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ABSTRACT

This paper implements robust Decentralized Model Pre-
dictive Control (DMPC) for a team of cooperating Un-
inhabited Aerial Vehicles (UAVs). The problem involves
vehicles with independent dynamics but with coupled con-
straints to capture required cooperative behavior. Using a
recently-developed form of DMPC, each vehicle plans only
for its own actions, but feasibility of the sub-problems
and satisfaction of the coupling constraints are guaranteed
throughout, despite the action of unknown but bounded
disturbances. UAVs communicate relevant plan data to en-
sure that decisions are consistent across the team. Collision
avoidance is used as an example of coupled constraints and
the paper shows how the speed, turn rate and avoidance
distance limits in the optimization should be modified in
order to guarantee robust constraint satisfaction. Integer
programming is used to solve the non-convex problem of
path-planning subject to avoidance constraints. Numerical
simulations compare computation time and target arrival
time under decentralized and centralized control and inves-
tigate the impact of decentralization on team performance.
The results show that the computation required for DMPC is
significantly lower than for its centralized counterpart and
scales better with the size of the team, at the expense of
only a small increase in UAV flight times.

I. I NTRODUCTION

This paper combines Mixed-Integer Linear Program-
ming (MILP) path-planning [2], [4] and Decentralized
Model Predictive Control (DMPC) [1] to provide a de-
centralized algorithm for co-operative guidance of Unin-
habited Aerial Vehicles (UAVs). This paper investigates
its performance by simulating its behavior for multi-UAV
collision avoidance problems. The avoidance constraints
couple the behavior of the system and therefore exercise
the ability of the controller to make cooperative decisions.
The DMPC algorithm [1] was designed primarily to ensure
satisfaction of constraints, and critical performance goals
can be embedded in constraints. However, secondary goals
remain in the cost function,i.e. quantities which should
be small but have no explicit limit. An important purpose
of this paper is to investigate the effect of decentralization
on these secondary goals. The metrics of interest in the

UAV example are the flight time, which appears in the
cost function of the MPC optimizations, and computation
time. In particular, we investigate how the algorithm scales
with the number of UAVs involved and compare with the
behavior of the corresponding centralized MPC.

MPC is a feedback control scheme in which a trajectory
optimization is solved on-line at each time step. The first
control input of the optimal sequence is applied and the op-
timization is repeated at each subsequent step. Because the
on-line optimization explicitly includes the operating con-
straints, MPC can operate closer to hard constraint bound-
aries than traditional control schemes. MPC has been widely
developed for constrained systems [3], with many results
concerning stability [5] and robustness [7], [8], and has been
applied to the co-operative control of multiple vehicles [8],
[10], [6] using centralized computation. However, solving
a single optimization problem for the entire team typically
requires significant computation, which scales poorly with
the size of the system (e.g. the number of vehicles in the
team). To address this computational issue, attention has
recently focused on decentralized MPC [11], with various
approaches including robustness to the actions of others [9],
penalty functions [12], [15], partial grouping of compu-
tations [16], loitering options for safety guarantees [13],
and dynamic programming [14]. The challenge of making
decisions in a decentralized fashion is to ensure that the
actions of each subsystem must be consistent with those of
the other subsystems, so that decisions taken independently
do not lead to a violation of the coupling constraints. The
decentralization of the control is further complicated when
disturbances act on the subsystems making the prediction
of future behavior uncertain.

This paper employs a recently-developed approach to
DMPC [1] that addresses both of these difficulties. The
key features of this algorithm are that each vehicle only
solves a sub-problem for its own plan, and each of these
sub-problems is solved only once per time step, without
iteration. Under the assumption of a bounded disturbance,
each of these sub-problems is guaranteed to be feasible [1],
thus ensuring robust constraint satisfaction across the group.
The method employs at each time step a sequential solution
procedure, outlined in Fig. 1(a), in which the subsystems
solve their planning problems one after the other. The plan
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Fig.1: Overview of Decentralized Algorithm

data relevant to the coupled constraints is then communi-
cated to the other subsystems. Fig. 1(b) shows the infor-
mation requirements for sub-problemp. Each sub-problem
accommodates (a) the latest plans of those subsystems
earlier in the sequence and (b) predicted plans of those
later in the sequence. The disturbance is accommodated by
including “margin” in the constraints [8], tightening them
in a monotonic sequence. At initialization, it is necessary to
find a feasible solution to the centralized problem, although
this need not be optimal.

