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Abstract—In this paper, we provide a distributed optimization
algorithm, termed as TV-AB, that minimizes a sum of convex
functions over time-varying, random directed graphs. Contrary
to the existing work, the algorithm we propose does not require
eigenvector estimation to estimate the (non-1) Perron eigenvector
of a stochastic matrix. Instead, the proposed approach relies on
a novel information mixing approach that exploits both row-
and column-stochastic weights to achieve agreement towards the
optimal solution when the underlying graph is directed. We
show that TV-AB converges linearly to the optimal solution
when the global objective is smooth and strongly-convex, and the
underlying time-varying graphs exhibit bounded connectivity, i.e.,
a union of every C consecutive graphs is strongly-connected. We
derive the convergence results based on the stability analysis of
a linear system of inequalities along with a matrix perturbation
argument. Simulations confirm the findings in this paper.

Index Terms—Optimization, distributed algorithms, first-order
methods, time-varying graphs, directed graphs.

I. INTRODUCTION

With the advent of 5G, promising higher bandwidth and

faster data rates, emerging technologies like the Internet of

Things, self-driving cars, and smart devices are coming to the

forefront. In these applications, it is of paramount interest

to learn hidden parameters from the data collected by the

individual units [1]. For example, self-driving cars rely heavily

on computer vision in order to correctly identify pedestrians,

highway lanes, or traffic signs in all light and weather condi-

tions. Problems such as these can be framed as classification,

regression, or risk minimization, at the heart of which is a

simple sum of cost optimization. The sheer size of data and

privacy concerns limit data sharing and thus solutions to the

underlying optimization problems must be developed that are

local and distributed [2]–[4]. However, departing from the

traditional approaches, what is needed now are algorithms that

are applicable to mobile and autonomous agents resulting in

a time-varying and non-deterministic information exchange.

Recently, there has been a large body of work on distributed

optimization, where the goal is to minimize a sum of costs:

min
x

1

n

∑n
i=1 fi(x),

such that each objective function, fi : R
p → R, is private

to agent i. In order to solve this problem, the agents ex-

change information with nearby nodes over a sparse commu-

nication graph. Such problems arise for example in sensor
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networks [5], large-scale machine learning [6], [7], distributed

estimation [8], and localization [9]. When the graphs are

static and undirected, early work on first-order methods in-

clude [10]–[12] with the convergence rate of O( ln k√
k
) for

arbitrary convex functions and O( ln k
k
) for strongly-convex

functions, where k denotes the number of iterations. The

sublinear convergence is due to the use of diminishing step-

sizes. The rate improves to linear with a constant step-size

but at the expense of a sub-optimal solution [13]. Methods

based on Lagrangian dual [14], [15] converge faster but suffer

from a high computational burden as they require solving a

subproblem at each iteration.

Optimization over directed graphs is developed in [16]–[18],

where push-sum [19], [20] is used to achieve consensus among

the agents. The convergence rate, with diminishing step-sizes,

is O( ln k√
k
) for arbitrary convex functions and O( ln k

k
) for

strongly-convex functions. In contrast, Refs. [21], [22] use an

alternate approach called surplus consensus [23] to achieve

consensus but with the same convergence rates as [16]–[18].

The main reason for slow convergence is that a local gradient

is used at each agent, which requires diminishing step-sizes to

ensure optimality. To overcome this challenge, Refs. [24]–[26]

replace the local gradient with an estimate of the global gradi-

ent, with the help of dynamic consensus [27] over undirected

graphs, and show linear convergence to the optimal solution.

This gradient estimation approach was combined with push-

sum (type) methods in [26], [28]–[30] to achieve linear con-

vergence to the optimal solution over directed graphs. Related

work along these lines also include [31] over undirected graphs

and [32] over directed graphs that are related to [26], [28].

An alternate approach that builds on [21], [22] and does not

use push-sum has been recently developed in [33], where a

row- and a column-stochastic matrix are used simultaneously

to achieve linear convergence to the optimal over directed

graphs. Accelerated methods can be found in [34]–[36], while

non-convex problems are considered in [37].

In this paper, our focus is on time-varying directed graphs.

Early work on time-varying communication among the agents

can be found in [38], [39], where the exchange is undirected

and in [40], where the exchange is directed. These methods are

built on local gradients at each agent and are thus sublinear.

Recent work includes [41], where the authors establish a

geometrically converging distributed optimization algorithm

over directed graphs under uncoordinated yet bounded step-

sizes, and [42], where agents communicate over graphs subject

to random link failures. Work on random graphs can be found
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in [43], where the problem of constrained convex optimization

is investigated for non-differentiable costs under Markovian

communication model. For random networks modeled by a

sequence of independent, identically distributed (IID) random

matrices drawn from the set of symmetric, stochastic matrices

with positive diagonals, [44] proposes two accelerated dis-

tributed Nesterov-like gradient methods featuring resiliency to

link failures, reduced computational load, and improved con-

vergence rates compared to other gradient methods. Ref. [45]

establishes a convergence rate of O( 1
k
) for distributed stochas-

tic gradient methods over temporally IID random undirected

graphs for strongly-convex costs when local gradients are

subject to noise that is IID in time and has a finite second

moment. Furthermore, asynchronous multi-agent optimization

is considered in [46], where the authors adapt the curvature es-

timation technique of the Broyden-Fletcher-Goldfarb-Shanno

quasi-Newton optimization method [47]–[49] for use in asyn-

chronous distributed settings over undirected graphs [50].

An asynchronous implementation of subgradient-push [18]

algorithm is also recently developed in [51].

In this paper, we use gradient estimation as was used

in [24]–[26], [28] and extend the AB algorithm introduced

in [33] to time-varying, random directed graphs. Of relevance

in this context is Ref. [26], which uses gradient estimation

and push-sum consensus [19], [20] to implement distributed

optimization over time-varying graphs. However, the push-

sum based methods [26], [28]–[30] involve estimating the

(non-1) Perron eigenvector of a stochastic matrix and an ap-

propriate scaling with the estimated eigenvector components.

The eigenvector estimation adds conservatism to the overall

algorithm as its convergence may dominate the overall rate.

