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gpereira, kumar, aveek@grasp.cis.upenn.edu
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Abstract We address the problem of planning the motion of a team of mobile
robots subject to constraints imposed by sensors and the communication
network. Our goal is to develop a decentralized motion control system
that leads each robot to their individual goals while keeping connectivity
with the neighbors. We present experimental results with a group of
car-like robots equipped with omnidirectional vision systems.

Keywords: motion control, dynamic constraints, runtime replanning

1. Introduction

Cooperating mobile robots must be able to interact with each other
using either explicit or implicit communication and frequently both. Ex-
plicit communication corresponds to a deliberate exchange of messages
that is in general made through a wireless network. On the other hand
implicit communication is derived through sensor observations that en-
able each robot to estimate the state and trajectories of its teammates.
For example, each robot can observe relative state (position and orien-
tation) of its neighbors (implicit communication), and through explicit
communication exchange this information with the whole team in order
to construct a complete configuration of the team.

∗Guilherme Pereira is grateful for the support of CNPq – Brazil under grant 200765/01-9.
†This work was support by the DARPA ITO MARS Program, grant 130-1303-4-534328-xxxx-
2000-0000.
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A fundamental limitation related to these forms of interaction among
the robots is the limited field of view of the physical sensors and the
limited range of transmitters and receivers. When communication is
essential to the completion of the specified task, the robots must move
in order to maintain such constraints. In this paper, we address the
problem of controlling the motion of a team of mobile robots subject to
such communication and sensing constraints that we will call formation
constraints. Formation constraints also arise in other situations. For ex-
ample, in a object manipulation task, the robots must cooperate in order
to keep the object contained in a subset of the configuration space. This
requirement on cooperation can be translated into formation constraints
that are functions of the object’s position and orientation (Pereira et al.,
2002). Robots must also avoid collisions with each other. Finally, map-
ping and tracking tasks may require constraints on relative positions and
orientations to guarantee observability (Spletzer and Taylor, 2002).
We will model the team of robots as a set of independent agents

that are decoupled except for the formation constraints. Each robot is
assigned its own motion plan toward its goal position. The main goal in
this paper is to develop a simple strategy for modifying the individual
robot motion plans in runtime to maintain the formation constraints.
Thus each robot is able to reach its destination while satisfying the
formation constraints. While our main focus in this paper is on sensing
and communication constraints, the basic approach is applicable to other
kinds of formation constraints, including those that arise in cooperative
manipulation and mapping tasks. We will show results with our team of
car-like robots that show the robots moving towards a goal under such
constraints.

2. Problem Definition

Several researchers have considered the multi-robot motion planning
problem (see Section 3 for a review). The problem is to find a motion
plan for all the robots in a group such that each robot reaches its goal
while avoiding collisions with other robots and with the obstacles in the
environment. We will extend this problem by defining the coordinated
motion planning problem, where besides avoiding collisions the robots
need to cooperate and maintain formation constraints in order to reach
their goals.

Coordinated motion planning problem: Consider a world, W, oc-
cupied by a set, R = {R1, . . . , Rn}, of n robots. The ith robot Ri can
be represented by a configuration qi in the configuration space C. Let
Ci

free ⊆ C denote the free configuration space for Ri. Additionally, let
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CRi
(R\Ri, t) ⊆ C

i
free denote Ri’s valid configuration space imposed by

its formation constraints. The goal is to steer each robot, Ri, 1 ≤ i ≤ n,
from a initial configuration qinit

i at time t = 0 to the goal configura-

tion qgoal
i ∈ Ci

free at some time t = T > 0 such that qi ∈ CRi
(R\Ri, t)

∀t ∈ (0, T ].