The paper begins with the multi-UAV problem state-
ment in Section II. Then Section III lays out the control
formulation for this problem. Section IV gives the results
of simulations using this controller for many different
scenarios and team sizes.

II. UAV P ROBLEM STATEMENT

The problem is to control multiple UAVs, each assumed
to fly at constant altitude and with restricted speed and

rate of turn. Each UAV has a single pre-assigned goal
point. The objective is for all UAVs to reach their goals
in minimum time without colliding, i.e. maintaining a
minimum separation between every pair of UAVs at all
times. This problem statement exercises the ability of the
decentralized method to handle non-convex constraints and
coupling between the actions of the UAVs.

Since the decentralized MPC method requires linear
dynamics, we adopt the linear approximation of aircraft
dynamics from [4]. Each vehicle is modeled as a point mass
subject to speed and force limits. A disturbance force is also
included in the model to account for uncertainty. Let UAVp
have positionrp(t) ∈ <2 and velocityvp(t) ∈ <2 and be
acted on by a control forcefp(t) ∈ <2 and a disturbance
force f̃p(t) ∈ <2 giving dynamics

ṙp(t) = vp(t) v̇p(t) = fp(t) + f̃p(t)

and constraints

‖vp(t)‖2 ≤ Vp ‖fp(t)‖2 ≤ Fp

(This model becomes equivalent to Dubins’ car model [17]
with the addition of a minimum speed constraint. This
can be implemented using MILP, but was not done in
these experiments for simplicity.) The disturbance force is
assumed to be unknown but bounded

‖f̃p(t)‖2 ≤ F̃p

The collision avoidance is expressed in terms of a square
exclusion region of side2L around each UAV which no
other UAV may enter

‖rp(t)− rq(t)‖∞ ≥ L ∀t, p, q : q 6= p

Finally, let the goal of UAVp be gp ∈ <2.

III. DMPC FOR UAV S

This section presents the robust MPC optimization prob-
lems for the UAV problem described in Section II and the
algorithm in which they are employed. Both centralized
and decentralized optimizations are presented. The central-
ized form is relevant because it is used to initialize the
decentralized algorithm and also used in comparison tests
in Section IV.

The MPC algorithm requires a linear discrete-time state-
space dynamics model and linear, although not necessarily
convex, constraints. It is straightforward to convert the
dynamics to the form

xp(k + 1) = Axp(k) + Bup(k) + Ewp(k) (1)

with statexp(k) = (rp(kT )T vp(kT )T )T , control input as
up(k) = fp(kT ), disturbancewp(k) = f̃p(kT ) and time
step T . The speed and force limits are approximated by
polyhedra and applied at each time step, along with the
collision avoidance constraints

[0 G]xp(k) ≤ 1Vp (2a)

Gup(k) ≤ 1Fp (2b)

‖[I 0] (xp(k)− xq(k)) ‖∞ ≥ L′ ∀p, q : q 6= p (2c)



where the rows ofG are unit vectors andL′ > L includes
some additional margin to account for the the discrete-
time application of the constraints. Ref. [4] showed the
use of binary logical variables within Mixed-Integer Linear
Programming (MILP) to encode non-convex avoidance con-
straints such as (2c). Finally, the discrete-time disturbance
is also converted to polyhedral form.

