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Abstract-A multi-person discrete game where the payoff after 
each play is stochastic is considered. The distribution of the 
random payoff is unknown to the players and further none of the 
players know the strategies or the actual moves of other players. 
A learning algorithm for the game based on a decentralized team 
of Learning Automata is presented. It is proved that all stable 
stationary points of the algorithm are Nash equilibria for the 
game. Two special cases of the game are also discussed, namely, 
game with common payoff and the relaxation labelling problem. 
The former has applications such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas pattern recognition and the 
latter is a problem widely studied in computer vision. For the 
two special cases it is shown that the algorithm always converges 
to a desirable solution. 

I. INTRODUCTION 

N this paper we consider decentralized algorithms for I learning Nash equilibria in general multiperson stochastic 
games with incomplete information. We will be concerned 
with Learning Automata models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11 for solving this problem. 

The game we consider is a discrete stochastic game played 
by N players. Each of the players has finitely many actions one 
of which he plays at each instant. After each play, the payoffs 
to individual players are random variables. Further, the game 
is one of incomplete information [2]. Thus, nothing is known 
regarding the distributions of the random payoffs. For learning 
optimal strategies, the game is played repeatedly. We are 
interested in (asymptotically) learning equilibrium strategies, 
in the sense of Nash, with respect to the expected value 
of the payoff. Our interest will be in decentralized learning 
algorithms. Hence, after each play, each of the players updates 
his strategy based solely on his current action or move and his 
payoff. None of the players has any information regarding the 
other players. As a matter of fact, none of the players need to 
even know the existence of other players. Thus the game we 
tackle is also of imperfect information [2]. 

Such games are useful in tackling problems in many areas 
such as decentralized control, optimization, pattern recognition 
and computer vision. In many such problems Nash equilibria, 
in fact, represent the desired solutions. (For a good discussion 
on the rationality of Nash equilibria see [3, Ch. 21). 

We use a team of learning automata [ l ]  for evolving to the 
optimal strategies. Games of learning automata have been used 
as models for adaptive decision malung in many applications 
[4]-[6]. In Learning Automata theory, algorithms for learning 
optimal strategies have been developed for many special types 
of finite stochastic games. Some of the models considered are: 
Two person zero-sum games [7], [8], N-person games with 
common payoff [4], [9, [lo], [ l l ]  and non-cooperative games 
such as Prisoner’s Dilemma and Stackelberg games [12], [13]. 
In this paper, we consider a team of learning automata involved 
in an N-person game with different payoffs to different play- 
ers, in general. We will investigate the asymptotic behaviour 
of a class of learning algorithms which are implementable in 
a decentralized fashion. We prove, using weak convergence 
techniques [14], [15], that all the stable stationary points of 
the algorithm are Nash equilibria. (See Remark 3.1 where the 
notion of this convergence is explained). We show that most 
of the known results for automata games can be derived as 
special cases of our general result. 

We begin by formulating the learning problem in Section 
11. Section I11 presents the learning algorithm and its analysis. 
Section IV discusses a special case of the game where all 
players get identical payoff. This model has been used in 
many pattern recognition problems [4], [ l l ] .  We derive the 
currently known results for this game with common payoff 
as special cases of our result and further show that we can 
get stronger results based on our analysis. Another interesting 
problem that can be considered as an instance of the N -  
person game, is the consistent labelling problem. A team 
of automata algorithm for relaxation labelling was presented 
in [6] which was successfully employed for many computer 
vision problems [16], [17]. The analysis presented in [6] 
leaves some questions regarding the long term behaviour of 
the algorithm unanswered. Here, in Section V, we show that 
our result gives a complete characterization of the relaxation 
labelling algorithm. Section 6 presents a discussion of the 
results of the paper and Section 7 concludes the paper. 

11. PROBLEM FORMULATION 
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Consider a N-person stochastic game. Each player zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi has a 
finite set of actions or pure strategies, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASi, 1 5 i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN .  Let 
cardinality of Si be mi, 1 5 i 5 N .  (It may be noted that the 
sets Si, 1 5 i 5 N ,  need not have any common elements and 
we assume no structure on these sets). Each play of the game 
consists of each of the players choosing an action. The result 
of each play is a random payoff to each player. Let ri denote 
the random payoff to player i ,  1 5 i 5 N .  It is assumed that 
ri E [0,1]. Define functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdi : IIj",lSj + [0,1], 1 I i 5 N ,  

dZ(a1,. . . , aN) = E[rilplayer j chose action aj,  

by 

aj E Sj,l Ij I N] (1) 

The function di is called the payoff function or utility function 
of player i ,  1 5 i 5 N .  The objective of each player is to 
maximize his payoff. A strategy for player i is defined to be a 
probability vector qi = [q;1, . . . , q;,It, where player i chooses 
action j with probability q i j .  The strategy of a player can be 
time varying, as it would be, for example, during learning. 
Each of the pure strategies or actions of the ith player can be 
considered as a strategy. Let ei be a unit probability vector 
(of appropriate dimension) with ith component unity and all 
others zero. Then e; is the strategy corresponding to the action 
i .  (It may be noted that any unit probability vector represents 
a pure strategy). A strategy that does not correspond to a pure 
strategy is called a mixed strategy. 