Formation constraints are constraints on individual robots induced by
the other robots in the team. Thus, CRi

(R\Ri, t) depends on the robots’
characteristics, their configurations, and also on the nature of the task.
Notice that our problem statement differs from the previous definition
of multi-robot motion planing problem in the sense that, besides inter-
robot collisions, we are adding other kinds of constraints that include,
for example, sensor field-of-view constraints and communication range
constraints. On the other hand, our definition of multi-robot motion
planning is not too different from the definition of robot motion plan-
ning for single robots (Latombe, 1991). While the traditional definition
considers the problem of moving the robot in a limited free space, where
the constraints are induced by the (non-controlled) obstacles in the envi-
ronment, here part of the valid (free) configuration space for the robots
is controlled by the position of the other robots. However, instead of
developing a single algorithm for coordinating the motions of all the
robots, we develop a decentralized algorithm which allows each robot to
choose its motion based on the available free space and the formation
constraints.

3. Previous Work

The multi-robot motion planning problem has been addressed with
centralized motion planners by a number of groups. The paths are con-
structed in the composite configuration space Cfree = C1

free × C
2
free ×

· · · × Cn
free (Aronov et al., 1998). This approach in general guarantees

completeness but its complexity is exponential in the dimension of the
composite configuration space (Hopcroft et al., 1984). Other groups
have pursued decentralized approaches to motion planning. This gener-
ally involves two steps: (1) individual paths are planned independently
for each robot; and (2) the paths are merged or combined in a way colli-
sions are avoided. Some authors call these approaches coordinated path
planning (LaValle and Hutchinson, 1998; Simeon et al., 2002; Guo and
Parker, 2002).
Our approach uses potential field controllers based on navigation func-

tions (Rimon and Koditschek, 1992). In a single robot navigating an ob-
stacle field, the navigation function provides a Lyapunov function that
guarantees the robot’s convergence to the goal. The navigation function
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can be modified to accommodate unmodeled obstacles or dynamic con-
straints (Esposito and Kumar, 2002). We will use a similar approach,
but in a multi-robot setting, to solve the motion planning problem with
formation constraints.
For multi-robot systems, potential fields were used to deploy robots

in known environments (Howard et al., 2002). The idea of having ar-
tificial potential fields in order to have each robot repelling the others
was also used in (Reif and Wang, 1995). These approaches are not di-
rectly applicable to our problem because they cannot be easily applied
to maintain formation constraints. Further, they do not use the Lya-
punov function properties of the potential functions in any meaningful
way. In this paper, we present proofs for our methodology which show
that besides going to their independent goals the robots also satisfy the
formation constraints in the problem.

4. Approach

In this paper we will solve the cooperative motion planning problem
defined in Section 2 for a planar world W = R2 with sensing and/or
communication constraints. We consider a two-level motion planner
where the superior level is able to specify a deliberative plan (Arkin,
1998) in terms of previously computed navigation functions for each
robot and desired neighborhood relationships. The navigation functions
are discussed in Section 4.3. The neighborhood relationships are pairwise
formation constraints that are formalized in Section 4.2. The second
level of the planner is the level we are concerned with. We address the
real time modification of the pre-planned functions and the deliberative
controller to accommodate the formation constraints. Before we proceed
further, we will make some assumptions.

Assumption 1. All robots are identical in terms of geometry, and in
terms of capabilities and constraints related to sensing, communication,
control, and mobility.

Assumption 2. The sensing and communication devices have a 360o field
of view that can be represented by circles centered at qi and radius ri.

Assumption 3. The robots are point robots: qi = (xi, yi).

Assumption 4. The robots are holonomic. For the ith robot, the dynam-
ical model is then given by: q̇i = ui .

A fifth assumption that we will need for an important proof is an
assumption on the individual robot plans. This is introduced in Sec-
tion 4.3. We will also discuss relaxing the other four assumptions in
Sections 4.5.
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4.1 Sensing and Communication Networks for
Robots