Gwp(k) ≤ 1F̃p (3)

Centralized Optimization

PC (x1(k), . . . ,xP (k)) : J∗C = min
up,xp

P∑
p=1

Tp

subject to∀p ∈ {1 . . . P} ∀j ∈ {0 . . . (Tp − 1) ∀q > p}

xp(k + j + 1|k) = Axp(k + j|k) + Bup(k + j|k)
xp(k|k) = xp(k)

[0 G]xp(k) ≤ 1(V̄p − cp(j))
Gup(k) ≤ 1(f̄p − dp(j))

‖[I 0]xp(k + Tp|k)− gp‖∞ ≤ ap(Tp)
‖[I 0]xp(k + j|k)− rq(k + j|k)‖∞ ≥ L′ + bpq(j)

where the quantitiesa, b, c, d are modifications to the con-
straints to provide margin for robustness

ap(0) = 0
ap(1) = ‖[1 0 0 0]B‖2 F̃p

ap(j) = ap(1) + ‖[1 0 0 0]LB‖2F̃p ∀j ≥ 2
bpq(j) = ap(j) + aq(j) ∀j
cp(0) = 0
cp(1) = ‖[0 0 1 0]B‖2F̃p

√
2

cp(j) = cp(1) + ‖[0 0 1 0]LB‖2F̃p

√
2 ∀j ≥ 2

dp(0) = 0
dp(1) = ‖[1 0]KB‖2F̃p

√
2

dp(j) = dp(1) + ‖[1 0]KLB‖2F̃p

√
2 ∀j ≥ 2

where K is a two step nilpotent controller for the sys-
tem (A,B) and L = (A + BK). Hence the nilpotency
requirement forK givesL × L = 0. A suitable controller
K can be found since the system is a combination of two
independent double-integrators.
Decentralized Optimization (for UAV p)

Pp (xp(k), r̃pq(k . . . k + T |k)) : J∗p = min
up,xp

Tp

subject to∀j ∈ {0 . . . Tp − 1} ∀q 6= p

xp(k + j + 1|k) = Apxp(k + j|k) + Bpup(k + j|k)
xp(k|k) = xp(k)

Gvp ≤ 1(V̄p − cp(j))
Gfp ≤ 1(f̄p − dp(j))

‖[I 0]xp(k + Tp|k)− gp‖∞ ≤ ap(Tp)
‖[I 0]xp(k + j|k)− r̃pq(k + j|k)‖∞ ≥ L′ + b̂pq(j)

wherer̃pq(k . . . k +T |k) represents the latest known inten-
tions of other vehicles

r̃pq(k . . . k + j|k) =
{

[I 0]xq(k + j|k) q < p
[I 0]xq(k + j|k − 1) q > p

This represents the latest plans for those UAVs beforep
in the planning sequence and projected plans, using the
continuation of the previous plans, for those afterp. This
data is exchanged by communication between UAVs and
appears as a constrant parameter in sub-problemp. The
avoidance marginŝb are modified for the decentralized
problem

b̂pq(0) = 0 q < p

b̂pq(0) = aq(0) q > p

b̂pq(1) = ap(0) + aq(0) q < p

b̂pq(1) = ap(0) + aq(1) q > p

b̂pq(j) = ap(1) + aq(1) q 6= p ∀j ≥ 2

This accounts for the additional uncertainty in the projected
plans of later vehicles, as the actual plans of those UAVs
will differ from the predictions due to the action of the
disturbance.
Algorithm 1 (Decentralized MPC)

1) Find a solution to the initial centralized problem
PC(x1(0), . . . ,xP (0)). If solution cannot be found,
stop (problem is infeasible).

2) Setk = 0
3) Apply controlu∗p(k|k) to each subsystemp
4) Incrementk
5) For each subsystemp in order1, . . . , P :

a) Compile the plan
datar̃pq(k . . . k + T |k) ∀q 6= p from other
subsystems

b) Solve sub-problem
Pp (xp(k), r̃pq(k . . . k + T |k))

6) Go to 3

Theorem 1 (Robust Feasibility) If a feasible solution
to the initial problem PC(x1(0), . . . ,xP (0)), solved in
Step 1 of Algorithm 1, can be found, then the system (1)
controlled by Algorithm 1 and acted upon by disturbances
obeying (3) will satisfy the constraints (2) and all sub-
problem optimizations will be feasible.

