
1
8
)
T1(x)

)
≤ cmax

X exp

(
− ω(x)T1

1728τx(
1
8
)

)
. (43)

Then, by (38) and (43) we know that the error probability after running g(k) = c2k
δ rounds of trial-and-error

learning is

Prkl ≤ cmax
X

∑
x∈X

exp

(
− ω(x)T1

1728τx(
1
8
)

)
≤ Xcmax

X exp

(
− ω(x)

1728τx(
1
8
)
c2k

δ

)
, (44)

where x = arg minx ω(x)/τx(
1
8
), and by construction of Algorithm 1 we have T1 = c2k

δ. Again, since the

right-hand side of (42) is a monotonically decreasing function, we can always find an epoch k ensuring

that the upper bound of Prkl shrinks to a sufficiently small value.

C. Regret Bound of Algorithm 1

Now, we have the probabilities of errors propagated from the exploration phase, i.e., Prke and the learning

phase i.e., Prkl bounded by (29) and (44), respectively. Thereby, we are ready to provide the formal proof



to Theorem 1 in the following discussion. We assume that the mild conditions such as the condition of

discernible arm-values in Lemma 2 are satisfied by the considered contextual bandit game. Recall that we

set in Algorithm 1 f(k) = c1k, g(k) = c2k
δ and h(k) = c32k in each epoch of the learning process. We

suppose that the total number of epoch is K, s.t.

T ≥
K−1∑
k=1

(c1k + c2k
δ + c32k) ≥

K−1∑
k=1

c32k ≥ c3(2K − 2). (45)

Then, by taking logarithm to both sides of the inequality in (45), we can derive the logarithmic upper bound

of K as K ≤ log2(T/c3 + 2). The total regret incurred by the learning scheme in Algorithm 1 is composed

of three parts, namely, the regret due to action exploration, trial-and-error learning and due to sub-optimal

(erroneous) policies in the exploitation phases. We note that for each round of play the total regret of the

M players could be as large as M . Then, we obtain the regret bound of a single epoch in the form of (15).

∆Rk ≤M(c1 + c2k
δ) +M(Prke + Prkl )c32k ≤M(c1+c2k

δ)+M

(
4MLXe−k+Xcmax

X e
− ω(x)c2k

δ

1728τx(
1
8 )

)
c32k.

(46)

We note that with δ > 1 there exists an epoch k0, s.t. ∀k ≥ k0, exp
(
− ω(x)

1728τx( 1
8

)
c2k

δ−1
)
≤ 1/e. Define

A0 = 4MLX +Xcmax
X . Then, from (46) we obtain that with β = 2

e
< 1, for k > k0

∆Rk ≤M(c1 + c2k
δ) +M

(
4MLX +Xcmax

X
)
c3e
−k2k ≤M(c1 + c2k

δ) + A0c3Mβk, (47)

Since the second term of the right-hand side of (47) vanishes exponentially with k, we obtain that for some

constant C representing the constant regret until the first k0 epoch,

∆RT =
K∑
k=1

∆Rk ≤ C +M
K∑

k=k0+1

c1 + c2M
K∑

k=k0+1

kδ + A0c3M
K∑

k=k0+1

βk

(a)
≤ C + c1M log2

(
T

c3

+ 2

)
+ A0c3M

1− βK+1

1− β
+ c2M log1+δ

2

(
T

c3

+ 2

)
(b)
≤ C1 + c1M log2

(
T

c3

+ 2

)
+ c2M log1+δ

2

(
T

c3

+ 2

)
,

(48)

where (a) is obtained by replacing K with log2(T/c3 + 2), and (b) is obtained by replacing C with C1 =

C + A0c3M
1−β . Then, (48) completes the proof to Theorem 1.

Remark 1 (Computational Complexity of Algorithm 1). With the regret bound after T rounds of plays

given by (48), now we examine the computational complexity of Algorithm 1 in a single time slot t. We note

that the one-step action perturbation (Line 1) and auxiliary state transition (Lines 2-21) in Algorithm 2

are completed in constant time. Then, it suffices to compare the computational complexity of one single

round in the exploration phase, the trial-and-error phase and the exploitation phase, respectively. Again,



the expected arm-value estimator is updated in constant time in a given time slot of the exploration phase

(see (7) or Lines 5-8 of Algorithm 1). For a time slot in the trial-and-error phase, it may take O(XL)

for a link to construct the intermediate game and the corresponding auxiliary states (see Lines 11-16 of

Algorithm 1) at the beginning of the phase. Comparatively, for the exploitation phase, finding the maximum

number of auxiliary-state visits takes a player O(L) in one time slot (see (9)).