Given the actions chosen by the players, (1) specifies the 
expected payoff. We can easily extend the functions di ,  to the 
set of all strategies. If gi is this extension, then it is defined as 

gZ(q1,. . . , qN) = ~ [ r i  I jth player employs strategy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
qj11 I j I NI 

N 

= d i ( j l > . . . > j N ) n q s j s  ( 2 )  
jl>, .. , j N  s=l 

Dejinition 2.1 The N-tuple of strategies (q:, . . . ! qk)  is said 
to be a Nash equilibrium, iffor each i ,  1 5 i 5 N ,  we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

g2 (q? I . . . 1 SP-l! SP! s:+1 ! . . . I si4 
L g Z ( d  1 .  . . , s P - 1 7  %SP+ll . . * ! sR) 

V probability vectors q E [0, 1Ima (3) 

In general, each qg above will be a mixed strategy and then 
we refer to (q?, . . . , qR), satisfying (3), as a Nash equilibrium 
in mixed strategies. Every N-person game will have at least 
one Nash equilibrium in mixed strategies [3, 181. 

We say we have a Nash equilibrium in pure strategies 
if (q?, . . . , q;) is a Nash equilibrium with each qg a unit 
probability vector. In view of (2),  for verifying a Nash 
equilibrium in pure strategies, we can simplify the condition 
(3) as given in the definition below. 

The N-tuple of actions (a: , . .  . ! aiT) (or 
equivalently the set of strategies (ea: , . . . , e,%) ) is called a 
Nash equilibrium in pure strategies iffor each i, 1 5 i 5 N ,  

Dejinition 2.2 

$(a:, ..., a ~ - l , a ~ , a t ) + l , . . . , a ~ )  

L $(a?, . . . ,  ~ ~ ~ l l a ~ l a ~ + l l . . . l a ~ ) ~ V a ~  E S,. (4) 

Here, for all j ,  a3 E Si, the set of pure strategies of player j .  

Dejinition 2.3 A Nash equilibrium is said to be strict if the 
inequalities in (3)(equivalently, (4), for pure strategies) are strict. 

Since each of the sets S; is finite, each of the functions, 
dz : IIj"lSj + [O,1], can be represented by a hyper matrix of 
dimension ml x . . . x mN. These N hyper matrices together 
constitute what can be called the reward structure of the game. 
Since the game is one of incomplete information these payoff 
matrices are unknown. Now the learning problem for the game 
can be stated as follows. 

Let G be a N-person stochastic game with incomplete 
information. At any instant k ,  let the strategy employed by the 
ith player be qi(k). Let a;(k) and r ; ( k )  be the actual actions 
selected by i and the pay off received by i respectively at k ,  
k = 0,1 ,2 , .  . .. Find a decentralized learning algorithm for 
the players (that is, design functions Ti, where qi(k + 1) = 
T;(q;(k), a;(k), r ; ( k ) ) )  such that q;(k) + q8 as k + 03 

where (q?, . . . , q g )  is a Nash equilibrium of the game. 
In the next section we present the team of automata model 

for solving this problem. In the remaining part of this section, 
we state a simple result regarding Nash equilibria, which is 
needed for the analysis later on. Define K C [0, l]mlf."+mN 

by 

Q = ( q 1 ,  . . . , q  N ) ,  a n d V i , l < i I  N, 
q; is a mi-dimensional probability vector} 

( 5 )  

It is easy to see that K is the set of all N-tuples of mixed 
strategies or the set of possible strategies for the game. Let 
K* c K denote the set of possible pure strategies for the 
game. K* is defined by 

mi-dimensional probability vector 

with one component unity} (6) 

It is easy to see that K* can be put in one to one corre- 
spondence with the set ny=l  Sj. Hence we can think of the 
function di, given by (1) as defined on K*. Similarly, functions 
gi. given by (2), are defined over K. Define functions his, 
1 5  s 5 mi, 1 5  i 5 N ,  on K by 

where Q = (q l ,  . . . , q N ) .  From (2) and (7), we have 

s=1 
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Lemma 2.1 Any Qo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (qy , . . . , q;) E K is a Nash equilib- 
rium zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi f  and only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif 

hiS(&') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI g i ( Q o ) ,  V S , ~ .  

Corollary 2.1 Let QQ = (q:, . . . , q;) be a Nash equilibrium. 
Then for each a, 

his(Qo)  = g i ( Q o )  V s  such that > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 

Both the above results follow directly from the definition of 
Nash equilibria and are standard results in Game theory (see, 
for example, [20, Thm. 3.11, and 119, Ch. 31). 

111. ALGORITHM FOR LEARNING NASH EQUILIBRIA 

We will employ a team of learning automata to evolve to 
Nash equilibria in the game. A learning automaton is a simple 
adaptive decision making device that is capable of learning the 
optimal action (from a finite set of actions) through interactions 
with a random environment. The automaton keeps a probabil- 
ity distribution over the set of actions and at each instant it 
selects one action at random based on this distribution. The 
environment responds with a random reaction for this choice 
of action. The automaton uses this reaction to update its action 
probability distribution through a learning algorithm and the 
cycle repeats. Define the optimal action to be the one with 
highest expected value of environmental reaction. The problem 
of interest in learning automata theory is the design of learning 
algorithms so that asymptotically the automaton chooses only 
the optimal action. For the purposes of this paper our interest 
is in the collective behaviour of a number of such automata. 
Here the expected value of reaction to an automaton depends 
on the actions of other automata also. In what follows we 
discuss such a model for the multiperson stochastic game. For 
a general introduction to learning automaton theory, the reader 
is referred to [l]. 