In contrast, the AB algorithm [33] does not require such

eigenvector estimation and employs both row- and column-

stochastic weights in a novel way. The time-varying algorithm

proposed in this paper, termed as TV-AB, thus is applicable to

time-varying, directed graphs without the need of eigenvector

estimation resulting from push-sum.

The TV-AB algorithm we introduce involves a unique and a

rather counter-intuitive way of mixing information among the

agents. As the graph at each iteration may not be strongly-

connected, the mechanics of TV-AB can be explained over

a single directed edge, i −→ j. First, we note that TV-

AB involves two state updates: one with a row-stochastic

weight matrix, A, and the other with a column-stochastic

weight matrix, B. The update involving A is standard where

the receiving agent j implements a sum-preserving update to

its past and the incoming information from agent i , while

agent i assigns a weight of 1 to its past since it does not

receive any information. However, the additional update with

the column-stochastic weights, B, requires the transmitting

agent i to implement a strictly stable update (by assigning

a weight less than 1 to its past) and the receiving agent to

implement an unstable update (by assigning weights that sum

to > 1 to its past and the incoming information from agent i)
in order to maintain column-stochasticity of B. In other words,

the updates involving B are not sum-preserving unlike the

traditional information fusion.

We show that TV-AB converges linearly to the optimal

solution when each local objective is smooth and the global

objective is strongly-convex. The graph at each iteration can be

generated randomly in an arbitrary fashion as long as the union

of every C consecutive graphs is strongly-connected. This

notion is known as bounded connectivity and is standard in the

consensus and optimization literature on time-varying graphs,

see e.g., [18], [26]. The bounded connectivity notion enables

us to obtain more concrete convergence results as without this

assumption, the analysis is restricted to the expected behavior

of the optimization algorithm, see e.g., [39], [42], [44]. We

show linear convergence with the help of a linear system of

inequalities along with a matrix perturbation argument.

We now describe the rest of the paper. Section II formulates

the problem and introduces the assumptions necessary to

algorithm development. Section II-A develops and interprets

the time-varying AB algorithm. Details on the convergence

analysis are presented in Section III while Section IV states the

main result. Finally, Section V provides numerical experiments

and Section VI contains the concluding remarks.

Notation: We denote column vectors by lowercase bold

letters, x, and matrices by uppercase italics, X . The n × n
identity matrix and the n-dimensional column vector of all

ones are denoted by In and 1n, respectively, where the

dimension subscripts are dropped if clear from the context. We

denote by X ⊗ Y , the Kronecker product of two matrices, X
and Y , while ρ(X) denotes the spectral radius for a matrix, X .

For a vector, x, its ith element is denoted by [x]i, while for

a matrix, X , its (i, j)th element is denoted by [X]i,j . The

notation ‖ · ‖2 denotes the Euclidean norm for vectors and the

spectral norm for matrices, whereas ‖ · ‖max denotes the l∞-

norm on the set of square matrices.

II. PROBLEM FORMULATION AND ALGORITHM

In this section, we formulate the distributed optimiza-

tion problem, state the assumptions, and introduce the TV-

AB algorithm. To this aim, we assume that the set of

agents, V = {1, 2, · · · , n}, communicate according to a time-

varying directed graph, Gk(V , Ek), where k is the discrete-

time index and Ek is the set of directed communication links

at time k. An agent j can send information to an agent i,
i.e., j −→ i, at time k, if and only if (i, j) ∈ Ek. The goal of

the agents is to collaboratively solve the following problem:

Problem 1: min
x

f(x) =
1

n

∑n
i=1 fi(x), (1)

where each local objective function, fi : R
p 7→ R, is held

privately at agent i. We next formalize the set of assumptions

that are standard in the distributed optimization literature.

Assumption 1 (Strong-convexity). The global objective func-

tion f , is µ-strongly-convex, i.e.,

f(x) ≥ f(y) +∇f(y)⊤(x− y) +
µ

2
‖x− y‖22 (2)

for any x, y ∈ R
p, where µ > 0.

For Assumption 1 to hold it suffices that each fi is convex and

at least one of them is strongly-convex. Under this assumption,

Problem 1 has a unique optimal solution, denoted by x∗.
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Assumption 2 (Smoothness). Each fi is ℓi-smooth, i.e., it is

differentiable and has a Lipschitz-continuous gradient. Math-

ematically, there exists ℓi > 0 such that

‖∇f i(x)−∇f i(y)‖2 ≤ ℓi‖x− y‖2, (3)

for any x, y ∈ R
p and ∀i ∈ V .

Assumption 2 implies that f =
∑

i fi is ℓ̄-smooth,

where ℓ̄ = 1
n

∑n
i=1 ℓi. Furthermore, collecting the local vari-

ables in column vectors, i.e.,

x =



x1

...

xn


 , f(x) =



f1(x

1)
...

fn(x
n)


 , ∇f(x) =



∇f1(x

1)
...

∇fn(x
n)


 ,

we note that f is L-smooth, where L = maxi{ℓi}.

Assumption 3 (C-bounded strong-connectivity). For the se-

quence {Gk = (V, Ek ⊆ V × V)} of time-varying di-

rected graphs, there exists some positive integer C such that

the aggregate digraph GC
k , (V ,∪k+C−1

l=k El) is strongly-

connected ∀ k ≥ 0.

Assumption 4 (Weights). For the sequence {Gk = (V, Ek)}
of time-varying directed graphs and the sequences, {Ak}
and {Bk}, of n × n matrices compliant with Gk,

i.e., (i, j) ∈ Ek ⇔ [Ak]i,j , [Bk]i,j 6= 0, the following hold.

(i) Stochasticity: {Ak} and {Bk} are row- and column-

stochastic, respectively.

(ii) Aperiodicity: Gk has self-loops; i.e., [Ak]i,i > 0
and [Bk]i,i > 0, ∀ i ∈ V and ∀ k ≥ 0.

(iii) Uniform positivity: There are scalars 0 < α, β < 1 such

that [Ak]i,j ≥ α and [Bk]i,j ≥ β, ∀ (i, j) ∈ Ek, k ≥ 0.

The strong-connectivity bound C introduced in Assumption 3

and the uniform positivity bounds α and β in Assumption 4

are not required to be known at any of the agents. They are

only used in the analysis of the algorithm.

A. Algorithm Development

We now describe the TV-AB algorithm to solve Problem P1.