Additionally, the space complexity of Algorithm 1 in one single round is O(XL) for the arm-value

estimator record-keeping (see (7) with respect to different contexts) in the exploration phase and O(XL)

for record keeping with respect to the frequency of visiting the content states in the trial-and-error phase

and the exploitation phase (see (8)). With such complexity levels, the proposed algorithm is suitable for

resource-limited IoT devices.

VI. ADAPTATION TO UNOBSERVABLE CONTEXTS

Now, we consider that the contexts are no longer released/observable at the beginning of each time

slot. This is corresponding with the situation when no energy detector or primary base station feedback

is available to the IoT devices. Since the intermediate game G(x) cannot be established for discernible

context x in this situation, policy learning in the trial-and-error phase is reduced to one single perturbed

Markov chain. Recall that the joint distribution of the state and the values of each arm follows (x, rm) ∼

Dm. Therefore, learning arm-selection without discerning the underlying context x is reduced to a normal

MP-MAB, where the value distribution of each arm follows the marginal distribution over rm ∼ Dm,rm :

pm(rm) = Ex{prm|x(rm|x)}. Without making any significant change to the proposed algorithm, we define

a modified regret in Definition 6 (cf., Definition 2):

Definition 6 (Modified Regret). Let the expected reward of a policy π without discerning x be denoted by

V (π) = Ert∼Dm,rm

{∑M
m=1 v

t
m(π)

}
. For the series {rt}Tt=1, drawn from the distribution Dm,rm , the expected

regret of algorithm B = {π̃1, . . . , π̃T} with respect to a policy π is

∆R(B, π, T ) = TV (π)− E

[
T∑
t=1

M∑
m=1

vtm(π̃tm)

]
. (49)

The regret of algorithm B with respect to policy space Π is

∆R(B,Π, T ) = sup
π∈Π

TV (π)− E

[
T∑
t=1

M∑
m=1

vtm(π̃tm)

]
. (50)

Compared with Definition 2, the regret defined in Definition 6 will lead to a sub-optimal allocation

solution because (50) requires algorithm B to produce a consistent joint policy for all different context



Algorithm 3 Modified exploration phase for player m with non-observable context at the k-th epoch.
1: for t = 1, . . . , f(k) do

2: Sample an arm atm ∈ {1, . . . , L} uniformly at random and observe the feedback (atm, v
t
m(at))

3: if vtm(at) 6= 0 then

4: Wm ←Wm ∪ {(atm, vtm(at))}

5: Estimate the expected value of arm l = atm: µk
m,l ←

∑
(am,vm)∈Wm

vt
m1(am,l)∑

(am,vm)∈Wm

1(am,l)

6: end if

7: end for

x. Based on the modified regret in Definition 6, for an arbitrary, individual policy πm that results in no

collision, the true expected reward becomes E(rm)∼Dm,rm{rm,πm}. By the law of unconscious statistician we

have E(rm)∼Dm,rm{rm,πm} = E(x,rm)∼Dm{rm,πm}. Following our discussion in Section V-A, the unbiased

reward estimator based onWm is now µ̂m(πm) = 1
Nm

∑Nm
i=1

1(πm,aim)vim
1/L

. Then, (17) still holds for the variation

of the new estimator and for (21) we have a slightly different bound

Pr

(
sup

m∈M,πm

{
(µ̂m(πm)−E{rm,πm})>η

∣∣∣∀m : |Wm|≥C
})
≤ 2ML exp

(
− Cη2

2L+ 2cη/3

)
, (51)

since the learning algorithm no longer discerns the underlying context x. Subsequently, for an exploration

phase that lasts for c1k rounds in epoch k, we have a new probability bound for the exploration error:

Prke = γ ≤ 4MLe−k. (52)

Then, the inequality in Lemma 1 becomes T0 ≥ max
(

16LL+cη/3
η2

ln
(

4ML
γ

)
, 32L ln

(
2M
γ

))
. Therefore,

keeping the same value of f(k) = c1 for the exploration phase still guarantee the accuracy of arm-value

estimator under the marginal distribution. This leads to the modified exploration phase in Algorithm 3.

Thanks to the phase-based structure of the learning scheme, we are able to isolate the trial-and-error phase

from the exploration phase for arm-value estimation. When the arm-values of the unique intermediate game

G for each epoch is provided by Algorithm 3, it is straightforward to prove that Theorem 2 and Proposition 3

still hold with Algorithm 2. The only difference lies in that the multiple sub-events Ax in (38) is now replaced

by a single event A. Therefore, without any modification to the discussion of regret bound in Section V-C,

we can show that Theorem 1 still holds with exactly the same form of bound:

∆RT ≤ C1 + c1M log2

(
T

c3

+ 2

)
+ c2M log1+δ

2

(
T

c3

+ 2

)
= O(M log1+δ

2 (T )). (53)



TABLE I

MAIN PARAMETERS OF ALGORITHM 1 USED IN THE EXPERIMENTS

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

ε 0.01 ξ 0.001 δ 1 c1 100 c2 200 c3 100

α11 −0.12 α12 0.15 α21 −0.35 α22 0.4 Reward range [0, 1]
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Fig. 2. (a) Average payoff of individual players with respect to time. (b) Average regrets of plays vs. different time horizons T . (c) Regret

evolution with respect to the total number of plays T .