Recall that we consider an N-person game where the ith 
player has m; pure strategies. We will represent each player by 
a learning automaton and the actions of the automaton are the 
pure strategies of the player. Let pi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(k) = [pi1 (k) . . . pimi ( k)lt 
denote the action probability distribution of the ith automaton 
player. p ; j ( k )  denotes the probability with which ith automa- 
ton player chooses the jth pure strategy at instant k. Thus 
p;(k) is the strategy employed by the ith player at instant k 
(same as what we called qi in section 11). pi(0) is the initial 
mixed strategy of player i. In the absence of extra information, 
the player can assign equal probabilities to all actions. Each 
play of the game consists of each of the automata choosing an 
action independently and at random according to their current 
action probabilities. The payoff to the ith player will be the 
reaction to the ith automaton which will be denoted by r i (k) .  
The learning algorithm used by each of the player is as given 
below. 

Learning Algorithm 
1) At every time step, each player (automaton) chooses an 

action according to his action probability vector. Thus, 
the ith player chooses action zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa; at instant k, based on 
the probability distribution pi (k) . 

2) Each player obtains a payoff based on the set of all 
actions. The reward to player i is r ( (k) ,  given by (1). 

3) Each player updates his action probability according to 
the rule 

~ i ( k  + 1) = ~ i ( k )  + bri(k)(eai - ~i(k)), 
i = l ,  ..., N. (9) 

where 0 < b < 1 is a parameter and eai is a unit 
vector of appropriate dimension with ai t h  component 
unity. (It may be recalled that we assumed 0 5 ri 5 1, 

Vi) .  This algorithm is known as Linear Reward-Inaction 
(LR-I) algorithm [l]. It is easy to see from (9) that this 
algorithm is completely decentralized. 

Let P ( k )  = (p~(k) ,  . . . , p ~ (  k)) denote the state of the 
team at instant k. As discussed in Section 11, our interest is in 
the asymptotic behaviour of P ( k ) .  The analysis presented in 
the next subsection addresses this question. 

A. Analysis of the Learning Algorithm 

Consider P ( k ) ,  the state of the team. Since each pi is a 
probability vector, we have P ( k )  E K where K is as defined 

Under the learning algorithm specified by (9), { P ( k ) ,  k 2 
0) is a Markov process. The analysis of this process is done in 
two stages. In the first part we derive an ordinary differential 
equation (ODE) whose solution approximates the asymptotic 
behaviour of P ( k )  if the parameter b used in (9) is sufficiently 
small. In the second part we characterize the solutions of the 
ODE and thus obtain the long term behaviour of P(k) .  

Obtaining the Equivalent ODE The learning algorithm 
given by (9) can be represented as 

by (5).  

P ( k  + 1) = P(k )  + bG(P(k), a ( k ) , r ( k ) )  (10) 

where a( k) = (a1 ( I C )  . . . a~ (k)) denotes the actions selected 
by the automata team at k and r ( k )  = (rl(k).-.r~(k)) are 
the resulting payoffs. G( ., ., .) represents the updating specified 
by equation (9). 

Consider a piecewise-constant interpolation of P( k), Pb( .), 
defined by 

(11) Pb(t)  = P ( k ) , t  E [kb, (k + 1)b) 

where b is the parameter used in (9). 
pb(.) E ~ m l + . . . + m  N ,  the space of all functions from R into 

[0, l ] m l + . , . + m N ,  which are right continuous and have left hand 
limits. (It may be noted that Pb(t)  E K, Vt) .  Now consider the 
sequence {Pb(.)  : b > 0). We are interested in the limit of 
this sequence as b + 0. 

Define the function f : K + [0, l]ml+"'+mN by 

The following theorem gives the limiting behaviour of Pb as 
b + 0. 

Theorem 3. I Consider the sequence of interpolated processes 
{Pb(.)) .  Let X o  = Pb(0) = P(0). Then the sequence converges 
weakly, as b 0, to X ( . )  which is the solution of the ODE, 

(13) 
dX 
d t  
- = f ( X ) ,  X ( 0 )  = xo 
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Proofi The theorem is a particular case of a general 
result due to Kushner ([15], Theorem 3.2). We note the 
following about the learning algorithm given by (10) 

1) { P ( k ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a(k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- l), ~ ( k -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI)), IC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0) is a Markov process. 
(a(k), ~ ( k ) )  take values in a compact metric space. 

2) The function G(., ., .) is bounded and continuous and it 
does not depend on b. 

3) If P(k )  = P,  a constant, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{(a(k),r(k)),k 2 0} 
is an i.i.d. sequence. Let M P  denote the distribution of 
this process. 

4) The ODE (13) has a unique solution for each initial 
condition. 