At each time k, agent i ∈ V maintains two variables, xi
k, yi

k ,

both in R
p, initialized with arbitrary xi

0 and yi
0 = ∇f i(x

i
0).

The xi
k-update at each agent is essentially gradient descent, al-

beit after mixing incoming information, and where the descent

direction is given by an estimate of the global gradient, yi
k,

instead of the local gradient, ∇fi(x
i
k). The yi

k-update at each

agent tracks the global gradient and is based off of column-

stochastic weights.

We first use a simple framework to explain the algorithm

where only one edge i −→ j is active at time k. The xk-update

follows the standard sum-preserving notion where weights

assigned to the past information are non-negative and sum to 1:

xi
k+1 =xi

k − ηyi
k, ∀ i 6= j,

x
j
k+1 =[Ak](j,i)x

i
k + [Ak](j,j)x

j
k − ηyj

k,

where η is a constant step-size. The weight matrix, Ak,

behind this update is row-stochastic: Each diagonal ele-

ment, [Ak](i,i) = 1, ∀ i 6= j, while the jth row has only two

positive elements such that [Ak](j,i) + [Ak](j,j) = 1.

Defining the auxiliary variable zik+1 as the successive differ-

ence, ∇f i(x
i
k+1)−∇f i(x

i

k), of the gradients, with zi0 = 0p,

the yk-update is given by

ym
k+1 =[Bk](m,m)y

m
k + zmk+1, m 6= i,m 6= j,

yi
k+1 =[Bk](i,i)y

i
k + zik+1,

y
j
k+1 =[Bk](j,i)y

i
k + [Bk](j,j)y

j
k + z

j
k+1.

Note that every column of Bk, except the ith, has only one non-

zero element as no agent other than i is transmitting. Hence,

for Bk to be column-stochastic, [Bk](j,j) = 1, ∀j 6= i. For the

transmitting agent, we have [Bk](i,i)+[Bk](j,i) = 1. In contrast

to the traditional row- or doubly-stochastic updates, the yi
k+1-

update is locally stable as [Bk](i,i) < 1, while the y
j
k+1-update

is locally unstable as [Bk](j,i) + [Bk](j,j) > 1.

B. The TV-AB Algorithm

The simple scenario discussed above can be generalized to

arbitrary graphs, resulting into the following algorithm:

xi
k+1 =

n∑

j=1

[Ak]i,jx
j
k − ηyi

k, (4a)

yi
k+1 =

n∑

j=1

[Bk]i,jy
j
k + zik, (4b)

where the weights [Ak]i,j and [Bk]i,j satisfy Assumption 4.

Letting Ak , Ak ⊗ Ip and Bk , Bk⊗Ip, we present Eqs. (4)

in a vector-matrix form, where the local variables xi
ks

and yi
ks and gradients ∇f i(x

i
k) are stored in the column

vectors xk, yk, and ∇f(xk), respectively:

xk+1 = Akxk − ηyk, (5a)

yk+1 = Bkyk + zk, (5b)

where zk = ∇f(xk)−∇f(xk−1), and z0 = 0np. The weight

matrices, Ak and Bk, are row- and column-stochastic, respec-

tively. However, since each Gk is not necessarily strongly-

connected, the weights Ak and Bk are not necessarily primitive

or irreducible; thus, the standard Perron-Frobenius arguments

are not applicable here. To overcome this isse, we use the

notions of absolute probability sequences, ergodicity, and

multi-step contractions, a recap of these concepts is provided

in the Appendix: Section A.

III. CONVERGENCE ANALYSIS

To proceed with the analysis, we perform a state transforma-

tion: sk = (V −1
k ⊗ Ip)yk on yk, where Vk = diag[vk] and vk

follows Eq. (6a). The TV-AB algorithm is thus equivalently

written as

vk+1 = Bkvk, (6a)

xk+1 = Akxk − η(Vk ⊗ Ip)sk, (6b)

sk+1 = Rksk + (V −1
k+1 ⊗ Ip)(∇f(xk+1)−∇f(xk)), (6c)

where v0 = 1n, Rk , Rk ⊗ Ip, and Rk = V −1
k+1BkVk. It

can be verified that {Rk} is a sequence of row-stochastic

matrices for which the absolute probability sequence is {vk};

see Appendix: Section A on absolute probability sequences.
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We now proceed with the convergence analysis of the

equivalent algorithm in Eqs. (6a)-(6c). Our approach rests on

a few quantities that we describe next:

(i) xw
k = (φ⊤

k ⊗ Ip)xk, which is the average of xi
k’s

weighted by the absolute probability sequence, {φk},

of Ak’s, see Corollary 1 in the Appendix: Section A;

(ii) x̃w
k = xk − 1n ⊗ xw

k , which can be regarded as the

weighted consensus error in the network;

(iii) rk = 1n ⊗ xw
k − 1n ⊗ x∗, which is the optimality gap

associated with the weighted average;

(iv) s̃w
k = sk − (1nv

⊤
k ⊗ Ip)sk, which is an error term

corresponding to gradient estimation.

With the help of these quantities, we define the vector

tk =



‖x̃w

k‖2
‖rk‖2
‖s̃w

k‖2


 , (7)

and show that it goes to zero as k → ∞. Clearly, if tk → 0,

then xk → 1n ⊗ x∗, and rate of convergence of TV-AB is

upper bounded by the rate at which tk → 0. To establish

that tk → 0, we derive a linear system of inequalities that

expresses the evolution of tk in the following form:



tk+1

...

tk−(C−2)


 ≤M(η)




tk
...

tk−(C−1)


 , (8)

where the elements of M(η) are the coefficients of the linear

system. Clearly, if ρ(M(η)) < 1, then xk → 1n ⊗ x∗ at least

at the rate of O(ρ(M(η))k).
Fig. 1 provides a roadmap to establish Eq. (8). The next

four lemmas provide the corresponding inequalities, whereas

the proofs are deferred to the Appendix. The system of Eq. (8)

is then analyzed in the next subsection.