VII. SIMULATION RESULTS

A. Evaluation of the Proposed Algorithm

We first demonstrate the efficiency of Algorithm 1 using a toy-like example (for convenience of il-

lustration) of a contextual MP-MAB setup of 2 players, 3 arms and 3 contexts, where for each player,

the contexts and arm values are jointly sampled from discrete uniform distributions. For comparison, we

implement two categories of non-contextual algorithms, the “Musical Chairs” (MC) algorithm [36] and

its variation “SIC-MMAB” (i.e., Synchronisation Involves Communication in Multiplayer Multi-Armed

Bandits) algorithms [37] and another three-phase-epoch-based decentralized learning algorithm, the Game

of Thrones (GoT) algorithm [38]. We also adopt the Hungarian algorithm to indicate the ground-truth

socially optimal arm-allocation with a centralized allocator7. In the first experiments, we adopt the main

parameters for the trial-and-error learning algorithm as Table I.

Figure 2(a) provides an intuitive illustration on the evolution of the players’ average rewards as the

bandit algorithms progress over time. In Figure 2(a), the curves marked as “Static Hungarian” indicate the

expected rewards of each individual players (Figure 2(a)) when the true social-optimal allocation is adopted.

Figure 2(b) shows the comparison of the average regret over different time horizon for the proposed trial-

7The source code and configurations of our experiments can be found at https://github.com/wbwang2020/MP-MAB.

https://github.com/wbwang2020/MP-MAB


and-error learning algorithm, the GoT algorithm, the MC algorithm and the SIC-MMAB algorithm. In this

experiment, for the same sequence of context-arm-value sampling with a total rounds of T , the bandit game

is repeatedly played for 200 times with each algorithm. The shaded areas around the solid curves indicates

the empirical performance variation during the Monte Carlo simulations. The gap between the regrets of

trial-and-error learning and the other algorithms clearly indicates that the proposed algorithm is able to

better adapt to the stochastic evolution of the contextual dimension.

In Figure 2(c), we compare the evolution of the average regrets of trial-and-error learning, MC and the

GoT algorithm [38] in a slightly larger problem with 5 arms, as the total number of plays (horizons) T

increases. The dashed curve “O(M logδ2(T ))” represents a heuristic regret bound in the same form as (48),

where the heuristic bound has a set of parameters as c1M = 200, c2M = 40 and C1 = 0 for the considered

game. Apart from the similar finding that the two learning-based algorithms achieves a better performance

than MC, it is worth noting from the simulation result that the proposed trial-and-error learning algorithm

has a much faster convergence rate than GoT.

B. Algorithm Evaluation in Heterogeneous IoT over Shared Bandwidth

Now, we apply the proposed channel allocation algorithm to the simulated scenario of an ad-hoc IoT

network underlaying over the spectrum bands licensed to a cellular primary network. We perform a series

of simulations with the focus on the following measurements: (a) the sum of the normalized link data rates

(i.e., rewards measured in achievable throughputs), (b) the frequency of collision and channel-switching

during policy learning and (c) the scalability of the proposed algorithm. Throughout the simulations, we

consider that the channel statistics are unknown and heterogeneous with respect to different IoT links. We

also consider that different levels of interference from the primary transmission is caused by a number of

primary users randomly occupying and leaving the spectrum. Correspondingly, the contexts of the mapped

MP-MAB reflect the IDs and the power levels of different licensed users. We consider that a fixed number

of randomly distributed IoT devices move in random and slow motion (e.g., following a Gauss-Markov

mobility model [39]) and underlay over the frequency of the primary users for their own transmission. For

the IoT network, the entire spectrum is divided into a fixed number of logical channels8.