Hence by [15, Thm. 3.21, the sequence {Pb ( . ) }  converges 
weakly as b -+ 0 to the solution of the ODE, 

dX - 

dt 
- = G ( X ) , X ( O )  = Xo 

where E ( P )  = EpG(P(k ) ,  a(k), r ( k ) )  and E P  denotes the 
expectation with respect to the invariant measure M p .  

Since for P( I C )  = P, (a( k ) ,  r (  k ) )  is i.i.d. whose distribution 
depends only on P and the payoff matrices, we have 
- 

G(P)  =E[G(P(k) ,  4 k ) ;  r ( k ) )  I P ( k )  = PI = f ( P ) ,  by (12) 

integers K1, K S ,  0 < K1 < K2 < cc, there exists a bo such 
that 

E I S U I ) K 1 < k ~ K z I I P ( k )  - P"I1 < t , Y b  < bo (14) 

Thus if the ODE has an asymptotically stable (in the small) 
stationary point Po, then for all initial conditions sufficiently 
close to it, the algorithm essentially converges to Po. In 
view of this, for the rest of the analysis we analyse stability 
properties of the ODE and talk in terms of some points in K 
being 'stable', 'unstable' etc. for the algorithm. While this sort 
of convergence over compact sets is admittedly a very weak 
type of convergence, for stochastic algorithms of this kind this 
is the best result that can be hoped for [21]. 

Analysis of the ODE By Theorem 3.1, the limit P of the 
interpolated process Pb, given by (1 1) satisfies the ODE (1 3). 
Recall that P consists of N probability vectors. The phase 
space of the ODE is the set K defined by (5) .  As discussed 
in Section 11, the points in K* (where K* is as defined by 
(6)), represent pure strategies. We refer to all points in K* as 
comers of K. P contains ml + . . . + m N  components which 
are denoted by pi,, 1 5 y 5 mi, 1 5 i 5 N .  f also has the 
same number of components which will be denoted as fi,. 
The component equations of (1 3) are 

Hence the theorem. 0 
The convergence of functionals implied by 

weak convergence ensured by the above Theorem, along with 
the knowledge of the nature of the solutions of the ODE 
(13), enables one to understand the long term behaviour of 
P(k) .  One can show that with probability increasingly close 
to 1 as b decreases, P(k )  follows the trajectory X ( t )  of the 
ODE (13), with an error bounded above by some arbitrary, 
apriori fixed, 6 > 0. (See [21, Chapter 2, Theorem 11 and the 
discussion therein). The result, for example, can be specialised 
to derive long term behaviour of the algorithm when started 
in the neighbourhood of an asymptotically stable equilibrium 
point. 

Specifically, let X ( . )  be the solution to the ODE (13) and 
suppose that the initial condition X ( 0 )  = X O  is sufficiently 
close to an asymptotically stable stationary point of the ODE, 
say, Po E K. 

The sequence { P b }  is a sequence of random variables 
taking values in Dml+...+"- , th e space of all right continuous 
functions with left hand limits defined over [0, co) and taking 
values in a bounded subset of Rml+...+", namely K. 

Consider a bounded continuous function h~ (.) defined over 
D"l+...f" for every T < 00 given by 

Remark 3.1 

( h ~ ( . )  is bounded because in our case all functions in 
Dml+."+" take values in K, a bounded set). 

Because of the weak convergence result of Theorem 3.1, 
E [ h ~ ( p ~ ) ]  -+ E [ h ~ ( x ) ]  as b -+ 0, where X is the solution 
to the ODE. With the particular initial condition used, let Po 
be the equilibrium point to which the solution of the ODE 
converges. This, coupled with the nature of the interpolation, 
implies that for the given initial condition and any t > 0 and 

Using (9) and (12) we get f i ,  as 

where the functions hi, are as defined by (7) and we have 
used the fact that CSzq p;,  = (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp i q ) .  (Recall that a; is the 
action selected by the ith player and T ;  is his payoff). 

Using (16), the ODE (13) can be written as 

= pi, C ~ i s [ h i y ( ~ )  -  his(^)], 1 I 4 I mi, 1 L i 5 N .  
dpi, 
dt 

S 

(17) 
The following theorem characterizes the solutions of the 
ODE and hence characterises the long term behaviour of our 
learning algorithm. 

Theorem 3.2 The following are true of the learning algorithm 
(if the parameter b in (9) is sufficiently small). 

1) All corners of K are stationary points. 
2)  All Nash equilibria are stationary points. 
3) All stationary points that are not Nash equilibria are un- 

4) All corners of K that are strict Nash equilibria (in pure 
stable. 

strategies) are asymptotically stable. 

Proofi 

1) By inspection from (16), if P is a comer then f i q  ( P )  = 0 
because at a comer, for each i ,  either piq = 0 or 
Pis = 0,"s # Y. 
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Using (8) we can rewrite (17) as 

Let Po be a Nash equilibrium. Then by Corollary 2.1, 
for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ,  either p$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 or h i q ( P o )  = gi(Po). Hence 

Let Po be a zero of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(P) which is not a Nash equilib- 
rium. Then by Lemma 2.1, there is an i and an s such 
that 

fi,(PO) = o,tJi,q. 