�x𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘w 2
r𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘 2
�s𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘w 2

y𝑘𝑘 2
Lemma 1

�x𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘w 2
r𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘 2
�s𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘w 2

�x𝑘𝑘+1w 2
Lemma 2

�x𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘w 2
r𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘 2
�s𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘w 2

rk+1 2
Lemma 3

�x𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘w 2
r𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘 2
�s𝑘𝑘− ̅𝐶𝐶+1:𝑘𝑘w 2

�s𝑘𝑘+1w 2
Lemma 4

Fig. 1: Roadmap of deriving the linear system of inequalities.

Remark 1. The constant C = max{CA, CB} used in the rest

of the paper, ensures concurrent multi-step contractions for

both variables x̃w
k and s̃w

k; see Lemma 7 and Corollary 2 in

the Appendix: Section A for more details.

Lemma 1. The following inequality holds ∀ k ≥ 0:

‖yk‖2 ≤nL‖x̃w
k‖2 + nL‖rk‖2 + ‖s̃w

k‖2.

Proof: See Appendix: Section B.

Lemma 2. The following inequality holds ∀ k ≥ C − 1:

‖x̃w
k+1‖2 ≤

(
γA + ηQAnL

)
‖x̃w

k−(C̄−1)‖2 + ηQAnL

C−2∑

l=0

‖x̃w
k−l‖2

+ ηQAnL
(
‖rk−(C̄−1)‖2 +

C−2∑

l=0

‖rk−l‖2
)

+ ηQA

(
‖s̃w

k−(C̄−1)‖2 +
C−2∑

l=0

‖s̃w
k−l‖2

)
,

where γA and QA are the constants defined in Lemma 7 in

the Appendix: Section A.

Proof: See Appendix: Section C.

Lemma 3. The following inequality holds ∀ k ≥ 0:

‖rk+1‖2 ≤ηnL‖x̃w
k‖2 +

(
1− η

µ

nnC−1

)
‖rk‖2 + η

√
n‖s̃w

k‖2.

Proof: See Appendix: Section D.

Lemma 4. The following inequality holds ∀ k ≥ C − 1:

‖s̃w
k+1‖2 ≤m

√
n(2 + ηL)

(
‖x̃w

k−(C−1)‖2 +
C−2∑

l=0

‖x̃w
k−l‖2

)

+ ηmnL
(
‖rk−(C−1)‖2 +

C−2∑

l=0

‖rk−l‖2
)

+ (ηm+ γB)‖s̃w

k−(C−1)‖2 + ηm

C−2∑

l=0

‖s̃w
k−l‖2,

where m = nnCQBL, and γB and QB are the constants

defined in Corollary 2 in the Appendix: Section A.

Proof: See Appendix: Section E.

A. The resulting linear system of inequalities

Summarizing the results of Lemmas 2-4, for 0 < η < 2
nL

,
Eq. (8) can be expanded as follows:

tk+1 ≤




ηQAnL ηQAnL ηQA

ηnL 1− η µ

nnC−1 η
√
n

m
√
n(2 + ηL) ηmnL ηm




︸ ︷︷ ︸
M1

tk

+




ηQAnL ηQAnL ηQA

0 0 0
m
√
n(2 + ηL) ηmnL ηm




︸ ︷︷ ︸
M2

(tk−1 + . . .+ tk−(C−2))

+



γA + ηQAnL ηQAnL ηQA

0 0 0
m
√
n(2 + ηL) ηmnL γB + ηm




︸ ︷︷ ︸
M

C

tk−(C−1),

which is equivalent to




tk+1

tk
tk−1

...
tk−(C−2)



≤




M1 M2 · · · M2 MC

I
I

. . .

I







tk
tk−1

...
tk−(C−2)

tk−(C−1)



.

(9)
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The system matrix, M(η), in the above can be partitioned as




M0
1 · · · M0

2 M0
C

I

. . .

I




︸ ︷︷ ︸
M0

+η




ME
1 · · · ME

2 ME

C

0

. . .

0




︸ ︷︷ ︸
ME

, (10)

where

M
0
1 =




0 0 0
0 1 0

2m
√
n 0 0


, M

E
1 =



QAnL QAnL QA

nL − µ

nnC−1

√
n

m
√
nL mnL m


,

M
0
2 =




0 0 0
0 0 0

2m
√
n 0 0


, M

E
2 =



QAnL QAnL QA

0 0 0
m
√
nL mnL m


,

M
0
C =




γA 0 0
0 0 0

2m
√
n 0 γB


, M

E

C =



QAnL QAnL QA

0 0 0
m
√
nL mnL m


.

Recall that our goal is to establish the geometric de-

cay of tk in Eq. (7). To this purpose, it is sufficient to

show ρ(M(η)) < 1. As a first step, we finish this section with

a lemma on the spectral radius of the matrix M0 in Eq. (10)

and its corresponding eigenvector.

Lemma 5. The spectral radius of the matrix M0 is 1
and λ = 1 is a simple eigenvalue of M0. The left and right

eigenvectors, M0u = u,w⊤M0 = w⊤, are given by

u = 1C ⊗
[
0 1 0

]⊤
, (11)

w⊤ =
[
0 1 0 · · · 0

]
. (12)

Proof: See Appendix: Section F.

IV. LINEAR CONVERGENCE

We now state the main convergence result for TV-AB.

Theorem 1. The spectral radius of M(η) is strictly less

than 1 when η is sufficiently small. Therefore ‖xk−1n⊗x∗‖2
converges to zero (at least) at the rate of O

(
ρ(M(η))k

)
.

Proof: From Lemma 5, let q(η) be the simple eigenvalue

of M(η), as a function of η, for which q(0) = 1. Recall

that M(η) can be partitioned as M0 + ηME from Eq. (10).

Borrowing a result from matrix perturbation theory [52, The-

orem 6.3.12], we have that

dq(η)

dη

∣∣∣∣
η=0

=
w⊤MEu

w⊤u
,

where u and w are right and left eigenvectors corresponding

to the simple eigenvalue, q(0). From Lemma 5, it can be

verified that w⊤u = 1 and w⊤MEu = −µ/nnC−1 < 0,

which implies that d
dη
q(η) is negative. Since the eigenvalues

are a continuous function of the elements of a matrix, we

have that q(η) decreases for a sufficiently small η (slightly

increasing from zero) and the theorem follows.