In Figure 3, we demonstrate the simulation results for a setting of 10 IoT devices over 12 logical channels

of the bandwidth, which is randomly accessed by 3 licensed users of 2 power levels. In addition to the two

8For instance, in NB-IoT-like networks, this could be implemented by grouping the OFDM symbols into a fixed number of L available

resource blocks. In each physical resource block a device experiences independent path loss and shadow fading, but faces the stochastic

interference of the same transmit-power level from the underlying transmission of the UEs in the macrocell.
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Fig. 3. (a) Average sum of normalized rates over time with respect to operational horizons. (b) Accumulated collisions among IoT devices

with respect to time horizons. (c) Accumulated channel switching counts among IoT devices with respect to time horizons.

categories of reference MP-MAB algorithms, i.e., MC and GoT, we also compare the proposed algorithm

with another state-of-the-art MP-MAB algorithm based on channel swapping, i.e., “Stable Orthogonal

Channel (SOC)” allocation [11]. Compared with MC, SOC is able to address the heterogeneous distribution

of arm-values in a non-contextual setting, while it aims to achieve stable non-colliding allocation instead

of social-optimal network performance as with GoT. Figure 3(a) clearly shows that our proposed scheme

achieves the best performance out of the 4 algorithms. Figure 3(b) indicates that such better performance

of the proposed algorithm is achieved at the cost of slightly more collisions, due to more frequent policy

explorations with respect to the contexts over time.

Furthermore, it is worth noting from Figure 3(c) that by considering the influence of contexts, trial-and-

error learning experiences more frequent channel switching than the non-contextual algorithms (i.e., MC

and SOC). More specifically, the switching frequency measures the consistency of action-taking against

different context by different algorithms. The lower the frequency, the higher the policy consistency is

across different contexts. This is in accordance with our discussion in Section VI, that the contextual

MP-MAB algorithm is able to provide more flexible policies to gain better network performance than the

normal MP-MAB algorithms, which blindly choose the same policy for different contexts. However, we

note that GoT has significantly higher collision frequency and channel switching frequency. This indicates

that trial-and-error learning has a significantly higher convergence rate than GoT, even when the size of

the auxiliary-state transition graph (see also our discussion in Section V-B) for policy learning of GoT is

smaller than our proposed algorithm due to ignoring the contexts. We believe this is the main reason for

GoT to experience excessive collisions in Figure 3(b) during the same time horizon T . In other words, with

the existence of contexts, GoT needs a much longer policy-learning phase (equivalently, a larger c2) than
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Fig. 4. (a) Average sum of normalized rates over time with respect to network size. (b) Accumulated collisions among IoT devices with

respect to network size. (c) Accumulated channel switching counts among IoT devices with respect to network size.

trial-and-error learning to achieve a better performance than MC.

Finally, we examine the scalability of different algorithms with respect to the network size in Figure 4,

for which we fix the horizon of simulations to be 4×105 rounds for different network sizes varying from 5

links to 30 links. For for each epoch in trial-and-error learning and GoT, the length of the perturbation-based

learning phase is set to start with c2 = 3×103 for a network of 5 nodes and then increase proportionally as

the network size grows. As shown in Figures 4(b) and 4(c), the proposed trial-and-error learning algorithm

and GoT experience more collisions than MC and SOC, as the network size increases. This is mainly

due to both the significantly longer policy exploration and the larger auxiliary state space as the network

size increases. Again, the GoT algorithm needs significantly larger number of rounds to achieve the same

level of performance as MC and SOC when the network size increases. This is mainly due to both the

significantly longer policy exploration (i.e., controlled by parameter f(k) = c1) and the larger auxiliary

state space (i.e., controlled by parameter g(k) = c2k
δ) as the network size increases. Again, GoT needs

significantly larger number of rounds to achieve the same level of performance as MC and SOC when the

network size increases. As a result, it may not scale well with the network size. Comparatively, our proposed

algorithm is able to achieve the better performance (see Figure 4(a)) than the other reference algorithms at

an acceptable cost of more frequent collisions (see Figure 4(b)) due to a longer learning phase.

VIII. CONCLUSION

In this paper, we have proposed a decentralized, epoch-based channel-allocation algorithm based on

trial-and-error learning for IoT networks underlaying over the bandwidth shared by primary users. The

proposed algorithm exploits the information of primary transmissions in a framework of contexutal of multi-

player, multi-armed bandits. It guarantees socially-optimal performance through repeatedly constructing



intermediate non-cooperative games for performing decentralized policy learning between the phases of

channel-quality exploration and policy exploitation. The proposed algorithm efficiently addresses the situ-

ation of time-varying channels with underlying unpredictable interference from the licensed transmissions.

Theoretical analysis proves that the proposed policy-learning scheme is able to achieve the optimal regret in

O(M log1+δ
2 T ) (δ > 0) for a contextual multi-player bandit game of M players along a time horizon of T .

Our proposed algorithm is especially appropriate for deployment in infrastructure-less networks with rigid

constraint on communications between links. Particularly, the only information needed by the algorithm is

the inter-link collision states over channels from the receiving device’s feedback. The simulation results

show that the proposed algorithm is able to achieve better performance than a number of state-of-the-art

reference schemes when the IoT network underlays on realistic channels of a licensed cellular network.
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