Due to the continuity of the functions involved, the 
inequality (19) will hold in a small open neighbourhood 
around Po. This implies, by (18), that for all points in 
this neighbourhood % > 0 if p is  # 0. Hence in all 
sufficiently small neighbourhoods of Po, there will be 
infinitely many points starting from which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(k)  will 
eventually leave the neighbourhood. This implies Po is 
unstable. 
Let Po = (ea l ,  . . . , e a N )  be a comer of K that is a Nash 
equilibrium. Use the transformation P -+ P,  defined by 

Piq = Piq if # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai 

= 1 -pi,+ otherwise (20) 
In P,  only (ml - 1) + . . . + ( m N  - 1) components are 
independent. Choose pip, q # ai, as the independent 
components. For these, we get 

-- @" - H i q ( P )  + second and higher order terms in 
dt  

components of 7. 
where, by Taylor expansion from (8), (18) 

H i q ( P )  = Fiq [dZ(a l , .  . . > ai-1, q> ai+l, * .  . >  a N )  

- d i ( a l , .  . . , a ~ ) ]  

Consider the Lyapunov function 

V ( F )  = pip. 
q,i:q#a, 

We have V ( P )  2 0 and is zero when piq = 0 for all i, q. 

dV(F) 
d t  

-- 

i,q:q#a, 

= P i q [ d i ( a l  , . . . , a  i-l,q,ai+l,...,arv) 

i,q:q#a, 

- di( a1 , . . . , UN)] + higher order terms 

< 0, (21) 
for all # 0 in a sufficiently small neighbourhood 
around the origin because Po is a strict Nash equilib- 

0 
Remark3.2 Because of the above theorem, we can con- 

clude that our learning algorithm will never converge to a point 
in K which is not a Nash equilibrium and strict Nash equilibria 
in pure strategies are locally asymptotically stable. This still 
leaves two questions unanswered. (i) Do Nash equilibria in 
mixed strategies form stable attractors for the algorithm, and 
(ii) is it possible that P(k )  does not converge to a point in 

rium. This proves Po is asymptotically stable. 
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K which would be the case, for example, if the algorithm 
exhibits limit cycle behaviour. At present we have no results 
concerning the first question. Regarding the second question 
we provide a sufficient condition for P ( k )  to converge to some 
point in K. This is proved in Theorem 3.3 below. 

Theorem 3.3 Suppose there is a bounded differentiable func- 
tion 

F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARRzl+ +mN R 

such that for some constant c > 0, 
dF  
-(P) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8PZP = c h,,(P),V'i,qandall P E K. (22) 

Then the leaming algorithm, for any initial condition in K - K', 
always converges to a Nash equilibrium. 

Proofi Consider the variation of F along the trajectories 
of the ODE. We have 
dF 
d t  

- - -  

i q s  

i q s>q 

2 0  

Thus F is nondecreasing along the trajectories of the ODE. 
Also, due to the nature of the learning algorithm given by (9), 
all solutions of the ODE (17), for initial conditions in K, will 
be confined to K which is a compact subset of Rml+."+". 
Hence by [[22], Theorem 2.71, asymptotically all the trajecto- 
ries will be in the set K1 = {P E [0, l]m1+."+77Ln : % ( P )  = 

01. 
From (23) and (17) it is easy to see that 

* f i q ( P )  = 0 vi,  q 

+ P is a stationary point of the ODE. (24) 

Thus all solutions have to converge to some stationary point. 
Since by Theorem 3.2 all stationary points that are not Nash 

0 
Theorem 3.2, and Theorem 3.3 together characterise the 

long term behaviour of the learning algorithm. For any general 
N-person game, all strict Nash equilibria in pure strategies 
are asymptotically stable in the small. Further the algorithm 
can not converge to any point in K which is not a Nash 
equilibrium. If the game satisfies the sufficiency condition 
needed for Theorem 3.3 then the algorithm will converge to a 
Nash equilibrium. (If the game does not satisfy this condition 
we cannot be sure that the algorithm will converge rather than, 
e.g., exhibit a limit cycle behaviour). In general, we cannot 
establish that, in a general game, all mixed strategy equilbria 
are stable attractors. 

In the next two sections we discuss these results in two 
special cases of N-person games where we illustrate existence 
of the function F needed in Theorem 3.3. 

equilibria are unstable, the theorem follows. 

-__I___ - 
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Iv.  GAMES WITH COMMON PAYOFF 

In a game with common payoff all the players receive the 
same payoff after each play of the game. Thus we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= T ,  

for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and hence &(.I, .  . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, U N )  = d j (a1 , .  . . , U N ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV i , j  
where the di are as defined by (1). Equivalently we have 

g y p )  = g j (P ) ,V i , j  

where gi are as defined in (2). 

Hence the reward structure of the game can be represented 
by a single hyper matrix D of dimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAml x . . .  x m N ,  

whose elements are 

where hiq is as defined by (7). Hence this function F satisfies 
the condition needed for Theorem 3.3. The proof is completed 

Remark 4.1 By this theorem we can conclude that all 
modes in the game matrix are stable and strict modes are 
asymptotically stable. Further, the algorithm always converges 
to a point in K. In practice it is found that the algorithm always 
converges to a mode of D rather than to a mixed strategy. 