This theorem is quoted from [1] and is not proven here.
Briefly, the result relies on the ability to construct a feasible
solution to each sub-problem by combining its previous
solution and a perturbation, using the nilpotent control
policy K to counteract the disturbance.
Remarks

The first step of Algorithm 1 requires finding a solution
to the centralized problem, but it is not necessary for this to
be an optimal solution. Any method of generating a feasible
solution can be employed.

Algorithm 1 ignores computation and communication
delays. However, it can be extended to explicitly account
for delays by propagating the state estimate forward [18].



Crucially, this does not introduce a delay equal to the entire
solution sequence. Rather, each subsystem accounts for a
delay corresponding to the solution of its own sub-problem.

Algorithm 1 can be run as an “anytime” algorithm. The
result in Theorem 1 follows from the ability to construct
a feasible solution to each sub-problem before starting its
computation. Therefore, an arbitrarily small computation
time-limit can be enforced with the guarantee that a solution
will always be available.

IV. SIMULATION RESULTS

This section presents results of numerical simulations
demonstrating the application of the DMPC method and
investigating its performance, including comparison to the
centralized counterpart (CMPC). Fifty random instances of
problems for each team size between two and seven were
generated and simulated using decentralized MPC. In every
case, the UAVs began on the line between(−5, 5) and
(−5,−5), heading in the+X direction. The goals were
chosen randomly on the line between(5, 5) and (5,−5).
Fig. 2 shows a representative example of a problem of
each size. The simulation model included a randomly-
generated disturbance force of up to 10% of the control
force. The simulations were run in Matlab on a desktop PC
with Pentium 2.2 GHz processor and 512MB RAM using
CPLEX 7.0 for MILP optimization. The same computer
was used to solve all UAV sub-problems, consistent with
the sequential nature of the algorithm. For comparison, the
same fifty instances for team sizes up to five were also
simulated, on the same computer, using the CMPC. The
same initial solution was used for both algorithms, with
CPLEX configured to search primarily for feasible, rather
than optimal, solutions and taking the first one found by
its search procedure. For the on-line optimizations, CPLEX
was configured to seek optimal solutions and subjected
to a ten minute computation time-limit, after which the
best feasible solution available was employed. The larger
problems, with six and seven UAVs, were not attempted
using the centralized method as the computation times
became prohibitively long.

In all the scenarios, all UAVs reached their respective
goals without incurring infeasibility and maintaining the
required separations. The examples in Fig. 2 show how
the UAVs divert from their direct routes to their goals
to avoid collisions. The order of planning, outlined in
Fig. 1(a), is marked in the figures. The results indicate
that the significance of planning order is unclear and highly
problem specific. In the two-, three- and six-vehicle cases,
UAV 1 goes straight to its goal, but in the four- and five-
vehicle cases, UAV 1 diverts to avoid others. Thus there is
no apparent consistent advantage to planning first or last.

A. Computation Time Comparison

Fig. 3 and Table I present data comparing the total
computation times for the centralized and decentralized
algorithms. Only computation times for the second time
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Fig.2: Example Trajectories for Simulations of Teams of
2-7 UAVs using Decentralized MPC. The numbers denote
the planning order and circles mark the goals.

step are considered, as the problem complexity varies as
UAVs proceed towards their goals. The results for the
decentralized algorithm are the summed times for all the
sub-problems, since they are solved sequentially as shown
in Fig. 1(a). Looking at the mean times (black dot) and
the standard devation envelopes (dark gray bar), it is clear
that the decentralized method offers a considerable compu-
tational advantage, averaging over twenty times faster than
centralized for problems of five UAVs. The ranges (light
gray bar) show that there are, however, some rare cases in
which the DMPC controller can take around ten minutes to
solve. The DMPC computation load still grows nonlinearly
with team size, to be expected as the inherent complexity
of the problem grows as the UAV “density” increases.
However, it is clear that the rate of increase is much slower
than for CMPC. Fig. 4 shows the average solution times for
the decentralized MPC experiments broken down by sub-
problem. This shows that there is no clear pattern to the
distribution of computation between sub-problems.
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Fig.3: Comparison of Computation Times for Randomly-
Chosen Instances. The plot shows the mean computation
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TABLE I: Computation Times
Number of Computation Times (s)
Vehicles Min Mean Max St.Dev