V. NUMERICAL EXPERIMENTS

This section illustrates the application and performance of

the time-varying AB algorithm in a variety of numerical

experiments. In the rest of this section, we adopt a simple

uniform weighting strategy to construct the row- and column-

stochastic weights [Ak]i,j and [Bk]i,j :

[Ak]i,j =

{
1/dik,in, (i, j) ∈ Ek,

0, (i, j) /∈ Ek,
(13)

where dik,in is the in-degree of agent i at time k; and

[Bk]i,j =

{
1/djk,out, (i, j) ∈ Ek,

0, (i, j) /∈ Ek,
(14)

where djk,out is the out-degree of agent j at time k.

A. Distributed binary classification

In this experiment, we study a binary classification problem

using regularized logistic regression. Each agent i has ac-

cess to mi training samples: (ci
(j)

, yi
(j)

) ∈ R
p−1 × {−1, 1},

for j = 1, 2, · · · , mi, where ci
(j)

is the p−1-dimensional fea-

ture vector of the jth training sample at the ith agent and yi
(j)

is the corresponding binary label. The agents collaboratively

solve the following distributed logistic regression problem:

min
w,b

f(w, b) =
n∑

i=1

fi(w, b),

where the private loss function fi at agent i is

fi(w, b) =

mi∑

j=1

ln

[
1 + e

(
−w

⊤
c
i(j)+b

)
yi(j)

]
+

λ

2

(
‖w‖22 + b2

)
.

The decision variable w represents the model weights assigned

to the features and b is the bias term. It is straightforward to

verify that the local loss functions fi satisfy both Assump-

tions 1 and 2. The feature vectors, ci
(j)

, are drawn from IID

Gaussian distributions with mean 0 and variance 9. We then

generate binary labels from a Bernoulli distribution, with

probability of yi
(j)

= +1 being (1 + ex̃
⊤
c
i(j)

)−1, where w

and b are drawn from the standard uniform distribution. The

network topology varies according to the periodic sequence

of directed graphs as shown in Fig. 2 making the directed

communication network 4-bounded strongly connected.

Fig. 2: Periodic time-varying topology, where the period is 4.
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To solve the classification problem in a distributed manner,

agents initialize their states xi
0 according to IID zero-mean

Gaussian random variables with variance 9. The performance

of TV-AB along with Push-DIGing [26], and subgradient-

push [18] (with constant and diminishing step-sizes) is shown

in Fig. 3 with the average residual 1/n
∑n

i=1 ‖xi
k − x∗‖2 as

the evaluation metric. The step-sizes for TV-AB and Push-

DIGing are hand-optimized. This numerical experiment con-

firms that time-varying AB converges linearly and is observed

to be faster than Push-DIGing.

0 200 400 600 800 1000 1200 1400

10-15

10-10

10-5

100

0 5 10 15 20 25 30 35 40
10-2

10-1

100

Fig. 3: Distributed logistic regression: Performance compari-

son with the transients magnified.

B. Distributed least-squares

In this example, n = 60 agents communicate according to a

time-varying sequence of C = 50-bounded strongly-connected

digraphs. The nodes are partitioned into 5 equally-sized clus-

ters, and each cluster is internally strongly-connected at every

iteration. The clusters communicate with each other according

to a strongly-connected cluster-level network every C = 50th

iteration, see Fig. 4. The agents aim to collaboratively find the

solution x∗ of the following least-squares problem:

f(x) =
∑n

i=1 fi(x) =
1
2

∑n
i=1 ‖Hix− bi‖22,

where the vectors and matrices are of appropriate dimension.

We choose each Hi such that it is rank-deficient but
∑

i H
⊤
i Hi

is invertible. In other words, no agent can find x∗ on its own

and must cooperate.

To collaboratively solve the least-squares problem, agents

initialize there states xi
0 according to IID standard Gaussian

random variables. The performance of tTV-AB is compared

with Push-DIGing and subgradient-push (with both constant

Fig. 4: C = 50-bounded strongly-connected digraph: The

inter-cluster graph activates every 50th iteration.

and diminishing step-sizes) in Fig. 5 with the average resid-

ual 1/n
∑n

i=1 ‖xi
k − x∗‖2 as the comparison metric. The

step-sizes follow a similar regime as in Experiment V-A.

This numerical experiment, once again, confirms the linear

convergence of AB to the optimal solution provided the step-

size is sufficiently small.

0 0.5 1 1.5 2 2.5 3 3.5 4

105

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

100

0 100 200 300 400 500 600 700 800 900 1000

10 -1

100

Fig. 5: Distributed least squares: Performance comparison with

the transients magnified.

C. TV-AB on random graphs

We now apply TV-AB to random networks. In this sce-

nario, n = 80 agents communicate over a C = 15-bounded

strongly-connected network to solve the logistic regression

problem of example V-A. The agents communicate over a

strongly-connected random graph every 15th iteration and rely

solely on local iterations for the rest of the time. The result

of this experiment is presented in Fig. 6.



7

0 1000 2000 3000 4000 5000 6000
10 -18

10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

100

0 10 20 30 40 50 60

10 -1

100

Fig. 6: Distributed logistic regression over random graphs:

Performance comparison with the transients magnified.

In another scenario, 10 agents communicate according to the

gossip protocol explained in Section II-A. The optimization

problem is linear regression given 10 noisy samples of a line

at each agent. The performance is compared in Fig. 7 with

hand-optimized step-size.

0 1000 2000 3000 4000 5000 6000
10-10

10-8

10-6

10-4

10-2

100

Fig. 7: Distributed linear regression : TV-AB under gossip.

VI. CONCLUSIONS

In this paper, we study TV-AB that minimizes a sum

of smooth and strongly-convex functions over time-varying

and possibly random directed graphs. We show that TV-AB
converges linearly to the optimal solution when underlying

time-varying graphs satisfy the standard bounded connectivity

assumption, i.e., a union of every C consecutive graphs is

strongly-connected. We derive the convergence result based

on the stability analysis of a linear system of inequalities

along with a matrix perturbation argument. We further provide

extensive simulations that confirm the findings in this paper.

APPENDIX

A. Preliminaries

In this section, we recap some preliminaries that are used

in the analysis. We start with the definitions of absolute

probability sequences [53] and ergodicity [54].