Remark 4.2 In some applications such as optimization, it is 
desirable to converge to the highest valued mode (which would 
correspond to the global maximum) rather than any mode 
(local maximum). With the type of decentralized algorithm 

by applying that theorem. 0 

that we have, it is not possible to achieve convergence to 
global optimum. Such a convergence, however, is possible if 
we Some information exchange among the players. The 
only known automata algorithms at present that Can guarantee 
convergence to the global optima are the estimator algorithms 
[4, 11,  131 and algorithms with a random walk term added to 
escape local optima [24, 251. 

d,l,.,,N = E[T 1 Player j played action a j ] ,  1 5 j 5 N 

Dejnition 4.1 
(25) 

The tuple of actions (al, . , . , a N )  is called a 
mode of the matrix D if for all permissible values of the index 
s we have 

dal ... aN L dsa2 ... aN 
dal ... aN L dais ... aN 

V. THE CONSISTENT LABELLING PROBLEM 

dal ... aN L dala2 ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs (26) 

It is easy to see that if ( a l ,  . . . , U N )  is a Nash equilibrium 
in pure strategies then (a l ,  . . . , U N )  is a mode of the matrix 
D and vice versa. There always will be at least one mode, 
namely the highest element in the matrix D. Thus a game with 
common payoff will have at least one Nash equilibrium in pure 
strategies. Further the Nash equilibrium in pure strategies is 
strict if the corresponding mode is strict (i.e., the inequalities 
in (26) are strict). 

Games with common payoff have been used as parallel dis- 
tributed algorithms in applications such as Pattern Recognition 
and Optimization [l], [4], [ l l ]  and for concept learning [23]. 

It is known that if all the automata use the LR-I algorithm 
as given in Section 111, then the expected payoff, conditioned 
on the current action probabilities of all automata, increases 
monotonically [l], [9]. Further if the D matrix has a single 
mode then the learning algorithm converges to it [l], [lo]. 

We will now present a convergence result for the game 
based on our analysis which ensures convergence to one of the 
Nash equilibria (modes) even if the game matrix is multimodal. 

Theorem 4.1 Consider a game with common pay08 Then, 
under the leaming algorithm given by (9), the automata team 
converges to one of the Nash equilibria. 

Pro08 In view of Theorem 3.2, all that needs to be 
shown is that the ODE has only point attractors. That is, for 
example, it will not have limit cycles. 
Define 

Another special case of the general game that we consider 
is the so called consistent labelling problem [26]. A team 
of automata model for solving the labelling problem was 
presented in [6]. This algorithm was found useful in many 
computer vision problems [16], [17]. The consistent labelling 
problem is a generalization of the idea of constraint satisfaction 
to include cases where the constraints may be ‘soft’ [26]. 

Recently it was pointed out by Ricci [27] that constraint 
satisfaction can be viewed as finding Nash equilibria in N -  
person games. In this section we show that finding consistent 
labellings can be viewed as a special case of our game and 
then illustrate the analysis of Section 1II.A for this case. 
For defining a labelling problem we follow the formalism of 
Hummel and Zucker [26]. 

In a labelling problem one is given 

1) a set of objects, 0 = (01,. . . , O N } ,  
2) a set of labels, A = (1,. . . , M}, 
3) a neighbour relation over 0 x 0 which specifies which 

4) a set of Compatibility functions, rij : A x A --$ R 
pairs of objects constrain each other, and 

The objective is to assign labels to objects ‘satisfying’ the 
constraints imposed by the compatibility functions. Formal- 
ising the notion of satisfying the compatibility functions, we 
define what are called consistent labellings. 

An unambiguous labelling is a function from 0 to A , Le., 
an assignment of a unique label to each object. 

Definition 5.1 An unambiguous labelling (XI, . . . , AN), 
which assigns label A, to object a, is said to be consistent if 

Hence 

dF 
- = 

”” jl 1 .  .. ,j*- 1 ,j%+l>., . ,jN 

1 I 

r i j ( A i ,  X j )  can be thought of as the degree of compatibility 
for label X i  on object i with label X j  on obect j .  Thus, at a 
consistent labelling, if we change the label on any one object 

(28) the ‘net consistency’ at that object decreases. Throughout 

d ( j l ,  ... , j i - l ,  q , j i + l ,  . . .  , j ~ )  ] I I P s j ,  

S # i  

= hiq(P) 
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this section we assume, without loss of generality [6], that 
rij(., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.) E [0, 11. We also assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ; ~  = 0. 

Instead of assigning labels unambiguously, we may choose 
to assign labels probabilistically. Let p; = ( p ; ~  . . . p ; ~ )  be 
a probability vector such that we assign label q to object i 
with probability piq.  Then the N-tuple of probability vectors 
given by P = ( P I , .  . . , p ~ )  is called a probabilistic label 
assignment. It is easy to see that P E K, defined by (5 )  
with ml = m2 = . . . = m~ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111. Similarly, unambiguous 
labellings correspond to points in K*. 