The physical locations of the robots coupled with the characteristics of
the hardware and the requirements of the sensing and control algorithms
dictate the sensing and communication networks for the group of robots.
These networks can be represented by two graphs, Gs and Gc, where
the robots themselves are the vertices of both graphs and the flow of
information between the vertices are represented by directed edges or
arcs. Notice that since sensors and communication devices have different
characteristics, the graphs Gs and Gc will have different edge sets. Each
graph is represented by a triple (R, E ,G), where R is the set of robots,
E ⊆ R × R is the edge set representing communication (or sensing)
links among the robots, and G is the set of constraint functions that
describe the conditions under which each link can be maintained. For
each element of E there is a corresponding element in G. Thus, the
existence of a communication link between two neighbor robots Ri and
Rj is represented by the edge (Ri, Rj) ∈ E and the function g(qi, qj) ∈ G.
Because we consider identical robots and omnidirectional devices, we
can restrict our attention to bidirectional graphs. Then, (Ri, Rj) ∈ E is
equivalent to (Rj , Ri) ∈ E and g(qi, qj) ∈ G is identical to g(qj , qi) ∈ G.

4.2 Formation Constraints

As discussed earlier in the beginning of this section, we assume that
the graphs Gc and Gs, and therefore, E , are specified by a higher-level
planner. With each edge (Ri, Rk) ∈ E , we associate a formation con-
straint for Ri induced by Rk as a inequality of the form g(qi, qk) ≤ 0,
where g(qi, qk) ∈ G. In general g(qi, qk) could be any convex, differen-
tiable function but given the assumption of omnidirectional devices, and
circular robots, all elements of G will be represented by circles. Then,
g(qi, qk) = (xi − xk)

2 + (yi − yk)
2 − r2

k. A constraint is active when
g(qi, qk) = δx, where δx is a small negative number that can be thought
of as a threshold. The constant δx defines then the radius of the circular
constraint.
We will consider that a generic robot Rk induces three constraints in

Ri. First, we have a hard sensing or communication constraint given
by g(qi, qk) ≤ δ1, beyond which the connectivity between Rk and Ri is
broken. While δ1 can be taken to be zero, it is best, in order to be robust
to sensing errors, to keep it at a small, negative value. Second, we have
a soft sensing or communication constraint given by g(qi, qk) ≤ δ2. This
is assumed to delineate a range within which the performance of the
communication or sensing link is optimal. Finally, we have the collision
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Rk

Ri

Figure 1. Formation constraints: Rk induces constraints on the position of Ri. If
R1 is inside the circumference defined by g ≤ δ1 (outer dashed circle), connectivity
with Rk is guaranteed. The shadowed area defined by g > δ3 and g < δ2 is a “safe”
configuration space for Ri where collisions are avoided and connectivity is maintained.

constraint g(qi, qk) ≥ δ3. Observe that δ3 < δ2 < δ1 < 0. Figure 1 shows
a picture of Ri constraints induced by Rk. Each neighbor of Ri induces
a similar set of constraints. In Sections 4.4, we will define three control
modes, one for each region shown in Figure 1.

4.3 Navigation Functions

As discussed in the beginning of this section, a navigation function
for solving the non-cooperative problem of steering each individual robot
towards the goal while avoiding the static obstacles in the environment
is assumed to be available from a higher level planner. Navigation func-
tions are artificial potential fields without local minima (Rimon and
Koditschek, 1992). Thus, for a navigation function, Vi, robot Ri input
is given by ui = −k∇Vi where ∇Vi is the gradient of Vi. As pointed
out in (Esposito and Kumar, 2002), this kind of navigation function
can be thought of as a Lyapunov function for the system q̇ = u(q),
u(q) = −∇V (q), because V (q) is positive definite and the value of V is,
by definition, always decreasing along system trajectories.
When robots are cooperating, there are formation constraints that

force them to navigate near each other and their final goals are reason-
ably close to each other. In this situation, the gradients of navigation
functions for neighboring robots are close to each other. Our fifth as-
sumption is for any pair of cooperating robots, Ri and Rk, ∇Vi(qi) ∼=
∇Vk(qk). Obviously if the robots have goals that are not close to one
another and the robots are close to their destinations, this assumption
is not valid since their navigation functions will be very different. This
fifth assumption is required for the proof of Proposition 2 in Section 4.4.
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Achieve
Connectivity GoToGoalMaintain

Connectivity

Figure 2. Switched control system with three modes.