Definition 1 (Absolute Probability Sequence). For row-

stochastic matrices, {Rk}, an absolute probability sequence

is a sequence {πk} of stochastic vectors such that

π⊤
k = π⊤

k+1Rk, ∀k ≥ 0.

Definition 2 (Ergodicity). A ergodic sequence of row-

stochastic matrices, {Rk}, is such that for integers p ≥ 0
and all i, s = 1 , · · · , n

lim
c→∞

[U(c,p)]i,s → dps ,

where U(c,p) = Πc
l=pRl is the backward product of {Rk}

and dps is a constant not depending on i.

We next state a result on the ergodicity of the matrix sequence

compliant with the aggregate digraph GC
sC = (V,∪sC+C−1

l=sC El),
see [55, Lemma 5.2.1] for details.

Lemma 6. Under Assumptions 3 and 4, the row-stochastic

matrix sequence {Ds = ΠsC+C−1
l=sC Al} compliant with the ag-

gregate digraph GC
sC = (V,∪s+C−1

l=sC El), for all s ≥ 0, is

ergodic, i.e.,

lim
t→∞

Dt · · ·Ds+1Ds = 1µ⊤
s ,

where {µs} is the unique absolute probability sequence

for {Ds} (see, e.g., [53], [56, Lemma 1]) and is uniformly

bounded away from zero, i.e., there exists δ ∈ (0, 1) such

that [µs]i ≥ δ, ∀ i ∈ V and ∀ s ≥ 0. Furthermore, the conver-

gence rate is geometric, i.e., ∀ t ≥ s ≥ 0:

‖Dt · · ·Ds+1Ds − 1µ⊤
s ‖ ≤ Mqt−s,

where the constants M > 0 and q ∈ (0, 1) depend only on n
and α introduced in Assumption 4.

The next corollary extends the result above, deriving the

absolute probability sequence for the sequence {Ak} in terms

of {µk} in Lemma 6.

Corollary 1. Under the assumptions of Lemma 6, the se-
quence {φk} is an absolute probability sequence for the
matrix sequence {Ak}, where

φ
⊤
k =µ

⊤
k , k = sC,

φ
⊤
k =µ

⊤
(s+1)CA(s+1)C−1 · · ·Ak, k ∈

(
sC, (s+ 1)C

)
,

(15)

for some s ≥ 0.

Proof: Since the products A(s+1)C−1 · · ·Ak are row-

stochastic and {µs} is an absolute probability sequence from

Lemma 6, each µs is a stochastic vector by definition and so

is the vector φk in Eq. (15). In fact,

φ⊤
k =µ⊤

(s+1)CA(s+1)C−1 · · ·Ak,

=µ⊤
(s+1)CA(s+1)C−1 · · ·Ak+1 Ak = φ⊤

k+1Ak,

i.e., the sequence {φk} is an absolute probability sequence

for {Ak}.
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The next lemma from [26, Lemma 5.3] establishes multi-

step contraction of a backward product of a series of row-

stochastic matrices {Ak}. This result is fundamental to the

convergence analysis of TV-AB.

Lemma 7 (CA-step contraction for {Ak}). Let Assumptions 3

and 4 hold. Recall that Ak = Ak ⊗ Ip and define an integer

CA ≥ C such that

γA , QA(1− αnC)
CA−1

nC < 1, QA = 2n
1 + α−nC

1− αnC
. (16)

Then for any k ≥ CA − 1 and any vector b ∈ R
np, if

a = A(CA,k−(CA−1))b,

where A(CA,k−(CA−1)) , Ak · · · Ak−(CA−1), we have

∥∥((In − 1nφ
⊤
k+1)⊗ Ip

)
a
∥∥
2

≤ γA
∥∥((In − 1nφ

⊤
k−(CA−1)

)⊗ Ip
)
b
∥∥
2
,

where {φk} is the absolute probability sequence of {Ak},

defined in Eq. (15).

The next corollary establishes the multi-step contraction

for the sequence {Rk} = V −1
k+1BkVk, where Vk = diag[vk]

and {vk} evolves as Eq. (6a).

Corollary 2 (CB-step contraction for {Rk}). Let Assump-

tions 3 and 4 hold. Recall that Rk = Rk ⊗ Ip and define an

integer CB ≥ C such that

γB , QB(1− τnC)
CB−1

nC < 1, QB = 2n
1 + τ−nC

1− τnC
, (17)

where τ = β
nnC+1 ; then for any k ≥ CB − 1 and any

vector b ∈ R
np, if

a = R(CB,k−(CB−1))b,

where R(CB,k−(CB−1)) = Rk · · ·Rk−(CB−1), we have

∥∥((In − 1nv
⊤
k+1)⊗ Ip

)
a
∥∥
2

≤γB
∥∥((Inp − 1nv

⊤
k−(CB−1)

)⊗ Ip
)
b
∥∥
2
.

Proof: It can be verified that

((In − 1nv
⊤
k+1)⊗ Ip)R(CB,k−(CB−1))

=((R(CB,k−(CB−1)) − 1nv
⊤

k−(CB−1))(In − 1nv
⊤

k−(CB−1)))⊗ Ip.

Therefore,
∥∥((In − 1nv

⊤
k+1)⊗ Ip

)
a
∥∥
2

≤
∥∥R(CB,k−(CB−1)) − 1nv

⊤

k−(CB−1)

∥∥
2
·

∥∥((In − 1nv
⊤

k−(CB−1))⊗ Ip)b
∥∥
2
,

where the inequality follows from the compatibility

of vector 2-norm with matrix spectral norm. We

now find an upper bound for the first term on the

right hand side of the above equation. First note

that [Rk]i,j = [Bk]ij [vk]j/[vk+1]i. From [18, Corollary 2(b)],

we have that [vk]j ≥ 1/nnC , ∀ k ≥ 0. Since 1/[vk]j ≥ 1/n
and for any (i, j) ∈ Ek, [Bk]i,j ≥ β by Assumption 4, we have

that in [Rk]i,j ≥ τ , β/nnC+1, for any (i, j) ∈ Ek. Therefore,

noting that for an n× n matrix, X , ‖X‖2 ≤ n‖X‖max, we

have
∥∥R(CB,k−(CB−1)) − 1nv

⊤
k−(CB−1)

∥∥
2

≤n
∥∥R(CB ,k−(CB−1)) − 1nv

⊤
k−(CB−1)

∥∥
max

≤ γB,

where γB , 2n 1+τ−nC

1−τnC (1− τnC)
CB−1

nC and the last inequality

is from [11, Lemma 4(c)].