Definition 5.2 A probabilistic label assignment P = 
( P I ,  . . . , p ~ )  E K is said to be consistent if for each a, 

Define a function F : RNM --+ R by 

Since the payoff to the ith automaton, T; ,  is given by T;  = 
$ Cj  ~ i j ( X ; ,  X j )  where X j  is the action currently chosen by 
j ,  1 5 j 5 N ,  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgi functions (defined by (2)) will now be 

Similarly, the hi, function defined by (7) will now be 

(34) 

From (32) and (34) we get, for the case of symmetric com- 
patibilitY functions, 

1 
~ ~ . t 3 ( w P 3 A ’ P z A  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ T z 3 ( A , A i ) P 3 A % A  h,s(P) = y p Z 3 ( S , X ’ ) P 3 A ’  

3 A , A ’  3 A , X ’  3 A‘ 

(30) 

We now establish the connection between consistent la- 

by a player and let the set of actions (or pure strategies) of 
each player be the label set. Let the payoff functions (defined 
by (1)) be given by 

v v = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Vi,. . . , V N )  E K 

bellings and Nash equilibria. Let each object be represented dF 
-(P) = 2 y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATt3 ( 9 ,  X)P,A 

3 A  
dPaq 

(35) = 2Nhaq(P) V i ,  q, P E K 

Now from Definitions (2.1, 2.2, 5.1, 5.2) it is clear that 
consistent unambiguous labellings are Nash equilibria in pure 
strategies and other consistent labellings are Nash equilibria 
in mixed strategies. 

We can use the automata algorithm given in Section 
111 for learning the consistent labellings. We associate an 
automaton with each object and the action set will be 
the label set. We start with some initial label probabilities 
P;(O) = (p l (0) .  . . ~ N ( O ) ) .  At each instant each of the 
automata chooses a label at random. We update the label 
probabilities using (9). So, all that remains to be specified 
is how to obtain the reaction, T ; ,  for each automaton. We 
will make ~i = & cj  r ; j (X i ,  X j )  where the current choice 
of label for object j is Xj ,  1 5 j 5 N. Since, by (31), 
we have E[r;I(Xl, . . . ,  A N ) ]  = &(XI , . . . ,  A N ) ,  it is clear 
that our algorithm will now learn Nash equilibria which are 
the consistent labellings. We thus get a parallel stochastic 
algorithm for solving the labelling problem. It may be noted 
here that our algorithm can solve the labelling problem even 
when the ~ ; j  functions are unknown if we have access to 
signals T;  that satisfy E[r;I(X1,. . . , A N ) ]  = & Cj  r;j(A;, X j ) .  

This is the algorithm proposed in [6]. It is proved in [6] 
that for this algorithm all unambiguous consistent labellings 
are locally asymptotically stable and all other corners of K are 
unstable. Now, in view of Theorem 3.2, which assures that all 
non-Nash stationary points are unstable, we can say that the 
algorithm will never converge to an inconsistent labelling. 

We now give a complete convergence proof for the algo- 
rithm, using Theorem 3.3, if the compatibility functions satisfy 

Now we can use Theorem 3.3 to prove the convergence of 
the algorithm. 

Theorem 5.1 Consider the automata algorithms for solving 
the labelling problem with symmetric compatibility functions. The 
algorithm Cfor suflciently small value of the parameter b in (9)) 
will always converge to a consistent labelling. 

Proof: Under (31), the N-person game is such that all 
consistent labellings are Nash equilibria and vice-versa. Hence 
the proof is immediate using Theorem 3.2, Theorem 3.3 and 
(35). 0 

Remark 5.1 Theorem 5.1 establishes convergence of the 
automata algorithm to a consistent labelling for the class of 
problems where compatibility functions are symmetric. The 
new results given by this theorem which are not contained 
in the analysis presented in [6] are (i) all stationary points 
of the ODE that do not represent consistent labellings are 
unstable, (ii) there are no limit cycles and the algorithm 
always converges to a stationary point of the ODE. This 
analysis is important in view of the fact that the labelling 
problem is a very useful framework for many computer vision 
tasks [16], [17], [26], [28]. The assumption of symmetric 
compatibility functions is not very restrictive because, in fact, 
they are symmetric in most applications. In our treatment we 
considered only painvise constraints for defining compatibility 
functions. This can easily be extended. If, for example, three 
objects jointly constrain the labels on them, then, we can define 
r i j k  instead of r;j. The analysis goes through by substituting 
~ ; j k  in place of r;j and increasing the summation indices 
accordingly. The algorithm can be implemented in a parallel 
distributed fashion, e.g., on an SIMD machine [29]. 

VI. DISCUSSION 
some condition. 

Definition 5.3 
symmetric if we have 

In this paper we have considered an N-person stochastic 
game with incomplete information. We have given an algo- 
rithm for each player to modify his current mixed strategy 

The compatibility finctions are said to be 

T t J ( & , 4 )  = TJZ(X, , A t )  v i , j ,  A, ,  A,. using the random outcome of successive plays of the game. 
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The algorithm is decentralized and each player needs to know 
only the action chosen by him and his payoff at that instant in 
order to update his mixed strategy. If the game is repeatedly 
played with each player making use of our learning algorithm 
with small step size, then we established local convergence of 
our algorithm around Nash equilibria. 