4.4 Decentralized Controllers

Our control system is decentralized and implemented using a set of
reactive controllers. Each robot switches between these controllers as
shown in Figure 2. The switching is governed by activation of constraints
that depend on the relative positioning of a robot with respect to its
neighbors.
We will develop a controller that allows each robot has up to two

assigned neighbors. In other words it assumes the valency of each ver-
tex of Gc and Gs is either one or two. This kind of controller can be
very useful because in most of communication and sensing algorithms
robots can be used as “routers” between other robots. In this way if
all robots have direct communication with two other robots and these
robots have connection with at least one different robot then every robot
can “communicate” with all other robots in the group.
We will denote the constraints due toRa, which have the form g(qa, qi) ≤

0, by ga and those due to Rb, which have the form g(qi, qb) ≤ 0 by gb. In
the AchieveConnectivity mode each robot tries to move in order to
satisfy these constraints without using the navigation function. In other
words, the constraints themselves act as potential fields attracting the
robots to each other and forcing them into a feasible configuration that
satisfies all the constraints. The control input in this mode is:

ui = −k1

(

a∇ga + b∇gb
)

, (1)

where ∇gx is the gradient of the constraint defined as ∂gx/∂qi. ∇ga is
due to Ra and ∇gb is due to robot Rb. We require these vectors to be
normalized and of unit length. The variables a and b assume value 1 or
0 depending whether the constraints are active or not, respectively.
The GoToGoal mode has the following input:

ui = −k2vi , (2)

where vi = ∇Vi(qi)/‖∇Vi(qi)‖ is the normalized gradient vector of the
navigation function Vi(qi). It is a deliberative controller with a pre-
planned navigation function that guides the robots toward the goal.
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In the MaintainConnectivity mode a robot tries to navigate to-
ward the goal while maintaining the formation constraints. The control
input for this state is:

ui = −k1

(

a∇ga + b∇gb
)

− k2vi , (3)

where k2 > 2k1. In this equation a and b can each be −1, 0, or 1. When
g ≤ δ3 the value −1 is assigned. When δ3 > g > δ2, the value 0 is
assigned. And when g ≥ δ1, the value 1 is assigned.
These three control laws solve the n problems of individually leading

the robots to their goals while guaranteeing the formation constraints
are satisfied.

Proposition 1 If the robots start in a feasible configuration, i.e. a con-
figuration which satisfies all formation constraints, the switched control
law represented by (1), (2) and (3) guarantees that those constraints are
satisfied during the robots motion.

The proof for this proposition is similar to the one presented in (Pereira
et al., 2002). Space restrictions prevent us from including it in this pa-
per.

Proposition 2 If the robots start and goal positions are valid configu-
rations and during the motion the gradient of the navigation function of
two neighbor robots can be considered the same, the switched control law
represented by (1), (2) and (3) leads the robots to their goals.

The proof of this proposition is straight forward and is based on the
fact that Vi(qi) is a common Lyapunov function for the two modes rep-
resented by equations (2) and (3). If the assumption Vi(qi) = Vk(qk)
is valid, the system will never exit from the MaintainConnectivity

mode to the AchieveConnectivity mode. Although the validity of
this assumption may be questioned, it is a good assumption when the
robots are far away from their respective destinations, as discussed in
Section 4.3.

4.5 Extension to Real Robots

Our control laws where derived under Assumptions 1–4. However,
most of real robots cannot be represented by at least one of these as-
sumptions and therefore it is natural to ask whether our methodology
can be used or not for other kinds of robots.
Assumption 1 cannot be entirely relaxed because our proofs need the

constraints for both neighbors robots be active at the same time and
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Figure 3. Three holonomic robots navigating to their independent goals while main-
tain communication constraints.