Finally, the next lemma is a standard result in optimization

theory and states that the optimality gap in the domain space

shrinks by at least a fixed ratio for a gradient descent step.

Lemma 8 ( [57, Lemma 3.11]). Let g : R
p 7→ R

be µ-strongly-convex and have ℓ-Lipschitz gradient. De-

fine x+ = x− ζ∇g(x), where 0 < ζ < 2/ℓ. Then

‖x+ − x∗‖2 ≤ χ‖x− x∗‖2
where χ = max{|1− ζµ|, |1− ζℓ|}.

In the following, we provide the proofs of the lemmas

described earlier in the paper.

B. Proof of Lemma 1.

Proof: Recall that sk = s̃w
k + (1nv

⊤
k ⊗ Ip)sk and it can

be verified that

(1nv
⊤
k ⊗ Ip)sk = (1n1

⊤
n ⊗ Ip)∇f(xk). (18)

Exploiting the optimality condition ∇f(1n ⊗ x∗) = 0np, we

can express sk as

sk =s̃w
k + (1n1

⊤
n ⊗ Ip)(∇f(xk)−∇f(1n ⊗ x∗)).

Therefore, from the triangle inequality we have

‖sk‖2 ≤ ‖s̃w
k‖2 +

√
n
∑n

i=1 ‖∇f i(x
i
k)−∇f i(x

∗)‖2,
≤ ‖s̃w

k‖2 +
√
nL

∑n

i=1 ‖xi
k − x∗‖2,

≤ ‖s̃w
k‖2 + nL

∥∥xk + (1nφ
⊤
k ⊗ Ip)(xk − xk)− 1n ⊗ x

∗
∥∥
2
,

≤ ‖s̃w
k‖2 + nL‖x̃w

k‖2 + nL‖rk‖2.

where the second inequality uses Lipschitz continuity and the

third inequality is a consequence of Cauchy-Schwarz. Noting

that yk = (Vk ⊗ Ip)sk, we have ‖yk‖2≤‖(Vk ⊗ Ip)‖2‖sk‖2
from the compatibility of vector 2-norm with matrix spectral

norm. Next, since ‖(Vk ⊗ Ip)‖2 = ‖Vk‖2 = maxi[vk]i < 1,

we have

‖yk‖2 ≤‖sk‖2 ≤ nL‖x̃w
k‖2 + nL‖rk‖2 + ‖s̃w

k‖2,
and the lemma follows.

C. Proof of Lemma 2.

Proof: From Eq. (6b), we have

xk+1 =A(C,k−(C−1))xk−(C−1) − η
C−1∑

l=0

Al,k−(l−1)yk−l,

which leads to

‖x̃w
k+1‖2 =

∥∥((In − 1nφ
⊤
k+1)⊗ Ip

)
xk+1

∥∥
2

≤
∥∥((In − 1nφ

⊤
k+1)⊗ Ip

)
A(C,k−(C−1))xk−(C−1)

∥∥
2

+ η
∑C−1

l=0

∥∥((I − 1nφ
⊤
k+1)⊗ Ip

)
Al,k−(l−1)yk−l

∥∥
2
.
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Consequently, ∀ k ≥ C − 1,

‖x̃w
k+1‖2 ≤γA‖x̃w

k−(C−1)
‖2 + ηQA

∑C−1
l=0 ‖yk−l‖2,

where the second term follows from [11, Lemma 4(c)]. From
Lemma 1, we have

‖x̃w
k+1‖2 ≤(γA + ηQAnL)‖x̃w

k−(C̄−1)‖2,
+ ηQAnL

∑C−2
l=0 ‖x̃w

k−l‖2,
+ ηQAnL‖rk−(C̄−1)‖2 + ηQAnL

∑C−2
l=0 ‖rk−l‖2,

+ ηQA‖s̃w
k−(C̄−1)‖2 + ηQA

∑C−2
l=0 ‖s̃w

k−l‖2,

where γA and QA are the constants defined in Lemma 7.

D. Proof of Lemma 3.

Proof: Note that yk − (vk1
⊤
n ⊗ Ip)yk = (Vk ⊗ Ip)s̃

w
k ,

we have

‖rk+1‖2 =
∥∥(1nφ

⊤
k+1 ⊗ Ip)xk+1 − 1n ⊗ x

∗
∥∥
2

=
∥∥(1nφ

⊤
k+1 ⊗ Ip)

(
Akxk − ηyk

+ (vk1
⊤
n ⊗ Ip)yk(−η + η)

)
− 1n ⊗ x

∗
∥∥
2

≤η
∥∥(1nφ

⊤
k+1 ⊗ Ip)

(
yk − (vk1

⊤
n ⊗ Ip)yk

)∥∥
2

+
∥∥(1nφ

⊤
k ⊗ Ip)xk − 1n ⊗ x

∗ − ηθk(1n1
⊤
n ⊗ Ip)yk

∥∥
2

≤ η
√
n‖s̃w

k‖2 +
∥∥(1nφ

⊤
k ⊗ Ip)xk − 1n ⊗ x

∗

− ηθk(1n1
⊤
n ⊗ Ip)∇f(xk)

∥∥
2
, (19)

where θk = φ⊤
k+1vk. From [11, Lemma 4(c)], we note

that θk ≥ 1/nnC , while θk ≤ 1, ∀k, from Cauchy-Schwarz.