We have considered two special cases of this N-person 
game, namely, a common payoff game and the consistent 
labelling problem. In both cases, it is established that the 
algorithm will converge to a Nash equilibrium which is the 
needed solution. The automata model for these special cases 
has been successfully employed in Pattern Recognition and 
Computer Vision [ll, [4], 1161, 1171. 

There are other N-person games such as stochastic pris- 
oner's dilemma [12, 131 where the LR-I algorithm analyzed in 
this paper was found useful. Our cocvergence result subsumes 
the results known for these special cases. 

The LR-I algorithm for learning Nash equilibria in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN -  
person stochastic games has been empirically investigated by 
many researchers. Hence we do not report any simulation 
studies to support the theoretically predicted performance. 
Instead we point to various works where such simulations are 
available. 

For the common payoff game it is observed that if the 
game matrix is unimodal then the algorithm always converges 
to it. However, if there is more than one mode then the 
algorithm converges to one of the modes depending on the 
initial condition. This is seen from simulation studies reported 
in 11, Sec. 8.5.61. For the labelling problem, simulations on 
a simple problem are reported in [6] where it is seen that 
depending on the initial condition the team will converge 
to different consistent labellings. Similar performance of the 
algorithm in specific applications, namely, stereopsis and 2D 
object recognition, was reported in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 161, [ 171. Empirically 
observed performance of the algorithm in stochastic prisoner's 
dilemma and other 2-person non-zero sum games is reported 
in 1121, [13]. All these results conform to the theoretically 
expected performance based on the analysis presented in this 
paper. 

Our algorithm can be used for learning the Nash equilibrium 
even if the game is deterministic and the game matrix is 
known. We then simply make zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ i ,  payoff to the ith player, 
equal to (suitably normalized) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd'(u1, . . . ! a ~ )  which is the 
game matrix entry corresponding to the actions played. An 
example of this is the consistent labelling problem where the 
functions ~ ; j  are known. For many problems in Computer 
Vision we found this algorithm (which works even where r;j 
are unknown) to give better performance than other deter- 
ministic algorithms [6]. Whether this is an efficient algorithm 
for obtaining Nash equilibria for general deterministic games 
with known payoff functions needs to be investigated. (There 
are distributed algorithms for computation of Nash equilibria 
in deterministic games which need every player to know his 
payoff function [30], 1311. 

The convergence results proved in this paper are valid if 
all the players use the LR-I algorithm. (It may be noted that 
even if different players use different values of the learning 
parameter, b, the proofs go through). It should be possible to 

extend the results of this paper to the case where different 
players may use different absolutely expedient algorithms (see 
11, Ch. 41 for definition of absolutely expedient algorithms). 
The model presented in the paper, wherein all players use 
the same algorithm, is acceptable for the applications we have 
considered in the previous two sections where the game model 
is utilized as a parallel algorithm to solve certain optimization 
and constraint satisfaction problems. In such cases we are free 
to choose the algorithm for each agent in the decentralized 
model. 

But in a truly competitive situation a player can choose 
what he does; but he has no control over the other players. 
So, a relevant question is: if only one player is using the 
LR-I algorithm then how does he perform with respect to his 
payoff? It is easy to see from our analysis that if we assume 
that all other players are employing fixed but unknown mixed 
strategies, then the player using LR-I algorithm will maximize 
his payoff. This is true of any subset of players also if the 
rest of the players are employing fixed but unknown mixed 
strategies. 

A particular case of competitive games is the 2-person zero- 
sum game. Here, in each play, if one player gains then the 
other loses by an equal amount. Nash equilibria are called 
saddle points in zero-sum games. It is known that if the game 
has a unique saddle point in pure strategies then the automata 
algorithm presented here will converge to it [7]. Theorem 3.2 
assures us that even if there are multiple saddle points in pure 
strategies, each one of them is locally asymptotically stable. 

Our analysis does not establish the stability or otherwise of 
Nash equilibria in mixed strategies for the general N-person 
game. It is known that in any stationary random environment 
Ln-1 algorithm always converges to a unit vector [ l ]  and 
hence it might be the case that even the decentralized team 
cannot converge to an interior point. It may be possible 
to establish convergence to interior points using the L R - ~ P  
algorithm [l]. This needs to be investigated further. 

VII. CONCLUSION 

In this paper, we have considered N-person stochastic 
games with incomplete information. We presented a decen- 
tralized learning algorithm and proved a general convergence 
result for the algorithm. This result subsumes many known 
results regarding learning optimal strategies in different types 
of games. The special cases we have considered are games 
with common payoff and the consistent labelling problem. The 
automata model for these cases has been employed for many 
applications in pattern recognition and computer vision. We 
provided complete convergence results for the algorithm in 
these special cases. 

The learning algorithm is completely decentralized and can 
be thought of as a parallel distributed network similar to neural 
network models. As a matter of fact, the automata model for 
the labelling problem can be thought of as a type of stochastic 
extension to the Hopfield model 1321. This algorithm was 
also used for combinatorial optimization problem [33]. An 
interesting open question is the utility of such game models 
as general learning algorithms for neural networks. 
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