
© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on 5 September 2012 doi:10.1093/comjnl/bxs117

Decentralized Monitoring of Moving

Objects in a Transportation Network

Augmented with Checkpoints

Alan Both1,∗, Matt Duckham1, Patrick Laube2, Tim Wark3

and Jeremy Yeoman1

1Department of Infrastructure Engineering, University of Melbourne, Melbourne, Australia
2Department of Geography, University of Zürich, Zürich, Switzerland

3CSIRO ICT Center, QCAT Brisbane, Brisbane, Australia
∗Corresponding author: aboth@student.unimelb.edu.au

This paper examines efficient and decentralized monitoring of objects moving in a transportation

network. Previous work in moving object monitoring has focused primarily on centralized

information systems, like moving object databases and geographic information systems. In contrast,

in this paper monitoring is in-network, requiring no centralized control and allowing for substantial

spatial constraints to the movement of information. The transportation network is assumed to

be augmented with fixed checkpoints that can detect passing mobile objects. This assumption is

motivated by many practical applications, from traffic management in vehicle ad hoc networks to

habitat monitoring by tracking animal movements. In this context, this paper proposes and evaluates

a family of efficient decentralized algorithms for capturing, storing and querying the movements

of objects. The algorithms differ in the restrictions they make on the communication and sensing

constraints to the mobile nodes and the fixed checkpoints. The performance of the algorithms is

evaluated and compared with respect to their scalability (in terms of communication and space

complexity), and their latency (the time between when a movement event occurs, and when all

interested nodes are updated with records about that event). The conclusions identify three key

principles for efficient decentralized monitoring of objects moving past checkpoints: structuring

computation around neighboring checkpoints; taking advantage of mobility diffusion and separating

the generation and querying of movement information.

Keywords: geosensor network; decentralized spatial computing; network-constrained movement; moving

objects; environmental monitoring

Received 14 December 2011; revised 27 June 2012

Handling editor: Jacob Beal

1. INTRODUCTION

When monitoring objects moving within a transportation

network, two alternative perspectives immediately present

themselves: monitor locations with change over time or monitor

times over change in location. The former perspective is

exemplified by using trajectories to represent the motion of

objects, where at fixed times the location of the moving

object is recorded (e.g. by sampling global positioning system

coordinates every minute). The latter perspective is exemplified

by using checkpoints, where the time at which moving objects

pass fixed locations is recorded. Figure 1 summarizes these two

perspectives, trajectory, and checkpoints, in the case of a single

object moving through a transportation network.

This paper examines the design of algorithms for monitoring

and querying of moving objects passing checkpoints. More

specifically, we restrict the focus in this paper to movement

within a transportation network (although the principles and

algorithms developed can also be adapted to movement in

unconstrained planar spaces). Following terminology used

in the transportation literature, in this paper transportation

networks augmented with checkpoints are referred to as cordon-

structured networks.

The Computer Journal, Vol. 56 No. 12, 2013

Decentralized Monitoring of Moving Objects 1433

(a) (b)

FIGURE 1. Movement of an object: (a) as a trajectory (sequence of time-stamped locations) and (b) past checkpoints (small bisecting lines)

in a transportation network.

In addition to the novelty of examining cordon-structured

networks, rather than more traditional trajectory-based

approaches, this paper also focuses on efficient decentral-

ized algorithms, which operate with no centralized information

store or control. Decentralized algorithms are an active area of

research in spatial computing and spatial information science

(e.g. [1–4]), in part because they are well suited to use with new

technologies like wireless sensor networks and vehicle ad hoc

networks (VANETs). Using a decentralized algorithm enables

queries about spatiotemporal events to be satisfied partly or

wholly in the network, without the need to communicate and

collate information about object movements within a single,

centralized information system. Decentralization may also have

important implications for protecting privacy, as the information

about the movements of individual nodes is smeared across the

entire network rather than at a single centralized node, poten-

tially making invasions of privacy harder to engineer.

This paper defines and tests decentralized algorithms for

scalable and efficient monitoring of moving objects in cordon-

structured networks, as well as defining mechanisms for

querying this information. Examples of applications for our

algorithms include as follows:

(i) Monitoring the movement of vehicles around road

networks, where vehicle locations are tracked by fixed

road network infrastructure, like electronic tolling

gantries, traffic cameras and inductive loops (e.g. [5]).

(ii) Monitoring the movement of emergency personnel

through indoor spaces during an emergency relief

effort, where personnel are tracked moving past

checkpoints at key points within a building (e.g. [6]).

(iii) Monitoring the movement of animals in a network,

such as native fish species tagged with radio

transmitters passing logging stations placed at key

positions around a river network (e.g. [7]).

Following a discussion of the related work (Section 2) and the

precise definition of the underlying structures used in our model

(Section 3), this paper presents a family of related decentralized

algorithms for maintaining and querying information about

movement events in cordon-structured networks (Sections 4

and 6). The key idea behind the decentralized algorithms in this

paper is to distribute records about observed movement events

across nodes in the network, storing the times when mobile

objects pass cordons. Specifically, we store at every cordon

information about the movement events on the edges that are

incident with that cordon. This approach is designed to support

a range of queries over these networks, from queries about the

location and movement of mobile objects, through queries about

the loads and flows on transportation network edges, to queries

about fault detection, for example, inferring when cordons are

not working correctly.

We show that our approach can adapt to increasingly

restrictive assumptions about the spatial constraints to the

movement of information made by the communication network,

from communication between nearby cordons, to a largely

disconnected network, where only near-coincident cordons and

moving objects have the opportunity to communicate. In all

cases, the spatial structure of the network, as well as movement

through the network, is used to minimize communication and

reduce redundancy in stored information. The different options

are evaluated and compared experimentally, based on their

scalability and latency (Sections 5 and 6). The evaluation

demonstrates that the approach is highly scalable, both in

terms of communication and storage of information, even for

sparsely and infrequently connected networks. The conclusions

in Section 7 summarize the findings and the avenues for ongoing

research.

2. RELATED WORK

This paper lies at the intersection of two established research

topics: monitoring mobility in cordon-structured networks and

decentralized spatial computing.

The Computer Journal, Vol. 56 No. 12, 2013

1434 A. Both et al.

2.1. Trajectories and checkpoints

The term ‘trajectory’ in this paper refers specifically to a ‘set

of n moving point objects whose locations are known at t

consecutive time steps [emphasis added]’ [8], as opposed to the

more general definition of a trajectory as ‘polyline in three-

dimensional space (two-dimensional geography, plus time),

represented as a sequence of points (x, y, t)’ [9]. This latter

definition would also include movement data from checkpoints.

However, we argue that it is the former definition, a sequence of

locations at consecutive time steps, that most researchers have

in mind when using the term ‘trajectory’.

The distinction between representing movement using

trajectories or checkpoints has its roots in the fundamental

differences between the Eulerian and the Lagrangian views

of movement [10]. The trajectory perspective is akin to the

Lagrangian view, which considers changes in a moving object’s

location. The checkpoint perspective is closer to the Eulerian

view, where the movement is described as changes in location

relative to known, fixed points in space. A similar distinction is

made in [11] in the context of continuous and discrete models

of space.

We use the term ‘cordon-structured network’ to refer to

a transportation network augmented with checkpoints. The

term ‘cordon’ in this sense is adopted from the transportation

literature (cf. [12–15]). Whereas the focus in the transportation

literature is on the regions enclosed by checkpoints, in this paper

our focus is slightly different, on the relative network locations

of the checkpoints themselves and the movement of objects past

these locations.

We often intuitively associate the cordon-structured networks

with low spatial precision, caused by irregular and wide spacing

between checkpoints (like fixed traffic cameras or inductive

loops in traffic monitoring applications). However, it should

be noted that this is not a feature of Eulerian (checkpoint) or

Lagrangian (trajectory) perspectives on moving objects; indeed

in some applications, closely spaced ‘checkpoints’ (like radio-

frequency identification tag readers) have been used for highly

accurate and precise positioning (e.g. [16, 17]).

Conversely, even if imprecise, movement data from cordon-

structured networks are frequently more accurate than

trajectory data. The locations of checkpoints can usually be

known with a high degree of certainty, and objects moving

past these checkpoints can often be unambiguously and reliably

identified (e.g. an electronic road tolling system may have low

spatial precision, dependent on the spacing of traffic gantries,

but high spatial accuracy, only very rarely failing to correctly

identify vehicles passing a gantry). Further, in cordon-structured

networks, the checkpoints are usually located at structurally

or semantically important locations, like intersections. As a

result, the data generated by cordon-structured networks are

typically more concise. In contrast, removing redundant points

from voluminous trajectory data is an increasingly important

research problem [18].

Related research in the area of monitoring moving objects

typically assumes one or more of the following: trajectory-

based movement data (e.g. [19]); movement in planar space,

unconstrained by transportation networks (e.g. [20–22]) or

centralized storage and processing of movement data (e.g.

most work in the area of moving object databases [23]). Such

assumptions are not well suited to many emerging applications,

including those indicated above (e.g. where tagged fish are

monitored moving through a river network by fixed logging

stations in remote locations with restricted communication

capabilities).

2.2. Decentralized spatial computing

The key feature of spatial computing (as distinct from

computing with spatial information) is that there exist spatial

constraints to the movement of information [11]. These

constraints may arise for a variety of reasons, including resource

limitations (e.g. limited energy for communication in untethered

sensor nodes); the need to avoid information overload (e.g.

through in-network filtering of low value or relevance data) and

the desire for increased scalability and decreased operational

latency (e.g. in a sensor/actuator network) [24].