The substitution of (1n1
⊤
n ⊗ Ip)yk by (1n1

⊤
n ⊗ Ip)∇f(xk)

follows a similar reasoning as in Eq. (18). Furthermore, the

second term on the right hand side of the above inequality can

be expressed as follows:

∥∥1n ⊗ xw
k − nηθk∇f(1n ⊗ xw

k )− 1n ⊗ x∗⊤

+ nηθk∇f(1n ⊗ xw
k )− ηθk(1n1

⊤
n ⊗ Ip)∇f(xk)

∥∥
2

≤
∥∥1n ⊗ xw

k − nηθk∇f(1n ⊗ xw
k )− 1n ⊗ x∗⊤∥∥

2

+ ηθk
∥∥1n ⊗

(∑n
i=1(∇f i(x

w
k )−∇f i(x

i
k))

)∥∥
2

≤
√
n‖xw

k − nηθk∇f(xw
k )− x∗‖2 + ηnL‖xw

k − xk‖2,

where the second term is due to Assumption 2. From
Lemma 8, if 0 < η < 2

nL
< 2

nLθk
, we can bound the first

term on the right hand side and obtain

√
n‖xw

k − nηθk∇f(xw
k)− x

∗‖2 ≤
√
nχk‖xw

k − x
∗‖2 = χk‖rk‖2,

where

χk =max{|1− nηθkµ|, |1− nηθkL|}
=1− nηθ(k)µ ≤ 1− η

µ

nnC−1

for η < 1
nL

< 1
nLθk

. Going back to Eq. (19),

‖rk+1‖2 ≤η
√
n‖s̃w

k‖2 + χk‖rk‖2 + ηnL‖x̃w
k‖2

≤ηnL‖x̃w
k‖2 +

(
1− η

µ

nnC−1

)
‖rk‖2 + η

√
n‖s̃w

k‖2,

and the lemma follows.

E. Proof of Lemma 4.

Proof: From Eq. (6c), we have

sk+1 =R(C,k−(C−1))sk−(C−1)

+
C−1∑

l=0

R(l,k−(l−1))(V
−1
k−(l−1) ⊗ Ip)zk−(l−1).

Applying triangle inequality, we get

‖s̃w
k+1‖2 = ‖((In − 1nv

⊤
k+1)⊗ Ip)sk+1‖2

≤‖((In − 1nv
⊤
k+1)⊗ Ip)R(C,k−(C−1))sk−(C−1)‖2

+

C−2∑

l=−1

‖((In − 1nv
⊤
k+1)⊗ Ip)R(l+1,k−l)(V

−1
k−l ⊗ Ip)zk−l‖2,

where R(l,k−l) = Inp for l ≤ 0. Therefore, ∀ k ≥ C − 1,

‖s̃w
k+1‖2 ≤γB‖((In − 1nv

⊤
k−(C−1)

)⊗ Ip)sk−(C−1)‖2
+QB

∑C−2
l=−1 ‖(V −1

k−l ⊗ Ip)zk−l‖2,

where the second term follows [11, Lemma 4(c)]. With the

help of [18, Corollary 2(b)] and Corollary 2, we have

‖s̃w
k+1‖2 ≤γB‖s̃w

k−(C−1)
‖2 + nnCQB

∑C−1
l=0 ‖zk−(l−1)‖2.

From Assumption 2, the summation in the second term can

be bounded as follows:

∑C−1
l=0 ‖zk−(l−1)‖2≤L

∑C−1
l=0 ‖xk−(l−1) − xk−l‖2.

Furthermore,

‖xk−(l−1) − xk−l‖2
=
∥∥(Ak−l − Inp)

(
xk−l − (1nφ

⊤
k−l ⊗ Ip)xk−l

)
− ηyk−l

∥∥
2

≤‖Ak−l − Inp‖2‖x̃w
k−l‖2 + η‖yk−l‖2

Summing over l leads to

C−1∑

l=0

‖xk−(l−1) − xk−l‖2 ≤2
√
n‖x̃w

k−(C−1)‖2 + η‖yk−(C−1)‖2

+

C−2∑

l=0

(
2
√
n‖x̃w

k−l‖2 + η‖yk−l‖2
)
.

From Lemma 1, we have ∀ k ≥ C − 1:

‖s̃w
k+1‖2 ≤m(2

√
n+ ηLn) (‖x̃w

k−(C−1)
‖2 +

∑C−2
l=0 ‖x̃w

k−l‖2)

+ ηnmL (‖rk−(C−1)‖2 +
∑C−2

l=0 ‖rk−l‖2)

+ (ηm+ γB)‖s̃w

k−(C−1)
‖2 + ηm

∑C−2
l=0 ‖s̃w

k−l‖2,

and the lemma follows.

F. Proof of Lemma 5

Proof: Based on the successive application of Schur’s

determinant identity [52], [58], the characteristic polynomial

of M0 is given by (−1)C(λ− 1)(γA−λC)(γB −λC)λ(C−1).
Given that γA, γB ∈ (0, 1), the spectral radius of M0 is 1
and the corresponding eigenvalue, λ = 1, is simple. We now

proceed to find the corresponding right and left eigenvectors, u

and w, respectively.
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By decomposing u and w as follows,

u =



u1

...

uC


 , w =



w1

...

wC


 ,

where each ui,wi is in R
3, from M0u = u, we get

γA[u
C ]1 = [u1]1, ui = ui+1, 1 ≤ i ≤ C − 1,

resulting in [ui]1 = 0, ∀ i. Furthermore,

γB [u
C ]3 + 2m

√
n

C∑

i=1

[ui]1 = [u1]3.

Therefore, γB [u
C ]3 = [u1]3 which implies [ui]3 = 0, ∀ i. The

entries [ui]2 are free variables and we set them equal to 1, ∀ i.
Consequently, ui = u =

[
0 1 0

]⊤
and u = 1C ⊗ u.

Similarly, from w⊤M0 = w⊤, we have

2m
√
n[w1]3 + [wi+1]1 = [wi]1, i = 1, . . . , C − 1,

2m
√
n[w1]3 + γA[w

1]1 = [wC ]1.

Summing over all i, we obtain

2Cm
√
n[w1]3 + γA[w

1]1 = [w1]1. (20)

Furthermore,

[w1]2 + [w2]2 = [w1]2,
[w3]2 = [w2]2,

...

[wC ]2 = [wC−1]2,

[wC ]2 = 0,

resulting in [wi]2 = 0, ∀ 2 ≤ i ≤ C. Note that [w1]2 is a free

variable and we can set it equal to 1. Additionally,

[w2]3 = [w1]3,
[w3]3 = [w2]3,

...

[wC ]3 = [wC−1]3,

γB [w
1]3 = [wC ]3,

resulting in [wi]3 = 0, which from Eq. (20) implies [wi]1 = 0,

for all i. Consequently,

w⊤ =
[
0 [w1]2 = 1 0 0 · · · 0

]
.
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