Centralized
2 0.73 2.51 13.14 2.64
3 1.77 19.45 600.50 87.07
4 1.67 71.91 600.59 134.14
5 8.00 495.12 601.25 206.21

Decentralized
2 0.92 1.65 3.55 0.61
3 1.53 4.07 32.49 3.51
4 2.11 6.88 42.86 5.50
5 3.25 20.59 426.14 45.19
6 6.41 34.94 611.70 66.69
7 6.38 78.14 635.61 112.75

B. Flight Time Comparison

The results in Section IV-A showed that the DMPC algo-
rithm offers a considerable improvement over its centralized
counterpart in terms of computation time. This section
compares the performance of the two algorithmsi.e. the
optimization cost function, in this case the UAV flight time
from start to goal. Fig. 5 shows the differences in flight
time between DMPC and CMPC for the same fifty random
simultions described in Section IV-A. Fig. 5(a) shows the
mean and range of the average difference,i.e. averaging
across all UAVs in the team for each simulation. For up to
four UAVs, total flight-times using DMPC are no shorter
than for CMPC, but only longer by about one time step per
UAV. It is intuitive that DMPC can be no better than CMPC
as both solve the same problem, but DMPC in a more
constrained manner. However, for the five-vehicle cases,
some DMPC results are better than CMPC, occurring when
the CMPC optimization is terminated by its computation
time-limit with an inferior solution. Fig. 5(b) shows the
flight time comparison broken down by individual UAV.
The trends in the mean flight time differences suggest a
slight advantage to being early in the planning order, but
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Fig.4: Mean Solution Times for DMPC with up to Seven
UAVs, showing Breakdown among Sub-Problems.

there is considerable variation and no firm conclusion can
be drawn.

C. In-Flight Goal Change

This section shows an example involving a change of the
goals part way through the flight. This class of uncertainty
is not covered by Theorem 1, but the example shows
that DMPC can potentially handle such a change and,
crucially, does not require re-initializing using a centralized
process. Figs. 6(a) and 6(b) show the trajectories for an
example scenario with fixed goals using CMPC and DMPC,
respectively. Observe that the trajectories are similar for
both controllers and that UAV 3 does not interact with the
other two. In the simulations shown in Figs. 6(c) and 6(d),
the goals were initially the same as in Figs. 6(a) and 6(b),
but at the third time step the goal for UAV 3 was moved
to the location shown, requiring UAV 3 to interact with the
other two. Comparing Figs. 6(a) and 6(c), it can be seen
that all UAVs are diverted to accommodate the changed
goal. However, comparing Figs. 6(b) and 6(d), it can be
seen that only the path of UAV 3 changes when its goal is
changed. This is irrespective of the planning order: when
UAV 3 replans for its new goal, it must choose a path
consistent with the pre-existing intentions of UAVs 1 and 2.
Therefore, UAV 3 takes a more circuitous route to its new
goal and there is never any cause to change the paths
of UAVs 1 and 2. This example suggests that DMPC
can handle broader classes of uncertainty than a simple
disturbance action, such as ad-hoc team changes, adding
or removing UAVs or goal changes.

V. CONCLUSIONS

Decentralized Model Predictive Control (DMPC) for
teams of cooperative UAVs has been developed and demon-
strated. Simulation results for the representative example of
multi-UAV collision avoidance have been presented. DMPC
guarantees constraint satisfaction, in this case avoidance,
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Fig.5: Differences in UAV Flight Times Between CMPC
and DMPC. Positive difference indicates UAV reaches goal
earlier using CMPC. Units of time are time steps, and
typical flight times are 15 steps per vehicle. The plots
show the mean difference (·) and range (gray bar) over fifty
instances.

and offers significant computation improvement, compared
to the equivalent centralized algorithm, for only a small
degradation in performance, in this case UAV flight time.
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