In turn, the spatial constraints to movement of information

motivate the interest in decentralized algorithms for spatial

computing environments. Decentralized algorithms are a

special case of distributed algorithms where no single node

in a distributed system possesses global knowledge of the

system’s state [25]. Recent years have seen substantial activity

in exploring fundamental decentralized algorithms to support

spatial computing, for example: leader election [26, 27],

localization [28, 29] and coordination across the network

[30–32].

A feature of decentralized algorithms is that they are designed

to operate on all nodes identically (with the same computation

and data storage requirements) regardless of the network size.

A fundamental result in distributed systems theory has proved

that no matter how many different types of nodes and behaviors

are required by a heterogeneous network, it is always possible

to define a single, homogeneous protocol that can satisfy those

requirements [27]. This simplifies the process of decentralized

algorithm design, allowing networks to scale organically by

adding nodes with identical protocols as required.

In the context of decentralized algorithms for monitoring

and querying moving objects, one of the research areas

that has the most in common with the assumptions behind

this paper is VANETs (transportation applications based on

wireless vehicle-to-vehicle and vehicle-to-infrastructure local

area network communications, [33]). VANET research is

explicitly concerned with movement through a transportation

network, and does already consider decentralized approaches

to communication and information processing (e.g. [34–36]).

Decentralization is necessary due to the highly variable nature

The Computer Journal, Vol. 56 No. 12, 2013

Decentralized Monitoring of Moving Objects 1435

of VANET connectivity, where no consistent communication

coordinator can be assumed [37]. However, unlike the approach

in this paper, such studies do assume trajectory, rather than

cordon-structured movement data.

A key assumption behind our algorithms is that each

node has a unique identity. This is a common assumption

for decentralized algorithms where coordination between

neighbors occurs (e.g. [25, 27]), and is frequently found

in practice (e.g. in VANETs, communication typically relies

on a media access control layer that includes an addressing

mechanism; similarly, unique identities are usually available in

our motivating example of environmental monitoring of fish

movements within a river network [7]).

Our latter two algorithms do rely on data mules to

physically move information toward sinks in the absence of

communication network connectivity [38]. This idea of using

the movement of objects in this way has already received much

attention in the literature, also termed the mobility diffusion

effect [39], participatory data transfer [40] and is closely related

to opportunistic data dissemination [41, 42].

3. FORMAL MODEL

Before specifying our algorithms, it is necessary to precisely

define the network and information structures we assume exist.

We assume three interrelated types of network: a communication

network (of cordons and mobile objects); a transportation

network (through which objects are moving) and a connectivity

network, which models the relative network locations of

the cordons (in terms of their direct connectivity) in the

transportation network.

3.1. Communication network

A sensor network comprises a set of sensor nodes and the

direct (peer-to-peer) one-hop communication links between

those nodes. Our model assumes two types of sensor nodes,

modeled as two disjoint sets: F , the set of moving objects

(termed in this paper ‘fish’); and C, the set of immobile cordons

(checkpoints) at known locations in the transportation network

through which the mobile objects (fish) are moving.1

To represent the potential for direct (one-hop) communication

between cordons and/or fish, we use a time-varying, undirected

graph Gm(t) = (V , E(t)), termed the communication graph,

where we require V = F ∪ C; a discrete set of times T

and a time-varying set of edges, E(t), such that, for some

time t ∈ T , E(t) ⊆ V × V is the set of potential one-

hop communication links between nearby nodes. The exact

1We use the term ‘fish’ as shorthand for our moving objects, because

this research was initiated in response to problems faced by a real river

health monitoring system deployed in the Murray River, Australia, where the

movement of native fish species is tracked using radio frequency transmitters

implanted into fish, and monitored using riverside cordons [43].

communication links for a network will depend on the specific

application and technologies used. However, as is common in

sensor networks, we assume a relatively sparse graph, where

the number of neighbors for a node is relatively small compared

with the number of nodes in the network.

3.2. Transportation and connectivity network

The transportation network is modeled as a graph, Gt = (I, Et),

where Et is the set of transportation network edges connecting

intersections I . Although for simplicity, the transportation

network is assumed to be static and undirected, extensions

of this model to time-varying and directed networks are

straightforward.

In addition, we introduce the concept of a connectivity

network to represent the relative network locations of cordons

in terms of the transportation network connectivity between

cordon locations. This relative location is modeled using a

connectivity graph Gc = (C, Ec), where {c1, c2} ∈ Ec if and

only if there exists a path through the transportation network

between cordons c1 and c2 that does not traverse any other

c ∈ C, where c �= c1 �= c2. Figure 2 illustrates the relationship

between the cordon-structured transportation graph (shown in

Fig. 2a) and the induced connectivity graph (Fig. 2b). Note

that it is not a requirement that cordons be coincident with

intersections on the transportation network.

3.3. Sensing capabilities

Cordons are assumed to have the capability of sensing the

movement of fish past their location. This models the situation,

for example, where riverside receivers track signals from tagged

fish, or roadside gantries monitor the passing of a tagged vehicle.

To track the direction, sensors would be placed across each

edge of the cordon so that both the origin and the destination

of the fish can be logged. Alternatively, camera-based systems

could be used to monitor the passing of vehicles [44] and

log their license plates. Movement events are represented as a

function sensec : C × T → N × N × N ∪ {∅}. Informally,

the sensec function identifies for each cordon and time any

movement of a fish past that cordon, from one incident edge to

another.

For example, sensec(v, t) = (1, 102, 103) indicates that

cordon v detected at time t the fish with ID 1 coming from

the direction of the cordon with ID 102 toward the direction

of the cordon with ID 103. The distinction between nodes (e.g.

v ∈ V) and the identity of nodes (without loss of generality

represented as the set of natural numbers, 1, 2, 3, . . . ∈ N)

is an important one for decentralized spatial algorithms. In a

decentralized system, any individual node v can never have

direct access to information about another node v′ unless that

information has previously been explicitly communicated to v.

Thus, making a clear distinction between a node and information

about its identity helps to avoiding errors in decentralized

The Computer Journal, Vol. 56 No. 12, 2013

1436 A. Both et al.

(a) (b)

FIGURE 2. Example cordon-structured transportation graph (where small bisecting lines represent checkpoints) (a) and induced connectivity

graph (b), highlighting two cordons x and y.

algorithm design. In cases where we need to highlight this local

knowledge available to a node, we use the overdot notation

(e.g. ˚sensec(t)—said ‘local’ or ‘my’ sensec of t—where s̊(a) is

equivalent to s(v, a) and the (local) node v ∈ V is clear from

the context).

sensec(v, t) = ∅ indicates that cordon v detects no

movement events at time t . Without loss of generality, the model

assumes that at most one fish moves through a cordon at any

particular time t . The function id : V → N is used to represent

the relationship between nodes and their identities.

In our work, we assume that nodes have unique identities

(i.e. the function id is an injection). However, relaxations of

this assumption are possible, and in some cases desirable.

For instance, in our motivating example of fish monitoring in

the Murray Darling River, technical limitations mean that, on

occasion, fish may not have unique identifiers. Additionally,

errors in a cordon’s sensor can lead to incorrect or incomplete

records (e.g. in the case of a road network, the camera fails

to correctly identify a car’s license plate). Such issues are

considered in more detail in Section 6.

Note that the sensec function assumes that as a fish moves

past a cordon, that cordon can detect both the edge in the

connectivity network the fish is arriving from and the edge it

is departing to (in other words, the previous and next cordons

a fish has passed and will pass, respectively). In some cases,

this may be a reasonable assumption. For example, in the

primary motivating application for this paper, monitoring fish

movement, cordons are specifically placed at locations in the

transportation network that enable them to determine exactly

this information (for example, see cordonx in Fig. 2, where there

is a 1:1 mapping between out-edges of x in the transportation

network and out-edges of x in the connectivity network).

However, in other cases, this assumption may be too strong,

for example, in many transportation applications. (For example,

see cordon y in Fig. 2, where there is no 1:1 mapping between

out-edges in the transportation network and in the connectivity

network.) The former more restrictive assumption has been

made in this paper because it simplifies the algorithm exposition.

However, it is straightforward to also support the latter, more

general assumption with limited modifications of the approach

(specifically the capability of fish to identify cordon IDs as they

pass, and communicate this information to the next cordon they

pass).

Additionally, note that the transportation network may

extend far beyond the extent of the monitoring cordons.

Fish that pass beyond the perimeter of the cordons can be

accounted for by the introduction of a ‘virtual’ node to the

connectivity graph which is connected to every edge that leads

outside the network. In this way, fish entering or leaving the

network will be recorded as swimming toward or from this

virtual node.

Finally, it may also be that the fish too have the capability of

sensing other fish in close proximity (for example, detecting

a short range radio handshake or ultrasound ‘ping’). The

capability of fish of sensing when they move past each other can

be represented as a function sensef : F × T → N ∪ {∅}. For

example, a specific application of this function, sensef(v, t) =

1, indicates that fish v detected the fish with ID 1 moving past

it at time t .

4. DECENTRALIZED ALGORITHMS

FOR MONITORING MOVEMENT

Our approach relies on two stages—first maintaining records

about movement events at the cordons or fish near where

those events occurred; and subsequently querying those records.

Thus, the algorithms in this section only provide the capability

to maintain decentralized records about movement events;

querying is addressed later in Section 6.