then, they need to be identical. In this way it is important that the
robots have the same sensor and communication characteristics. If they
don’t, a very good approximation is using the constraints related to the
poorest sensor/communication device in the pair of neighbor robots.
In the definition of the control laws, we never explicitly use the fact

that sensor constraints are circular. Assumption 2 is only used in order
to facilitate the problem understanding. Instead, we only require that
each g(qi, qk) is convex and differentiable. Actually, the requirement of
differentiability can be relaxed if we use generalized gradients in (1) and
(3). The controllers and the proof will remain the same except for the
fact that each ∇g would be the gradient of one of the functions that
represents the active constraint.
Assumption 3 is easily relaxed if the obstacles are grown of the size

of the robots during the navigation function construction. For details
see (Latombe, 1991).
Assumption 4 is more difficult to deal with. For non-holonomic robots,

ui, which is a two dimensional vector, can be used as a set-point for
controllers that take in account the non-holonomic constraints. Experi-
mental results will show that the methodology works in several cases. A
different approach is shown in (Esposito and Kumar, 2002) where dipo-
lar potential fields are used to generate potential fields for nonholonomic
systems. This is a promising direction for future research.

5. Simulations

Figure 3 shows three simulated robots navigating to their independent
goals while maintaining communication constraints and avoiding each
other. Observe that in the initial configuration the constraints are not
satisfied and the robots need to move closer to each other. Notice also
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Figure 4. Deploying a mobile sensor network with 6 nodes. Figures (a)–(d) show
four snapshots of the same simulation. The first robot maintains communication
constraints with the base (square). Roughly speaking only one robot succeeds in its
mission of reaching the goal. However, the mission of building a communication link
between the goal area and the base is successfully completed.

that the robots do not keep a specific formation during their motion
since the constraints determine regions in the robots’configuration space
that allow infinite different formations.
Figure 4 shows a simulation that illustrates how local minima in-

troduced by the AchieveConnectivity mode of the controller can
be used to deploy a robot network. In this figure the robots have to
maintain communication constraints with two other neighbors forming
a chain. The first robot, however, has to maintain connectivity with a
static base. Consequently, only one of the robots reach the goal but as a
side effect a communication link is built between the base and the goal.

6. Experiments

Our platforms are car-like robots equipped with omnidirectional cam-
eras as their primary sensors. The communication among the robots
relies on IEEE 802.11 networking. A calibrated overhead camera is used
to localize the robots in the environment. Because with this camera we
are not able to estimate the robots’ orientation, we use communication
among the robots in order to construct a complete knowledge of the
robots configuration. The communication is essentially used for sensing
algorithms but is not used for control or decision making.
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Figure 5. Three robots following their navigation functions while maintain sensing
constraints with at least one other robot. Ground truth data is overlaid on the
equipotential contours of the navigation function for R3.

A limitation of the omnidirectional cameras used by the robots is
that their resolution decrease with the distance of the objects. At 2m,
for instance, the projection of an observed robot in the image plane is
only one pixel in size. For this reason three robots were programmed
to keep sensing constraints with their neighbors and therefore localize
themselves with respect to each other.
Figure 5 shows six snapshots of our experiment. The equipotential

contours of the navigation function for R3 is shown in all snapshots. In
this experimentGs was specified such that R1 and R3 are neighbors of R2

but they are not neighbors of each other. Figure 5(a) shows that R1 was
initialized outside the sensing region of R2, which was set to be 1.5m.
The next snapshot shows that the robots move to satisfy this constraint.
Figure 5(c) shows R2 and R3 very close two each other. The activation of
the avoidance constraints is then followed by a repulsion (Figure 5(d)).

7. Conclusions and Future Work

We developed a suite of decentralized reactive controllers for the co-
operative motion control of a group of mobile robots. Our approach is
based on the online modification of pre-computed navigation functions
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in order to satisfy formation constraints. Some proofs of convergence are
presented in the case of holonomic robots. Although we have presented
results with non-holonomic robots, our proofs are not applicable to these
systems.
One of the assumptions in this work has to do with the specification of

the communication and sensing network for the reactive controllers. In
a current work we are addressing planning methods that will specify the
desired edge set for the two graphs, Gc and Gs, which in turn will also
precisely define the neighborhood relationships for the team of robots.
An important question in this regard has to do with the scalability of
such algorithms as the number of robots in the team becomes large.
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