
Decentralized Planning for Complex Missions
with Dynamic Communication Constraints

Sameera Ponda, Josh Redding, Han-Lim Choi, Jonathan P. How, Matt Vavrina and John Vian

Abstract— This paper extends the consensus-based bundle
algorithm (CBBA), a distributed task allocation framework pre-
viously developed by the authors, to address complex missions
for a team of heterogeneous agents in a dynamic environment.
The extended algorithm proposes appropriate handling of
time windows of validity for tasks, fuel costs of the vehicles,
and heterogeneity in the agent capabilities, while preserving
the robust convergence properties of the original algorithm.
An architecture to facilitate real-time task replanning in a
dynamic environment, along with methods to handle varying
communication constraints and dynamic network topologies, is
also presented. Simulation results and experimental flight tests
in an indoor test environment verify the proposed task planning
methodology for complex missions.

I. INTRODUCTION

Modern day network centric operations involve large
teams of agents, with heterogeneous capabilities, interacting
together to perform missions. These missions involve execut-
ing several different tasks such as conducting reconnaissance,
surveillance, target classification, and rescue operations [1].
Within the heterogeneous team, some specialized agents are
better suited to handle certain types of tasks than others. For
example, UAVs equipped with video can be used to perform
search, surveillance and reconnaissance operations, human
operators can be used for classification tasks, ground teams
can be deployed to perform rescue operations, etc. Ensuring
proper coordination and collaboration between agents in the
team is crucial to efficient and successful mission execution.
To this effect it is of interest to develop autonomous task
allocation methods to improve mission coordination.

Autonomous task allocation is a significantly complex
combinatorial problem (NP-hard) [6]. The task allocation
planner must simultaneously allocate a set of tasks among
a team of heterogeneous agents so as to optimize overall
mission efficiency and reduce costs incurred. These tasks
can have different locations and time-windows of validity
and may require coordinated execution between several
agents [4,10]. Furthermore, the planning architecture must
account for vehicle limitations, agent-task compatibility re-
quirements, and network configuration and communication
requirements. Fig. 1 depicts the structure of a real-time
autonomous task allocation architecture for a heterogeneous
team. The overall system involves a mission control center
responsible for defining a list of tasks that comprise the

S. Ponda, J. Redding, H.-L. Choi, B. Bethke, and J. P. How are with the
Dept. of Aeronautics and Astronautics, MIT, Cambridge, MA, {sponda,
jredding, hanlimc, jhow}@mit.edu

M. Vavrina and J. Vian are with Boeing R&T, Seattle, WA,
{matthew.a.vavrina, john.vian}@boeing.com

Fig. 1. Real-time task allocation architecture for a heterogeneous team
divided into sub-networks

mission, a decentralized network detection scheme to update
the network/sub-network structure in real-time, decentralized
task allocation planners that coordinate planning within each
sub-network, assigning tasks to the different agents, and
sensors and actuators to interact with the “World”. Given
up-to-date agent models, network configuration information,
and task lists, the decentralized planning process allocates
the resources (i.e. agents) to the respective tasks over some
planning horizon, thereby creating schedules for each of
the heterogeneous agents. This allocation is determined by
taking into account the availability and capabilities of the
agents up front, with the object of minimizing delays and
costs while improving mission efficiency. The planning loop
is executed in real-time and the agent models and network
configuration are updated as more information from the
world becomes available.

Previous literature on multi-agent multi-task allocation has
focused on many variants of the Traveling Salesman Problem
(TSP) and the Dynamic Vehicle Routing Problem (DVRP).
Extensive literature has focused on problems involving
DVRP with time-windows (DVRPTW) [18]. A few examples
include servicing impatient customers [16], where a cen-
tralized planning framework is used to distribute resources
to customers with strict service time-windows, and devel-
oping MILP frameworks and hybrid models for DVRPTW
problems [10,14]. Other work has focused on multi-agent
coordination in dynamic environments with applications for
teams of UAVs [4,7,8]. Many of these approaches involve
solving large, complex combinatorial optimization problems



to allocate resources and coordinate the behavior of multiple
heterogeneous agents.

For large teams of agents, centralized approaches quickly
become infeasible and decentralized architectures must be
adopted [8]. One class of decentralized combinatorial al-
gorithms involves using auction algorithms augmented with
consensus protocols to allocate tasks over a team of agents
while resolving conflicting assignments locally among the
agents [2,7,8,17]. Most of this previous multi-agent multi-
task allocation work does not consider team heterogene-
ity, dynamic environments or varying communication con-
straints. Literature on limited communication environments
includes several examples of maintaining network connec-
tivity through relay teams [12,15] and optimally placing
vehicles in order to maintain communication links [9]. While
these works address the challenges of dealing with communi-
cations in uncertain and dynamic environments, they restrict
networks of agents to always maintain connectivity, limiting
the scope of the theater of operation. In realistic mission
scenarios, communication links are broken and created in
real-time and teams of agents can reconfigure themselves
into different network/sub-network structures.