The Computer Journal, Vol. 56 No. 12, 2013

Decentralized Monitoring of Moving Objects 1437

4.1. Algorithm 1: communication graph contains

connectivity graph

The first algorithm assumes that all cordons that are connected

in the connectivity network are also connected in the

communication network (although the converse is not required,

not all nodes connected in the communication network need

to be connected in the transportation network). Formally, we

assume that, for all times t ∈ T , Ec ⊆ E(t) (recall: the

communication graph is Gm(t) = (F ∪ C, E(t)), and the

connectivity network is Gc = (C, Ec)). This may in some

cases be a realistic assumption (e.g. where traffic gantries in

a road network enjoy wired communication links with nearby

neighbors, or where all cordons are connected by a wide

area network). Later algorithms relax this strong assumption,

allowing for lesser communication capabilities and greater

restrictions to the movement of information. In this simplest

case, it is straightforward for any cordon that detects a

movement event to store that locally, and communicate this

information to its two cordon neighbors (one at the opposite

end of the edge the moving object came from, and one

at the opposite end of the edge the moving object is now

moving on).

As a result, Algorithm 1 is relatively straightforward to

construct. Nevertheless, the algorithm is included here because

it helps to introduce the algorithm specification style used, based

on the approach of Santoro [27, 45]. In short, this approach

defines the behavior of individual nodes by specifying a

protocol for interaction between nodes, using four components:

restrictions, events, actions, states. Restrictions are listed in the

header of the algorithm, and we define the assumptions made

about the computing environment in which all the nodes operate.

Two types of events may occur to nodes. First, trigger events

(indicated with the keyword When) occur when a node detects

the activation of some trigger, such as new sensed data. Second,

communication events (indicated with the keyword Receiving)

occur when a node receives a message via direct communication

from a one-hop neighbor. Actions are sequences of operations

(i.e. ‘programs’), which a node executes in response to an event.

Actions are atomic in the sense that they cannot be interrupted by

other events. Finally, nodes may respond with different actions

to the same event depending on that node’s state. A node’s state

may also change through the course of actions that occur in

response to events. For each possible event/state pair, we may

define a different action. Event/state pairs that do not appear

in an algorithm are assumed to have empty actions (i.e. ‘do

nothing’). Figure 3 illustrates how trigger events caused by the

passing of fish lead to actions that both store event data and

initiate communication events in neighboring cordons. These

Algorithm 1 Basic algorithm, where all cordons are directly

connected in the communication network to cordon neighbors

in the transportation network.

1: Restrictions: Set of nodes V = F ∪ C, where F is set of mobile

fish, C is set of static cordons; sensor function sensec : C ×T →

N × N × N ∪ {∅}; identifier function id : V → N; connectivity

graph Gc = (C, Ec); communication graph G(t) = (V , E(t)),

where for all t , Ec ⊆ E(t)

2: State transition system: 〈{cord, fish}, ∅〉

3: Initialization: All cordons in state cord, all fish in state fish

4: Local variables: Table e = 〈fid : N, enter : T , exit : T , edge : N〉,

initialized with zero records.

cord

5: When ˚sensec(now) �= ∅

6: let (f , cp , cn) = ˚sensec(now)

7: update e set exit = now where fid = f and exit = null

and edge = cp

8: insert into e values (f , now, null, cn)

9: send (entr, f , now, ˚id) to node with ID cn

10: send (exit, f , now, ˚id) to node with ID cp

11: Receiving (entr, f , t , i)

12: insert into e values (f , t , null, i)

13: Receiving (exit, f , t , i)

14: update e set exit = t where fid = f and exit = null and

edge = i and enter �= t

(a) (b)

FIGURE 3. Example sequence diagram (b) for Algorithm 1, showing how the data change with fish movements (a).

The Computer Journal, Vol. 56 No. 12, 2013

1438 A. Both et al.

communication events in turn lead to actions that also store

event data.

4.2. Algorithm 2: disconnected communication graph

Algorithm 1 assumes cordons that are neighbors in the

transportation network are also neighbors in the communication

network. In many cases, the distances between cordons may

be large, requiring wide area network connectivity and this

capability may not be available. Our second algorithm relaxes

this assumption, instead only assuming communication links

between cordons and fish when and where a cordon senses

a fish. Restating this formally, we assume that, for any time

t ∈ T , cordons c, cp, cn ∈ C and fish f ∈ F , then

sensec(c, t) = (id(f), id(cp), id(cn)) implies {c, f } ∈ E(t)

and {{cn, c}, {c, cp}} ⊆ Ec.

In this scenario, the approach of Algorithm 2 is to recruit

fish as ‘data mules’ to physically carry relevant data to the

cordon at the opposite end of the edge in the transport network.

Thus, unlike Algorithm 1, the fish in Algorithm 2 are active

participants in the communication. Informally, there are a

number of steps that occur following a movement event, as a

fish f passes a cordon c, listed below. These steps are further

highlighted by Fig. 4 which shows a simple example execution

of this algorithm.

(1) The cordon c sends an exit message to the fish heading

toward cordon cn about all other fish recently exited

from their shared edge (stored in table p), before

expunging these records.

(2) The cordon c updates its own event table e with the

entry record for the fish f for the edge to cn.

(3) The cordon c stores the new exit record in active table

a that the fish f exited the edge to cp.

(4) On receiving an exit message, the fish f updates its

own record of its entry and exit from the edge (stored

in table e).

(5) The fish f then sends an exit message back to the

cordon containing its own entry and exit record from

cp (stored in table e) along with any exit records (from

cp) it is carrying as a data mule.

(6) The fish f then deletes all data from tables e and a,

storing new exit records received from the cordon for

cn in a and its own new entry record in e.

(7) On receiving an exit message from the fish f , the

cordon c updates its own event table e with data from

the exit records carried by the fish from cp.

4.3. Algorithm 3: disconnected communication graph

with fish–fish communication

Algorithm 3 goes one step further than Algorithm 2, enabling

fish to communicate on edges in order to discover new

knowledge before either of the cordons. In the case of aVANET,

this models the situation where vehicles can communicate with

FIGURE 4. Example execution of Algorithm 2 showing how the data tables evolve in response to fish movements. For clarity, only the data tables

of cordons 101 and 102, in addition to fish passing these cordons, are shown.

The Computer Journal, Vol. 56 No. 12, 2013

Decentralized Monitoring of Moving Objects 1439

Algorithm 2 Mule algorithm, where fish transport exit records

back to cordon.

1: Restrictions: Set of nodes V = F ∪ C, where F is set of mobile

fish, C is set of static cordons; sensor function sensec : C ×T →

N × N × N ∪ {∅}; identifier function id : V → N; transportation

graph Gc = (C, Ec); communication graph G(t) = (V , E(t)),

where sense(c, t) = (id(f), x, y) implies {c, f } ∈ E(t) and

{{cn, c}, {c, cp}} ⊆ Ec

2: State transition system: 〈{cord, fish}, ∅〉

3: Initialization: All cordons in state cord, all fish in state fish

4: Local variables: Event table e = 〈fid : N, enter : T , exit :

T , edge : N〉, initialized with zero records; active table a = 〈fid :

N, exit : T , edge : N〉.

cord

5: When ˚sensec(now) �= ∅

6: let(f, cp, cn) = ˚sensec(now)

7: letp := select fid, exit, i̊d from a where edge = cn

8: send (exit, p, ˚id, now) to fish with ID f

9: delete from a where edge = cn

10: insert into a values (f, now, cp)

11: insert into e values (f, now, null, cn)

12: Receiving (exit, e′, a′)

13: insert into e select * from e′

14: for each (f, t, c) in a′ do

15: update e set exit = t where fid = f and edge = c and

exit = null

fish

16: Receiving (exit, p, i, t)

17: update e set exit = t

18: send (exit, e, a) to cordon with ID i

19: delete from e

20: delete from a

21: insert into a select * from p

22: insert into e values (˚id , t , null, i)

one another as they pass. Formally, the capability of fish to sense

when they move past each other is represented as the function

sensef : F × T → N ∪ {∅} (see Section 3.3).

Previously, the records for which fish were on an edge in the

connectivity graph were stored at the two cordons that bounded

that edge.Algorithm 3 additionally generates completed records

on fish in the edge (which are then later updated at cordons as

in Algorithm 2). It does so by expanding each fish’s event table,

which in Algorithm 2 carried a single record, to carry additional

incomplete records for the current edge which can be completed

by exchanging records from the active tables of fish they pass.

In short, Algorithm 3 operates just as Algorithm 2, except that

it additionally allows data mules (i.e. fish—with apologies for

the mixed metaphors) to communicate directly with each other,

generating complete records about movement events as they

move along the edge (i.e. before reaching a cordon), and so

reducing latency.

Because these additional movement records are located along

the edges of the network, their use may seem limited. This,

Algorithm 3 Extended mule algorithm, where fish transport

and exchange exit records.

1: Restrictions: Set of nodes V = F ∪ C, where F is set

of mobile fish, C is set of static cordons; sensor function

sensec : C × T → N × N × N ∪ {∅}; sensor function

sensef : F × T → N ∪ {∅}; identifier function id : V →

N; transportation graph Gc = (C, Ec); communication graph

G(t) = (V , E(t)), where sense(c, t) = (id(f), x, y) →

{c, f } ∈ E(t) ∧ {{cn, c}, {c, cp}} ⊆ Ec, and sensef (f, t) =

(id(f ′)) → sensef (f ′, t) = (id(f)) ∧ {f, f ′} ∈ E(t)

2: State transition system: 〈{cord, fish}, ∅〉

3: Initialization: All cordons in state cord, all fish in state fish

4: Local variables: Event table e = 〈fid : N, enter : T , exit :

T , edge : N〉, initialized with zero records; active table a = 〈fid :

N, exit : T , edge : N〉.

cord

5: When ˚sensec(now) �= ∅

6: let(f, cp, cn) = ˚sensec(now)

7: letp := select fid, exit, ˚id from a where edge = cn

8: letq := select fid, enter, exit, edge from e where edge = cn

and exit = null

9: send (exit, p, q, ˚id , now) to fish with ID f

10: delete from a where edge = cn

11: insert into a values (f, now, cp)

12: insert into e values (f, now, null, cn)

13: Receiving (exit, e′, a′)

14: insert into e select * from e′

15: for each (f, t, c) in a′ do

16: update e set exit = t where fid = f and edge = c and

exit = null

fish

17: Receiving (exit, p, q, i, t)

18: lete′ := select fid, enter, t , edge from e where fid = ˚id and

exit = null

19: send (exit, e′, a) to cordon with ID i

20: delete from e

21: delete from a

22: insert into a select * from p

23: insert into e values (˚id, t , null, i)

24: insert into e select * from q

25: When ˚sensef (now) �= ∅

26: letf = ˚sensef (now)

27: send (meet, a) to fish with ID f

28: Receiving (meet, a′)

29: update e set exit = (select a′.exit from a′ where e.fid =

a′.fid and e.edge = a′.edge) where exists (select a′.exit

from a′ where e.fid = a′.fid and e.edge = a′.edge)

however, depends on the specific usage scenario. In cases,

for example, where the communication range is shorter than

assumed by Algorithm 1 but still large enough to cover large

sections of a cordon’s edges, records from a cordon and its

adjacent fish can be combined to provide data that are more

complete. In other cases, queries may be injected directly in the

network, for example, by users that happen to be nearby in-edge

The Computer Journal, Vol. 56 No. 12, 2013

1440 A. Both et al.

fish. Indeed, this case is not uncommon in our motivating

example of fish tracking in the Murray River, where fish

may linger in a stretch of river between cordons for some

time, with queries potentially issued from boats or overflying

aircraft.

5. EXPERIMENTAL EVALUATION OF MOVEMENT

MONITORING

This section briefly evaluates experimentally the three

algorithms presented in Section 4, using simulated moving

objects moving through a randomized cordon-structured

network. All the algorithms were programmed in the NetLogo

simulation system [46]. Assuming reliable communication (i.e.

that messages are never dropped or corrupted) and reliable

sensing (i.e. that fish are never able to pass a cordon, or

each other, without being detected), all the algorithms are

guaranteed to correctly track movements. As already argued,

reliable communication and sensing may be reasonable in many

scenarios (e.g. in electronic road tolling). Thus, given that the

algorithms are expected to be accurate, the performance of the

algorithms was evaluated with respect to the two remaining

features of primary interest: latency and scalability.

5.1. Experiment #1: scalability of algorithms

Our first experiment concerns the comparative scalability of

the three algorithms. When considering the scalability of

a decentralized algorithm, communication complexity (the

amount of communication as a function of input size) is

of overriding importance. The most important measures of

communication are the total number and length of messages sent

(or received), both for individual nodes (termed load balance)

and for the network as a whole.

In this first experiment, the movement patterns of the

fish are kept constant and simple. Each fish is assumed

to move at constant speed along an edge, and randomly

selects with uniform distribution the next edge to follow at a

cordon from among all the edges incident with that cordon.

Later experiments explore more complex movement patterns,

where speeds vary across different fish and for the same fish

across different times. The number of fish in the network

is expected to be the most important factor in governing

the communication complexity (as opposed to the number

of cordons), because the system generates communication

in response to fish movements. Indeed, preliminary work

experimentally confirmed this expectation (Fig. 5). The figure

shows how, for a fixed number of fish but increasing

numbers of cordons, the number of messages generated

by the algorithms remains approximately constant, or even

decreases asymptotically in the case of Algorithm 3 (since

increasing the size of the network makes fish–fish interaction

and communication less likely).

FIGURE 5. Scalability of communication in terms of total number of

messages sent with change in numbers of cordons for Algorithms 1–3

(500 fish in all cases).

Thus, it is expected that the communication complexity of

algorithms scales linearly with the total number of fish in the

network, O(|F |), for Algorithms 1 and 2 (hypotheses H1A

and H1B). However, since Algorithm 3 requires fish–fish as

well as fish–cordon communication, in the worst case the

communication complexity of Algorithm 3 is expected to scale

with the square of the total number of fish, O(|F |2) (hypothesis

H1C).

To investigate these hypotheses, each of the three different

algorithms was simulated on a randomized transportation

network with 50 cordons for 1000 time steps, at each of

five different sizes of sets of fish (125, 250, 500, 1000 and

2000 fish, with random initial location). Each experimental

run was repeated 100 times, leading to a total of 3 × 5 ×

100 = 1500 individual experimental runs. For Algorithm 1,

neighboring cordons in the connectivity network were also

connected in the communication network (see Section 4.1). For

Algorithms 2 and 3, the radius for communication was reduced

to near zero, so only fish and cordons that were almost co-

located (i.e. as a fish passes a cordon or another fish) could

communicate.

Figure 6 shows the results of experiment #1 with overall

communication complexity, in terms of the total number of

messages sent. As expected, the results support hypotheses

H1A and H1B, with a linear regression of the total number

of messages communicated using Algorithms 1 and 2 having

R2 > 0.98. Similarly, a regression of results for Algorithm 3

indicates a good fit (R2 > 0.99) where the total messages

scale approximately in proportion to |F | + |F |2. As expected,

this is because Algorithm 3 requires all the messages of

Algorithms 1 and 2 (linear in the number of fish) plus fish–

fish communication (polynomial in the number of fish), lending

support to hypothesis H1C.

When considering the load balance, the maximum communi-

cation load of any node in the network provides the worst-case

communication complexity. Figure 7 shows the maximum load

of any node for 100 randomized runs for each algorithm. All

The Computer Journal, Vol. 56 No. 12, 2013

Decentralized Monitoring of Moving Objects 1441

FIGURE 6. Scalability of communication in terms of the total number

of messages sent with change in numbers of fish for Algorithms 1–3.

FIGURE 7. Scalability of communication in terms of worst case

(maximum) load (number of messages sent) for any node during a

run of Algorithms 1–3.

three algorithms exhibit linear O(|F |) load balance with similar

constant factors (R2 > 0.95).

It is noticeable that the load balance of Algorithm 3 is

no worse than that of Algorithms 1 and 2, even though the

overall scalability of Algorithm 3 is worse. This is because the

additional fish–fish communication required by Algorithm 3

is shared evenly between all mobile objects; in contrast the

fish–cordon communication will depend on the transportation

network connectivity/centrality of the cordon.

5.1.1. Scalability of data storage

One further feature of the algorithms is worth highlighting:

computational efficiency with respect to data storage. Although

scalability of communication is of overriding interest in

decentralized spatial computing, the three algorithms do

implicitly assume unlimited data storage on cordons and fish.

FIGURE 8. Scalability of data storage in total terms of the length of

stored data records (buffer size) at cordons for Algorithms 1–3.

In many cases, this assumption may be unreasonable, especially

where low-cost, embedded and mobile devices are used as fish.

For these cases, it would be trivial to assume a fixed buffer size

and then discard information based on spatiotemporal relevance

(e.g. the oldest and most spatially distal records are discarded

first).

With Algorithm 1, these data are stored in the event tables

of the cordons but for Algorithms 2 and 3, data are stored in

event and active tables for both cordons and fish. Unlike the

event tables of the cordons which increase in size with time,

the active tables remove data when they are no longer needed,

keeping the size approximately the same.Assuming an arbitrary

fixed 1:1 ratio of lengths of the two data types (i.e. the number

of bits required to encode the node identifiers n ∈ N equals

the number of bits required to encode the timestamps t ∈ T)

enabled the comparison of the overall amount of data stored in

the event and active tables. Because the algorithms distribute

stored data with minimal redundancy across the network (each

record is stored at exactly two cordons), they are expected to be

highly efficient with respect to space complexity at the cordons.

Indeed, experiments demonstrated that the total volume of data

stored at cordons (in terms of the numbers of stored records)

across the network increases linearly with the number of fish

(Fig. 8) as might be expected. The worst case load balance for

cordons is similarly linear in the number of fish (R2 > 0.98 for

all algorithms).

In terms of the scalability of data storage at the fish, the

algorithm is also highly scalable, since fish only ever transport

data between cordons (and then discard old records). Figure 9

shows the overall space complexity of Algorithms 2 and 3

(Algorithm 1 is omitted as it does not store any information at

the fish) in terms of the total number of records stored at the fish.

The number of records stored increases linearly with the number

of fish for Algorithm 2, but more rapidly for Algorithm 3 (since

fish may exchange a longer list of events in-edge). However, this

load is relatively evenly spread across the fish in the network,

with on average in experiments constant O(1) records stored

The Computer Journal, Vol. 56 No. 12, 2013

1442 A. Both et al.

FIGURE 9. Scalability of data storage in terms of the total length of

stored data records (buffer size) at fish for Algorithms 2–3.

at any fish for Algorithm 2, and O(|F |1.7) records stored at any

single fish in Algorithm 3.

5.2. Experiment #2: latency of algorithms

Latency concerns the length of the delay between when an

event occurs, and when that event is correctly detected by

an algorithm, updating the information stored in all interested

nodes (i.e. the cordons at each end of the edge). Specifically, the

events of interest are any changes to the identities of fish on an

edge. An event is considered to have been detected by an entity

(cordon or fish) when it correctly records that change. Note that

as our system is decentralized, it is never intended to be the case

that all entities record an event.

There are two primary causes of the latency associated with

our algorithms. The first, termed here initialization latency, is

caused by the time taken for the algorithm to initialize, i.e. for

each fish to have passed at least one cordon. Initialization latency

is governed primarily by the movement patterns of the fish,

and is not a function of the algorithm itself (i.e. any algorithm

without prior knowledge of the locations of fish can only start

to operate correctly after fish have been detected).