This paper presents a decentralized task allocation algo-
rithm for a network of heterogeneous agents that simultane-
ously allocates tasks with known time-windows of validity to
all agents in the heterogeneous team. A real-time replanning
architecture is also implemented to handle changes in the
environment and varying communication constraints, and
different strategies to execute distributed planning over sub-
networks are proposed and compared.

II. DISTRIBUTED TASKING WITH TIME WINDOWS

A. Problem Statement

Given a list of Nt tasks and Na agents, the goal of the
task allocation algorithm is to find a conflict-free matching
of tasks to agents that maximizes some global reward. An
assignment is said to be free of conflicts if each task is
assigned to no more than one agent. The global objective
function is assumed to be a sum of local reward values,
while each local reward is determined as a function of the
tasks assigned to that particular agent.

The task assignment problem described above can be
written as the following integer (possibly nonlinear) program:

max

Na∑
i=1

⎛⎝ Nt∑
j=1

cij(�ij(pi(xi)))xij

⎞⎠
subject to:

Nt∑
j=1

xij ≤ Lt, ∀i ∈ ℐ

Na∑
i=1

xij ≤ 1, ∀j ∈ J (1)

xij ∈ {0, 1}, ∀(i, j) ∈ ℐ × J

where the binary decision variable xij is 1 if agent i is
assigned to task j, and xi ∈ {0, 1}Nt is a vector whose
j-th element is xij . The index sets are defined as ℐ ≜

{1, . . . , Na} and J ≜ {1, . . . , Nt}. The vector pi ∈ (J ∪
{∅})Lt represents an ordered sequence of tasks for agent i;
its k-th element is j ∈ J if agent i conducts j at the k-
th point along the path, and becomes ∅ (denoting an empty
task) at the k-th point if agent i conducts less than k tasks.
Lt is a limit on the maximum amount of tasks that can be
assigned to an agent. The summation term in brackets in the
objective function represents the local reward for agent i.

Key assumptions underlying the above problem formula-
tion are:

1) The score cij that agent i obtains by performing task j
is defined as a function of the arrival time �ij at which
the agent reaches the task (or possibly the expected
arrival time in a probabilistic setting).

2) The arrival time �ij is uniquely defined as a function
of the path pi that agent i takes.

3) The path pi is uniquely defined by the assignment
vector of agent i, xi.

Many interesting design objectives for multi-agent deci-
sion making problems feature scoring functions that satisfy
the above set of assumptions. The time-discounted value of
targets [3,5] is one such example, in which the sooner an
agent arrives at the target, the higher the reward it obtains.
However, in more complex missions scenarios, it may not be
desirable to visit the target as soon as possible. For example,
if the task is to re-investigate a previously observed target at
some scheduled time in the future, a more reasonable choice
of score function would have its maximum at the desired
re-visiting time and lower values at re-visit times around the
optimal time. This work develops methodologies to address
these types of complicated scoring structures.

B. Consensus-Based Bundle Algorithm

Our approach to this complex combinatorial optimization
planning problem is inspired by the Consensus-Based Bun-
dle Algorithm (CBBA) [8]. CBBA is a distributed auction
protocol that provides provably good approximate solutions
for multi-agent multi-task allocation problems over networks
of agents. CBBA consists of iterations between two phases: a
bundle building phase where each vehicle greedily generates
an ordered bundle of tasks, and a consensus phase where
conflicting assignments are identified and resolved through
local communication between neighboring agents. There are
several core features of CBBA that can be exploited to
develop an efficient planning mechanism for heterogeneous
teams. First, CBBA is a decentralized decision architecture,
which is a necessity for planning over large teams due
to the increasing communication and computation overhead
required for centralized planning with a large number of
agents. Second, CBBA is a polynomial-time algorithm. The
worst-case complexity of the bundle construction isO(NtLt)
and CBBA converges within max{Nt, LtNa}D iterations,
where D is the network diameter (always less than Na).
Thus, the CBBA framework scales well with the size of
the network and/or the number of tasks (or equivalently,
the length of the planning horizon). Third, various design
objectives, agent models, and constraints can be incorporated



by defining appropriate scoring functions. If the resulting
scoring scheme satisfies a certain property called diminishing
marginal gain (DMG) [8], a provably good feasible solution
is guaranteed. The next section describes the extensions to
this algorithm to explicitly account for task time-windows
of validity and addresses a few implementation details for
using CBBA to plan for heterogeneous teams of autonomous
vehicles.