The second cause of latency, termed movement latency, is the

lag in detecting movement events inAlgorithms 2 and 3 resulting

from using fish (data mules) to physically transport data to

adjacent cordons (recall that both cordons that bound an edge

of the connectivity graph need to be updated with information

about an event, which only occurs when fish have traversed

the edge in both directions). Since initialization latency is

independent of the algorithm used, only movement latency is

used in comparing the algorithms in this section. To discount

initialization latency, each individual run of the experiments in

this section was allowed to initialize for 250 time steps, found by

experimentation to be longer than the maximum initialization

latency.

Consider the query ‘What fish are on each edge in the

network at time tq?’ Because our system includes no predictive

FIGURE 10. Movement latency for Algorithms 2 and 3.

capability, this query can be submitted at or after time tq . Thus,

the latency for Algorithms 1 and 2 can be measured as the

proportion of fish on an edge that are correctly identified by

an algorithm at time tq + δ, where δ ≥ 0. As δ increases, the

physical mobility of data mules is expected to lead to a steady

increase in this proportion.

Algorithm 1 always has zero latency (i.e. correctly identifies

100% of the fish on any edge at time tq), and so must necessarily

have lesser latency than the other two algorithms. In the worst

case, where no fish meet on an the edge,Algorithm 3 will operate

exactly like Algorithm 2. However, when fish can exchange

events on the edge in Algorithm 3, they should be able to

improve on the latency of Algorithm 2.

Thus, our expectation is that movement latency is ordered by

algorithm such that Algorithm 1 < Algorithm 3 ≤ Algorithm 2.

To test this hypothesis (H2, that the latency associated with

Algorithm 3 is less than or equal to that associated with

Algorithm 2), simulations with 500 fish on a randomized

network of 50 cordons were run for each algorithm. At a

randomly chosen time tq , between 0 and 100 time steps after

initialization, the query ‘What fish are on each edge in the

network at time tq’ was tested against the sensor network. The

time taken was measured for the proportion of fish correctly

identified by this query to reach 10, 20 . . . 100%. Figure 10

plots the results of this experiment, comparing the movement

latency for Algorithms 2 and 3, using 100 repetitions of each

experimental run to generate 95% confidence intervals (see error

bars).

Figure 10 confirms our expectation that Algorithm 3

outperformsAlgorithm 2 in terms of movement latency, lending

support to hypothesis H2.

5.3. Further experiments

Two further variables are of secondary importance to algorithm

performance: the movement behavior of fish; and the structure

The Computer Journal, Vol. 56 No. 12, 2013

Decentralized Monitoring of Moving Objects 1443

FIGURE 11. Communication complexity in terms of the total number

of messages sent for Algorithms 1–3, using objects moving along Lévy

walks as opposed to random walks (cf. Fig. 6).

of the transportation network. Since Algorithms 2 and 3 rely on

fish as data mules, mobility patterns are also expected to affect

the latency associated with these algorithms. Similarly, since the

structure of the transportation network constrains the movement

of data mules, sparser networks than the unit disk graph (UDG)

used in this experiment are expected to affect both efficiency and

latency. Without space for a full exposition of the experiments

in this area, we summarize two key findings:

(i) Sparser transportation network structures, like the

planar transportation networks, substantially decrease

the latency of both Algorithms 2 and 3. The decreased

transportation network connectivity means that each

cordon has a smaller number of network neighbors,

and so there is a greater chance of important

information being transported more directly to those

neighbors.

(ii) More ‘realistic’ movement patterns, like Lévy walks

[47], do not change the overall orders of scalability,

but do tend to increase the computational complexity of

Algorithms 1 and 2 by a constant factor, primarily due

to occasional fast moving objects leading to additional

fish–fish interactions. For example, Fig. 11 shows an

example of scalability, this time in terms of message

length, for the three algorithms with object movement

governed by Lévy walks.

6. DECENTRALIZED ALGORITHMS

FOR QUERYING MOVEMENT

The algorithms described above provide decentralized mecha-

nisms to maintain basic spatiotemporal information about the

movements of fish at cordons in the network. Specifically,

records for fish on an edge of the connectivity graph are stored

at the two cordons that bound that edge (and in Algorithm 3

are also generated in-edge by fish, in advance of reaching both

cordons). This information can then be used as the basis for

decentralized queries of the network. However, the specific

details of any query will depend on a number of factors, includ-

ing: whether the query is long-running (continuously resident in

the network), or snapshot (one-off query); whether the query is

injected inside the network (e.g. by a human user in close prox-

imity to a particular cordon) or through some gateway node

(e.g. initiated remotely via a sensor web); whether the query

response is required external to the sensor network (e.g. again,

via a sensor-web gateway) or used inside the network (e.g. a

sensor/actuator network for controlling river flow based on fish

movements) and whether the communication network is con-

nected (e.g. as assumed for Algorithm 1) or may be discon-

nected, requiring query dissemination using data mules (e.g. as

assumed for Algorithms 2 and 3).

As a result, it is beyond the scope of this paper to explore

the full range of the different queries that can be supported

by our approach, and the design of decentralized algorithms

for satisfying these queries. Instead, this section illustrates our

approach to such queries, by classifying four main types of

queries of interest. A number of existing categorizations of

moving object queries already exist (see [23]). For example,

categorizations have been proposed based on instantaneous,

continuous and persistent queries [48] and distinguishing

between location queries (range and nearest neighbor queries)

versus trajectory queries (similarity or shape queries) [49].

However, for the purposes of defining queries over our

distributed database it is not so much the type of movement that

is important, but where the information required is expected

to be stored. Consequently, we separate our queries into four

types based on (a) whether individual or groups of nodes

together hold the information to respond; and (b) whether one

single node or multiple nodes are required to coordinate the

response:

Q1 One node can respond individually: where the

information required to satisfy a query is contained

entirely in a known node’s local database, e.g. ‘What

fish was on edge (c1, c2) over time period [t1, t2]’?

Q2 All nodes can respond individually: where the

information required to satisfy a query may be

contained in any known node’s local database, e.g.

‘Which edge had the highest throughput of fish over

time period [t1, t2]’?

Q3 One node can coordinate a response: where the

information required to satisfy a query is contained in

the local databases of a known set of nodes, e.g. ‘Which

fish followed a known path p through the network’?

Q4 All nodes must coordinate a response: where the

information required to satisfy a query is contained

in the local databases of an unknown set of nodes,

e.g. ‘Which fish remained together (i.e. followed the

same path)’?

The Computer Journal, Vol. 56 No. 12, 2013

1444 A. Both et al.

Because the information required to satisfy queries of type

Q1 is contained in a node’s local databases, such queries can be

satisfied simply by routing a message from the query source to

the known node, and if required routing the query response back

to the source. For example, in cases where the communication

network is connected and the coordinates of cordons are known,

queries of type Q1 can typically be satisfied by using georouting

to route the query and response between the query source and

known satisfaction node (e.g. [50]).

Similarly, queries of type Q2 can be satisfied using efficient

routing structures over the entire network [like tiny aggregation

(TAG)d, [51]]. TAG routing requires that a tree overlay graph

be added to the network. A range of algorithms for constructing

an overlay network routing tree already exist, but result in each

node discovering the identifiers of its parent and children in

the tree. Answering ‘Which edge had the highest throughput of

fish over time period [t1, t2]?’ begins with cordons that have no

children calculating the local edge with the highest throughput

and sending the results to their parents. All other cordons wait

until they have received results from all of their children and

calculate the throughput of fish on their local edges. The edge

with the highest throughput out of the received results and local

results is then sent to the parent node. This ensures that the

amount of messages sent is proportional to |C|−1. This type of

routing would also be useful for summarizing the event tables

of the cordons to a central location.

The more challenging queries are those of type Q3 and Q4,

where no single node contains the information necessary to

satisfy the query. However, in most cases it is to be expected

that the inherently autocorrelated structure of geographic space

and movement will allow efficient mechanisms for query

satisfaction to be defined. For example, Algorithm 4 provides

a procedure for satisfying the example query above: ‘Which

fish followed a specified path p through the network?’ Given

a path through the connectivity network (specified as a table p

of cordon IDs and associated sequence number for each cordon

ID), Algorithm 4 simply routes a message from the beginning

of that path through to the penultimate node in the path, at

each step filtering that node’s local movement event database

to determine which fish IDs match the movement pattern.

Algorithm 4 assumes that cordons connected in the connectivity

network are also connected in the communication network (as

inAlgorithm 1). However, more sophisticated adaptations could

also be devised to use fish as data mules for these queries, along

similar lines to Algorithms 2 and 3. The number of messages

required for the query in Algorithm 4 is �(|p|), where |p| is

the length of the path specified in the query (in addition to the

application-dependent cost of routing a query or response to

some gateway or query node).

A simple strategy to satisfy the type Q4 query ‘Which fish

remained together?’ is to adapt Algorithm 4 to filter fish IDs

that match the query constraints starting from every node (rather

than only over a specified path). Satisfying this query requires

additional information, leading to the procedure specified by

Algorithm 4 Type Q3 query to determine the IDs of the set of

fish which have traveled some known path p = 〈cid : N, o : N〉,

where cid is the cordon ID and o is the order of that cordon in

the path (starting from 1).

1: Algorithm extends Algorithm 1, including Restrictions, State

transition system, Initialization, and Local variables

cord

2: Receiving (rqst, p)

3: if select count(*) from p where o = 1 and cid = ˚id > 0

then

4: letpn :=select cid from p where o = 2

5: letf := select fid, exit from e where edge = pn

6: send (path, p, f , 3) to cordon with ID pn

7: Receiving (path, p, f ′, h)

8: letpn :=select cid from p where o = h

9: letf := select e.fid, e.exit from e, f ′ where e.fid = f ′.fid′

and enter = f ′.exit and edge = pn

10: if h + 1 < select count(*) from p then

11: send (path, p, f , h + 1) to cordon with ID pn

12: else

13: return f as IDs of fish that followed the path p

Algorithm 5 Type Q4 query to determine what groups of ≥ n

fish followed the same path of length ≥ l cordons with a time

lag of ≤ t.

1: Algorithm extends Algorithm 1, including Restrictions, State

transition system, Initialization, and Local variables

2: Local variables: Group table, g = 〈c : N, time : T, f ids :

(list of fish ids)〉, initialized with zero records

cord

3: Receiving (rqst, n, l, t)

4: letp.g := select (f id1, enter2, edge2) from e, e where

f id1 = f id2 and exit1 = enter2

5: for all p.g do

6: lettmp := select * from p.g where enter2 ≥ enter1

and enter2 ≤ (enter1 + t) and edge1 = edge2

7: if count(*) from tmp ≥ n then

8: letf ids := select f id from tmp

9: letg.n := (˚id , enter1, f ids)

10: insert into g values (edge1, enter1, f ids)

11: delete tmp records from p.g

12: send (path, (g.n), n, l) to cordon with ID edge1

13: Receiving (path, j , n, l)

14: letlast.j := last * from j

15: for all g do

16: lettmp := select f ids from last.j intersect select

f ids from gi

17: if count(*) from tmp ≥ n and (select t ime from gi >

select t ime from last.j) then

18: insert into j values (˚id, t ime2, f ids2)

19: send (link, j , n, l) to cordon with ID (select c from

gi)

20: if count(*) from j ≥ l then

21: return j as record of group movement

The Computer Journal, Vol. 56 No. 12, 2013

Decentralized Monitoring of Moving Objects 1445

Algorithm 5. In this algorithm, each cordon stores groups of at

least n fish passing in the same direction within the time period

t . This group table also includes the time fish passed the cordon

and the ID of the cordon they were swimming toward. Each

record is then routed along the network following the same

path of the group. Cordons receiving one of these messages

will check their group table to find a match with the last entry

of the journey table j . This match must have at least n fish

in common and the local record must occur after the journey

record. A positive match will then be inserted into the j table

and sent along to the cordon the group was swimming toward.

If the j table has more than l records, then it has passed enough

cordons to be considered a group. LikeAlgorithm 4, by allowing

the query to follow the path groups of fish have taken, the

algorithm makes use of the inherently autocorrelated structure

of the network to efficiently filter out irrelevant data and reduce

the amount of messages sent.

The experiments of Section 5 assume reliable sensing and

communication, which may not always be the case.Algorithm 6

is a type Q4 query which identifies sensor failure in the cordons.

It begins by having each cordon send the event records for each

edge to its corresponding neighbor. Cordons receiving this data

will compare it with their own and if they are missing some

records will declare a sensor failure. Because each cordon must

send a message to each of its neighbors, the number of messages

required for this query is �(2|E|), where |E| is the number of

edges on the network. In the specific example of our target

application of river health monitoring, queries such as this can

help to detect where and when cordons may be faulty as well as

to detect where floods have occurred (enabling fish to establish

new transportation links).

Common to all previously discussed algorithms is the

assumption that fish possess unique identities. These identities

are used to correlate records between cordons (and fish in the

case of Algorithms 2 and 3) for both the storage of movement

data and the querying of movement data.

Algorithm 6 Type Q4 query to determine if a cordons’ sensor

has failed.

1: Algorithm extends Algorithm 1, including Restrictions, State

transition system, Initialization, and Local variables

cord

2: Receiving (rqst)

3: for all v ∈ ˚nbr do

4: letdata := select (f id, enter , exit , ˚id) from e where

edge = vi

5: send (ping, data, ˚id) to cordon with ID vi

6: Receiving (ping, data′, x)

7: letlocal.data := select * from e where edge = x

8: letcompare := select * from local.data intersect select

* from data′

9: if count (*) compare < count (*) data′ then

10: return Sensor failure detected at cordon ˚id

Relaxing this assumption would reduce Algorithms 1–3 to

a single algorithm that simply records at cordons the time a

fish passes a cordon and the direction it is heading toward (i.e.

table e = 〈enter : T , edge : N〉). Although such data may seem

of limited use, certain queries from all query types are still

possible, although the information obtained will necessarily be

about the number of fish passing cordons and not their specific

identities.

An example type Q1 query would be ‘How many fish passed

cordon c over time period [t1, t2]?’. An example type Q2 query

would be ‘Which cordon had the highest throughput of fish over

time period [t1, t2]?’. A simple type Q3 query would be ‘How

many fish entered edge (c1, c2) over time period [t1, t2]?’.

For an example type Q4 query, Algorithm 5 can be modified

to detect groups identified by the number of fish in the group,

leading to Algorithm 7. In this algorithm, groups are assumed

to be of constant sizes, and different sizes to all other groups

(i.e., the size of a group is taken as a proxy for its identity). As

such, the presence of groups which are of equal size or groups

which change their size is likely to lead to errors in the number

of groups detected by Algorithm 7. The example illustrates how

a lack of identity information for nodes can necessitate stronger

assumptions while at the same time as potentially reducing

algorithm accuracy.

Algorithm 7 Identity restricted type Q4 query to determine what

groups of ≥ n fish followed the same path of length ≥ l cordons

with a time lag of ≤ t .

1: Algorithm assumes that cordons record passing fish in an event

table

2: Local variables: Event table, e = 〈enter : T , edge : N〉, initialized

with zero records; Group table, g = 〈c : N, time : T, count : N〉,

initialized with zero records

cord

3: Receiving (rqst, n, l, t)

4: for all e do

5: lettmp := select * from e where enter2 ≥ enter1 and

enter2 ≤ (enter1 + t) and edge1 = edge2

6: if count(*) from tmp ≥ n then

7: letg.n := (˚id , enter1, count(*))

8: insert into g values (edge1, enter1, count(*))

9: delete tmp records from p.g

10: send (path, (g.n), l) to cordon with ID edge1

11: Receiving (path, j , l)

12: letlast.j := last * from j

13: for all g do

14: if (select count from last.j = select count from gi)

and (select t ime from gi > select t ime from last.j)

then

15: insert into j values (˚id, t ime2, count2)

16: send (link, j , l) to cordon with ID (select c from gi)

17: if count(*) from j ≥ l then

18: return j as record of group movement

The Computer Journal, Vol. 56 No. 12, 2013

1446 A. Both et al.

6.1. Experimental evaluation of querying

Queries of the type Q4 are expected to be the most complex

and computationally expensive to satisfy. For example, Fig. 12

shows the efficiency in terms of messages sent by the Q4-type

query shown in Algorithm 5. The number of messages sent

is plotted against the number of groups found. Owing to the

way this query traverses the network for results, there exists a

high positive correlation between the number of fish that satisfy

the query and the number of messages required to compute the

query response. When only a small number of fish match the

query, the filter quickly results in a few or even no messages

being required.

Figure 12 also shows the results of operating the query over

three different communication network structures connecting

cordons (UDG, Gabriel graph and shortest path tree) and for

two different types of movement patterns, ‘simple’ (random

walk) and ‘turning angle’ (a correlated random walk where at

each cordon, a moving object randomly chooses the direction

of the next cordon to head toward using a Gaussian distribution

with its mean centered on the current direction). In general,

network structures that are sparser lead to more fish following

the same path, and higher numbers of fish that match the

filter, and so increased communication overheads. Similarly,

movement patterns that tend to more correlated movement (i.e.

correlated random walk), and so to more fish matching the

filter criteria, are generally less efficient. Figure 12 also shows

the Pearson correlation coefficient for each of the six different

data experimental runs, indicating moderately high levels of

correlation (r > 0.72) in all cases except the UDG/simple

random walk (where the network structure and movement

pattern led to almost no fish matching the query, and so all data

points clustered close to the origin). Lévy walks were omitted

as movement patterns from this experiment because they also

FIGURE 12. Efficiency of Algorithm 5 where n = 3, l = 3 and

t = 10. The graph combines the results for two different movement

patterns and three different communication graph structures.

generate very few patterns that satisfy this particular query, and

so require almost zero messages.

7. DISCUSSION AND CONCLUSIONS

This paper has introduced and explored an important and

under-researched class of spatial computing problems: tracking

and querying moving objects in cordon-structured networks.

Such network structures are particularly amenable to emerging

monitoring systems, like sensor networks, where tracking

stations at fixed locations can be used to monitor the movement

of objects in a transportation network.

The paper has shown how the basic movement information

required to satisfy spatiotemporal queries about these moving

objects can be captured in the network itself, using a

decentralized approach. Decentralization is fundamental to

sensor networks for several reasons, including where long-range

communication in the network is inefficient or impossible. More

specifically, our approach stores information about movement

events at the cordons that bound sections of the transportation

network.

Based on a computational analysis of the algorithms, the

experiments presented in Section 5 have illustrated and verified

the following properties of the three algorithms for maintaining

information about movement events in the network:

(i) Algorithm 1 provides the best performance in terms

of both scalability and latency, but only in cases

where adjacent cordons in the connectivity network

are directly connected;

(ii) Using mobile objects as data mules, Algorithm 2 can

operate in networks where cordons are disconnected

and cannot communicate directly. Algorithm 2 offers

comparable computational efficiency to Algorithm 1,

but at the cost of increased movement latency and

(iii) Algorithm 3 can also operate in disconnected

cordon-structured networks. By exchanging selected

information between mobile objects, Algorithm 3 can

improve on the movement latency of Algorithm 2.