C. Scoring Functions with Time Windows

Definition 1 To begin the discussion on incorporating scor-
ing functions with more complicated temporal dependencies,
this work defines the following entities:

1) Score Profile (sj(t)): The score profile sj(t) represents
the reward an agent gets from task j when it arrives
at the task at time t, and is based on the value of the
task, Rj , and any time penalty associated with the task.
An example score profile is sj(t) = e−�j(t−tjstart )Rj ,
where (t − tjstart

) is the difference between the task
start time and the agent arrival time, and �j > 0 is
a discount parameter to penalize late arrivals. Without
time discounting the score profile is sj(t) = Rj .

2) Time Window (uj(t)): The time window of validity for
a task represents the time in which the task is allowed
to be started. For task j this window is defined as

uj(t) =

{
1, tjstart

≤ t ≤ tjend

0, otherwise.

Using time windows for tasks provides a framework
to penalize early arrivals as well as late arrivals.

The score an agent receives for a task is a function of his
arrival time at the task location, �ij , and can be computed
as cj(�ij) = sj(�ij)uj(�ij). The arrival time, �ij , is in turn
a function of the path the agent has taken before reaching
task j. Given a path pi which is composed of tasks, and a
corresponding set of best times �★ik(pi) for all k ∈ pi, the
bidding process can be described as follows. For each task
j /∈ pi, the best time to do task j can be found by solving
the following problem,

�★ij(pi) = argmax
�ij∈[0,∞)

cj(�ij(pi ⊕ j))

subject to: �ik(pi ⊕ j) = �★ik(pi), ∀k ∈ pi

(2)

where ⊕ signifies inserting task j into path pi without
shuffling the order of tasks already in pi. The constraint
states that the insertion of the new task j into path pi cannot
impact the current arrival times for the tasks already in the
path. The path is updated by inserting j in the best location,
pi ← (pi ⊕ j). The best time and score for task j are then
saved as �ij(pi) = �★ij and cij(�ij(pi)) = cj(�

★
ij).

An important property for convergence is the diminishing
marginal gain property (DMG). In words, DMG means that
the score for a task not in the path cannot increase as more
tasks are added to the path, i.e., ∀j /∈ pi

cij(�ij(pi ⊕ j)) ≥ cij(�ij(p′i ⊕ j))

where p′i = {pi ⊕m}.
Consider the calculation of the best arrival time for task j

when the current path is p′i instead of pi. Then, the following
optimization needs to be solved:

�★ij(pi) = argmax
�ij∈[0,∞)

cj(�ij(p
′
i ⊕ j))

subject to: �ik(p′i ⊕ j) = �★ik(p′i), ∀k ∈ p′i

(3)

The constraint can be rewritten recursively as the following
set of constraints,

�ik(pi ⊕m⊕ j) = �★ik(pi ⊕m) = �★ik(pi), ∀k ∈ pi (4)
�im(pi ⊕m⊕ j) = �★im(pi ⊕m). (5)

Therefore, calculation of �★ij(p
′
i) involves solving an opti-

mization with the same objective function but an additional
constraint (5). Thus, the optimal objective value for (3) can-
not be greater than that for (2); i.e. cj(�★ij(pi)) ≥ cj(�★ij(p′i)),
which means the DMG property is satisfied. In other words,
with the arrival time defined by the optimization in (2), the
score function satisfies DMG regardless of the details of the
score profiles.

D. CBBA Implementation Details

A few other implementation details for defining the prob-
lem in CBBA involve accounting for agent-task compatibility
and for expected fuel consumption while executing the task.
In order to account for the heterogeneous nature of the team,
agents can be classified according to their capabilities and
tasks according to their requirements. A set of constraints
can then be incorporated into the planning process specifying
which types of agents can do which types of tasks (i.e. UAV’s
can perform aerial surveillance, ground teams can perform
rescue operations, etc). A straightforward way to incorporate
these constraints is by making the agent’s bid zero for tasks
with which it is not compatible.

To account for fuel consumption, the score function can
be augmented with a fuel penalty due to travel distance,

cj(�
★
ij) = e−�j(�

★
ij−tjstart )Rjuj(�

★
ij)− FiΔDij(pi)

where Fi is the cost of fuel per meter incurred by agent i
and ΔDij(pi) is the distance traveled by the agent to get
to the task location from its previous location. To ensure
satisfaction of DMG, a heuristic distance, ΔD′ij , representing
the distance from the vehicle’s initial position to the task
location, was used instead. Monte Carlo simulation results
verified that this type of heuristic penalty produced equally
efficient task allocation assignments as those obtained using
the actual travel distance ΔDij(pi), while guaranteeing
convergence of the algorithm to conflict-free assignments.