However, this performance comes at the cost of

increased overall computational complexity when

compared with Algorithms 1 and 2, although with

comparable load balance.

This work has highlighted the trade-offs that must occur in

any decentralized approach to monitoring moving objects in

cordon-structured networks. Increased communication network

connectivity can help reduce latency and increase scalability.

However, in cases where the connectivity of the communication

network is limited, decentralized algorithms can still be

defined based on trade-offs between latency and scalability,

with decreases in latency possible only at the cost of some

computational efficiency.

Further, the work has demonstrated some of the queries that

can be satisfied using this approach. Mechanisms for two major

The Computer Journal, Vol. 56 No. 12, 2013

Decentralized Monitoring of Moving Objects 1447

types of query, where the information required to satisfy a query

is contained within the local databases of individual nodes,

are trivial to construct, as they only rely on existing routing

strategies. Two further types of query, where the information

required to satisfy a query is contained within the local databases

of multiple nodes, are more challenging to satisfy. However, the

examples used show how the inherent spatiotemporal structure

of movement can provide an efficient structure for organizing

the necessary computation.

Current work is developing further efficient decentralized

algorithms for the spatiotemporal query types discussed in

Section 6. Longer term objectives are to be able to compute

decentrally meaningful movement patterns, such as flocks

[52, 53], convoys [54] or leadership [55]. These works employ

trajectory-based data but can be adapted to work with data from

cordon-structured networks. Future work will further address

the potential effects of interactions between mobile objects [56],

and of changing transportation network characteristics (such

as network capacity or impedance), which may also influence

movement [14].

A range of avenues for further work are suggested by this

research, including the following:

(i) Effects of constrained storage capacity: Because the

algorithms distribute stored information efficiently

across the network, with minimal replication (e.g.

storing movement events only at cordons incident

with an edge of the connectivity network; see

Section 5.1.1), storage space at each node is not

expected to be a major constraint in most applications.

However, future work might also investigate instances

where substantial constraints to storage capacity do

exist. A natural mechanism for dealing with storage

constraints is to assume a fixed buffer size, and

then discard information based on spatiotemporal

relevance (e.g. the oldest and most spatially distal

records are discarded first). Depending on the severity

of storage constraints, such constraints are expected

to impact both the latency and accuracy of queries.

(ii) Further query mechanisms: In addition to investigat-

ing a wider range of queries across the different types,

further research might also address the broader range

of issues identified in Section 6 (e.g. long-running ver-

sus snapshot queries, query origin and query desti-

nation). For example, as in Algorithm 1, the query

mechanism in Algorithm 4 assumes that the connec-

tivity network is a subgraph of the communication

network. Similar approaches to those used in Algo-

rithms 2 and 3 (i.e. using fish as data mules) might also

be applied in querying data, adapting Algorithm 4 to

stronger constraints to the movement of information.

(iii) Predictive capabilities: The work in this paper is

concerned purely with historical queries, and does

not address the prediction of future movement

patterns. Given that Algorithms 4 and 5 can track

the movements of individual fish and groups,

respectively, data from these algorithms could be used

to extrapolate future movement patterns. Potentially,

predictive capabilities might also have computational

implications (for example, improving communication

scalability by directing communication resources

toward known or likely future movement patterns and

network configurations). For example, probabilistic

models, such as Bayesian networks, are important for

modeling uncertain future states.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the helpful support

and input from Jarod Lyon and Adrian Kitchingman at the

Arthur Rylah Institute (ARI), Melbourne, Australia, and from

Harvey Miller, University of Utah, for highlighting links to the

transportation literature. The authors are also grateful for the

constructive comments of the anonymous reviewers.

FUNDING

This work was supported by an Australian Research

Council (ARC) Future Fellowship [grant number FT0990531],

an ARC Discovery Project [grant number DP120103758]

and a Commonwealth Scientific and Industrial Research

Organization (CSIRO) OCE research scholarship [grant number

LEX17098].

REFERENCES

[1] Duckham, M. and Reitsma, F. (2009) Decentralized environ-

mental simulation and feedback in robust geosensor networks.

Comput. Environ. Urban Syst., 33, 256–268.

[2] Laube, P., Duckham, M. and Wolle, T. (2008) Decentralized

Movement Pattern DetectionAmongst Mobile Geosensor Nodes.

In Cova, T., Beard, K., Goodchild, M. and Frank, A.U. (eds),

Geographic Information Science, Lecture Notes in Computer

Science 5266, pp. 199–218. Springer, Berlin.

[3] Umer, M., Kulik, L. and Tanin, E. (2008) Kriging for Localized

Spatial Interpolation in Sensor Networks. In Ludäscher, B.

and Mamoulis, N. (eds), Proc. 20th Int. Conf. Scientific and

Statistical Database Management (SSDBM), Berlin, Lecture

Notes in Computer Science 5069, pp. 525–532. Springer.

[4] Bachrach, J., Beal, J. and McLurkin, J. (2010) Composable

continuous-space programs for robotic swarms. Neural Comput.

Appl., 19, 825–847.

[5] Ban, X., Herring, R., Margulici, J. and Bayen, A.M. (2009)

Optimal Sensor Placement for Freeway Travel Time Estimation.

In Lam, W.H.K., Wong, S.C. and Lo, H.K. (eds), Transportation

and Traffic Theory 2009: Golden Jubilee, pp. 697–721. Springer.

[6] Giudice, N.A., Walton, L.A. and Worboys, M. (2010) The

Informatics of Indoor and Outdoor Space: A Research Agenda.

The Computer Journal, Vol. 56 No. 12, 2013

1448 A. Both et al.

Proc. 2nd ACM SIGSPATIAL Int. Workshop on Indoor Spatial

Awareness, New York, pp. 47–53. ACM.

[7] Murray Darling Basin Authority (2011) Fish ‘n’ Chips:

Why Do We Tag Fish? Native Fish Strategy Fact Sheet.

http://www.mdba.gov.au/files/publications/MDBA-13057-Fish

-n-Chips-FS_web.pdf (accessed August 27, 2012)

[8] Gudmundsson, J., van Kreveld, M. and Speckmann, B. (2007)

Efficient detection of patterns in 2D trajectories of moving points.

GeoInformatica, 11, 195–215.

[9] Trajcevski, G.,Wolfson, O., Zhang, F. and Chamberlain, S. (2002)

The Geometry of Uncertainty in Moving Objects Databases. In

Jensen, C., Saltenis, S., Jeffery, K., Pokorny, J., Bertino, E., Böhn,

K. and Jarke, M. (eds), Advances in Database Technology (EDBT

2002), Lecture Notes in Computer Science 2287, pp. 145–161.

Springer.

[10] Turchin, P. (1998) Quantitative Analysis of Movement:

Measuring and Modelling Population Redistribution in Animals

and Plants. Sinauer, Sunderland, MA.

[11] Beal, J. and Schantz, R. (2010) A Spatial Computing Approach

to Distributed Algorithms. 45th Asilomar Conf. Signals, Systems,

and Computers, Pacific Grove, CA

[12] Miller, H.J. (1999) Potential contributions of spatial analysis to

geographic information systems for transportation (gis-t). Geogr.

Anal., 31, 373–399.

[13] Ho, H., Wong, S., Yang, H. and Loo, B.P. (2005) Cordon-based

congestion pricing in a continuum traffic equilibrium system.

Transp. Res. A: Policy Pract., 39, 813–834.

[14] Zhang, X. andYang, H. (2004)The optimal cordon-based network

congestion pricing problem. Transp. Res. B: Methodol., 38,

517–537.

[15] Goh, M. (2002) Congestion management and electronic road

pricing in singapore. J. Transp. Geogr., 10, 29–38.

[16] Mehmood, M.A., Kulik, L. and Tanin, E. (2008) Autonomous

Navigation of Mobile Agents Using RFID-Enabled Space

Partitions. Proc. 16th ACM SIGSPATIAL Int. Conf. Advances

in Geographic Information Systems, New York, pp. 21:1–21:10.

ACM.

[17] Lim, A. and Zhang, K. (2006) A Robust ’ID-Based Method for

Precise Indoor Positioning. In Ali, M. and Dapoigny, R. (eds),

Advances in Applied Artificial Intelligence, Lecture Notes in

Computer Science 4031, pp. 1189–1199. Springer.

[18] Schmid, F., Richter, K.-F. and Laube, P. (2009) Semantic

Trajectory Compression. In Mamoulis, N., Seidl, T., Pedersen,

T., Torp, K. and Assent, I. (eds), Advances in Spatial and

Temporal Databases, Lecture Notes in Computer Science 5644,

pp. 411–416. Springer, Berlin/Heidelberg.

[19] Pfoser, D. (2002) Indexing the trajectories of moving objects.

IEEE Data Eng. Bull., 25, 3–9.

[20] Trajcevski, G., Bischof, Z. and Scheuermann, P. (2009) Range

Queries for Mobile Objects in Wireless Sensor Networks. Proc.

17th ACM SIGSPATIAL Int. Conf. Advances in Geographic

Information Systems, New York. ACM.

[21] Xiong, X., Elmongui, H., Chai, X. and Aref, W. (2007) PLACE*:

A Distributed Spatio-Temporal Data Stream Management System

for Moving Objects. Proc. IEEE Int. Conf. Mobile Data

Management (MDM), Mannheim, Germany, pp. 44–51. IEEE.

[22] Gedik, B. and Liu, L. (2004) MobiEyes: Distributed Processing

of Continuously Moving Queries on Moving Objects in a Mobile

System. In Bertino, E., Christodoulakis, S., Plexousakis, D.,

Christophides, V., Koubarakis, M., Böhm, K. and Ferrari, E.

(eds). Advances in Database Technology – EDBT 2004. Lecture

Notes in Computer Science. Vol. 2992, pp. 523–524. Springer,

Berlin/Heidelberg.

[23] Güting, R.H. and Schneider, M. (2005) Moving Objects

Databases. Morgan Kaufmann, San Francisco.

[24] Duckham, M. and Bennett, R. (2009) Ambient Spatial

Intelligence. In Gottfried, B. and Aghajan, H. (eds), Behavior

Monitoring and Interpretation—BMI, pp. 319–335. IOS Press,

Amsterdam, Netherlands.

[25] Lynch, N. (1996) Distributed Algorithms. Morgan Kaufmann,

San Mateo, CA.

[26] Dulman, S., Havinga, P. and Hurink, J. (2002) Wave Leader

Election Protocol for Wireless Sensor Networks. Proc. 3rd

Int. Symp. Mobile Multimedia Systems and Applications, Delft,

Netherlands, pp. 43–50. Citeseer.

[27] Santoro, N. (2007) Design and Analysis of Distributed

Algorithms. Wiley, NJ.

[28] Nagpal, R., Shrobe, H. and Bachrach, J. (2003) Organizing a

Global Coordinate System from Local Information on an Ad Hoc

Sensor Network. Information Processing in Sensor Networks,

Palo Alto, CA, pp. 553–553. Springer.

[29] Dil, B., Dulman, S. and Havinga, P.J.M. (2006) Range-Based

Localization in Mobile Sensor Networks. In Römer, K., Karl, H.

and Mattern, F. (eds), Proc. 3rd European Workshop on Wireless

Sensor Networks (EWSN), Lecture Notes in Computer Science

3868, Zurich, Switzerland, pp. 164–179. Springer.

[30] Skraba, P., Fang, Q., Nguyen, A. and Guibas, L. (2006) Sweeps

Over Wireless Sensor Networks. Proc. 5th Int. Conf. Information

Processing in Sensor Networks (IPSN), Nashville, TN, pp. 143–

151. ACM.

[31] Beal, J., Bachrach, J., Vickery, D. and Tobenkin, M. (2008)

Fast Self-healing Gradients. Proc. 2008 ACM Symp. Applied

Computing, Fortaleza, Brazil, pp. 1969–1975. ACM.

[32] Beal, J., Bachrach, J., Vickery, D. and Tobenkin, M. (2009)

Fast Self-stabilization for Gradients. IEEE Int. Conf. Distributed

Computing in Sensor Systems, Los Angeles, CA, pp. 15–27.

Springer.

[33] Chen, W. and Cai, S. (2005) Ad hoc peer-to-peer network

architecture for vehicle safety communications. IEEE Commun.

Mag., 43, 100–107.

[34] Little, T. and Agarwal, A. (2005) An Information Propagation

Scheme for VANETs. Proc. IEEE Intelligent Transportation

Systems, September, Vienna, Austria, pp. 155–160. IEEE.

[35] Nadeem, T., Shankar, P. and Iftode, L. (2006) A Comparative

Study of Data Dissemination Models for VANETs. Proc. 3rd

Annual Int. Conf. Mobile and Ubiquitous Systems—Workshops,

July, San Jose, CA, pp. 1–10. IEEE.

[36] Kesting, A., Treiber, M. and Helbing, D. (2010) Connectivity

statistics of store-and-forward intervehicle communication. IEEE

Trans. Intell. Transp. Syst., 11, 172–181.

[37] Hartenstein, H. and Laberteaux, K. (2008) A tutorial survey on

vehicular ad hoc networks. IEEE Commun. Mag., 46, 164–171.

[38] Shah, R.C., Roy, S., Jain, S. and Brunette, W. (2003) Data

MULEs: modeling and analysis of a three-tier architecture for

sparse sensor networks. Ad Hoc Netw., 1, 215–233.

The Computer Journal, Vol. 56 No. 12, 2013

http://www.mdba.gov.au/files/publications/MDBA-13057-Fish-n-Chips-FS_web.pdf
http://www.mdba.gov.au/files/publications/MDBA-13057-Fish-n-Chips-FS_web.pdf

Decentralized Monitoring of Moving Objects 1449

[39] Grossglauser, M. and Vetterli, M. (2006) Locating mobile nodes

with EASE: learning efficient routes from encounter histories

alone. IEEE/ACM Trans. Netw., 14, 457–469.

[40] Shirani-Mehr, H., Banaei-Kashani, F., Shahabi, C. and Zhang,

L. (2011) A Case Study of Participatory Data Transfer for

Urban Temperature Monitoring. In Tanaka, K., Frölich, P.

and Kim, K.-S. (eds), Proc. W2GIS, Berlin, Lecture Notes in

Computer Science 6574, pp. 50–63. Springer.

[41] Wolfson, O. and Xu, B. (2004) Opportunistic Dissemination

of Spatio-Temporal Resource Information in Mobile Peer-

to-Peer Networks. Proc. 1st Int. Workshop on P2P Data

Management, Security and Trust (PDMST’04), DEXA Workshops

2004, Zaragoza, Spain, pp. 954–958. IEEE.

[42] Nittel, S., Duckham, M. and Kulik, L. (2004) Information

Dissemination in Mobile Ad-Hoc Geosensor Networks. In

Egenhofer, M., Freksa, C. and Miller, H. (eds), Geographic

Information Science. Lecture Notes in Computer Science 3234,

Washington, MD, pp. 206–222. Springer, Berlin.

[43] Koehn, J., Nicol, S., McKenzie, J., Lieschke, J., Lyon, J.

and Pomorin, K. (2008) Spatial ecology of an endangered

native Australian Percichthyid fish, the trout cod Maccullochella

macquariensis. Endang. Species Res., 4, 219–225.

[44] Lee, S. and Baik, H. (2006) Origin-Destination (od) Trip

Table Estimation Using Traffic Movement Counts from Vehicle

Tracking System at Intersection. 32nd Annual Conf. IEEE

Industrial Electronics, IECON 2006, Paris, France, pp. 3332–

3337. IEEE.

[45] Duckham, M., Nussbaum, D., Sack, J.-R. and Santoro, N. (2011)

Efficient, decentralized computation of the topology of spatial

regions. IEEE Trans. Comput., 60, 1100–1113.

[46] Willensky, U. (1999) Netlogo. Center for Connected Learning

and Computer-Based Modeling. Northwestern University,

Evanston, IL. http://ccl.northwestern.edu/netlogo/.

[47] Sims, D.W. et al. (2008) Scaling laws of marine predator search

behaviour. Nature, 451, 1098–1102.

[48] Sistla, A., Wolfson, O., Chamberlain, S. and Dao, S. (1997)

Modeling and Querying Moving Objects. Proc. 13th Int.

Conf. Data Engineering, Birmingham, UK, pp. 422–432.

IEEE.

[49] Agarwal, P.K. et al. (2002) Algorithmic issues in modeling

motion. ACM Comput. Surv., 34, 550–572.

[50] Karp, B. and Kung, H.T. (2000) GPSR: Greedy Perimeter

Stateless Routing for Wireless Networks. Proc. 6th Annual

Int. Conf. Mobile Computing and Networking (ACM/IEEE

MobiCom), Boston, MA. ACM.

[51] Madden, S., Franklin, M.J., Hellerstein, J.M. and Hong,W. (2002)

TAG: A Tiny Aggregation Service for Ad-Hoc Sensor Networks.

5th Symp. Operating System Design and Implementation (OSDI),

Boston, MA.

[52] Benkert, M., Gudmundsson, J., Hübner, F. and Wolle,

T. (2008) Reporting flock patterns. Comput. Geom., 41,

111–125.

[53] Laube, P., van Kreveld, M. and Imfeld, S. (2004) Finding REMO:

Detecting Relative Motion Patterns in Geospatial Lifelines. In

Fisher, P.F. (ed.), Developments in Spatial Data Handling, Proc.

11th Int. Symp. Spatial Data Handling, Leicester, UK, pp. 201–

214. Springer, Berlin.

[54] Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S. and Shen, H.T.

(2008) Discovery of convoys in trajectory databases. Proc. VLDB

Endow., 1, 1068–1080.

[55] Andersson, M., Gudmundsson, J., Laube, P. and Wolle, T. (2008)

Reporting leaders and followers among trajectories of moving

point objects. GeoInformatica, 12, 497–528.

[56] Camp, T., Boleng, J. and Davies, V. (2002) A survey of mobility

models for ad hoc network research. Wirel. Commun. Mob.

Comput., 2, 483–502.

The Computer Journal, Vol. 56 No. 12, 2013

http://ccl.northwestern.edu/netlogo/

	1 Introduction
	2 Related Work
	2.1 Trajectories and checkpoints
	2.2 Decentralized spatial computing

	3 Formal Model
	3.1 Communication network
	3.2 Transportation and connectivity network
	3.3 Sensing capabilities

	4 Decentralized Algorithms for Monitoring Movement
	4.1 Algorithm 1: communication graph contains connectivity graph
	4.2 Algorithm 2: disconnected communication graph
	4.3 Algorithm 3: disconnected communication graph with fish--fish communication

	5 Experimental evaluation of movement monitoring
	5.1 Experiment #1: scalability of algorithms
	5.2 Experiment #2: latency of algorithms
	5.3 Further experiments

	6 Decentralized algorithms for querying movement
	6.1 Experimental evaluation of querying

	7 Discussion and Conclusions