III. DISTRIBUTED PLANNING IN AN UNCERTAIN AND
DYNAMIC ENVIRONMENT

A. Real-Time Replanning Architecture

In order to ensure that the task allocation remains relevant
in a dynamically changing environment it is necessary to
replan in real-time. Replanning at a fast enough rate ensures



that vehicle states and network topologies are up to date,
new tasks are accounted for and older or irrelevant tasks are
pruned, and that the impact of discrepancies between the
agent models in the planner and the actual agent behavior
is minimized. Figure 1, shown in Section I, depicts the
overall system architecture. The vehicle models are updated
in real-time using vehicle states from the world, decentralized
network detection is performed locally by agents through
communication with their immediate neighbors, and the
task list is maintained by adding new pop-up tasks and
pruning completed tasks. The “World” can represent either a
simulated world or a real flight test environment as described
in Section III. The decentralized planning algorithm runs
in real-time and leads to a deconflicted task allocation if
the network maintains connectivity. If the network becomes
disconnected, agents will not know about other agents’
bids outside of their sub-network, nor will they be able to
communicate with these other agents in order to execute
consensus. In this situation the planner may not converge
and multiple agents from different sub-networks might bid
on the same tasks leading to conflicting assignments. The
next section describes these communication challenges and
proposes methodologies for handling network disconnects.

B. Dynamic Network Handling Protocols

In a dynamic mission environment, it is likely that some
communication links may break and other new ones may be
formed. For example, if vehicles need to be within a certain
distance in order to communicate (communication radius),
but if there exist some tasks such that a vehicle is forced
to travel outside of this communication radius, then the
vehicle must lose connectivity with its neighbors in order to
accomplish these tasks. In these situations, since the vehicle
is not able to communicate its current winning bids, the next
round of replanning may assign that agent’s tasks to other
agents. This is undesirable since sending multiple agents to
do the same tasks leads to unnecessary fuel consumption.
Furthermore, it is assumed that when vehicles get within
the prescribed communication radius they will be able to
resolve the assignment conflict, but if the planner replan rate
is not fast enough, they may not be able to deconflict in
time, possibly leading to collisions. It is necessary, therefore,
to have a method to ensure that task assignments remain
conflict-free in the presence of network disconnects.

There are several possible methods of handling varying
network topologies. Depending on the bandwidth, level of
detail, and availability of communications with the mis-
sion control center, different methods for distributing tasks
amongst the various sub-networks can be adopted. This work
compares a few of these, discussing the advantages and
drawbacks of each. First we consider the default behavior,
where all agents know about and are free to bid on any task
in the entire task list (No task list adjustment). If the network
is disconnected, the task allocation algorithm will run locally
within each sub-network, and the global allocation may
contain conflicting assignments between agents in different
sub-networks. Next, we consider a deconfliction protocol that

requires that the mission control center distribute all the
tasks amongst the agents by assigning tasks to the closest
compatible agent to the particular task (Central task list
adjustment). Agents then run the task allocation algorithm
locally within their sub-network over the set of tasks that
are assigned to agents in that sub-network. This approach
guarantees conflict-free assignments but requires the mission
control center to redistribute the entire task list amongst the
agents every time a replan is required, which for realistic
missions would involve significant overhead and communi-
cation, limiting the real-time performance of the team. A
last approach considered involves notifying only the closest
compatible agent to the task every time a new task is created,
and replanning locally within each sub-network over the set
of tasks that are currently in the paths and in the new task
lists for all agents within that sub-network (Local task list
adjustment), which also guarantees conflict-free assignments.
Both the central and local task list adjustment methods re-
quire that the mission control center maintain updated agent
information, however, the local adjustment method involves
significantly less overhead than the central method, since task
assignments from the mission control center only occur once
per new task. The next section describes simulation results
comparing these three different methods.

C. Comparison of Different Network Handling Protocols

The scenario used to test the different task adjustment
approaches described above involved a team of 12 heteroge-
neous agents (6 UAVs and 6 ground robots). The simulation
was initialized with 12 UAV tasks with random start times,
40 sec time windows and 5 sec durations. Once the UAV
tasks were started a secondary ground robot rescue task
was created for each UAV task. Additional pop-up UAV
tasks were created at 5 sec intervals and the task allocation
algorithm replanned every 2 sec. The simulation consisted
of a mission control center, a network detector and local
agent simulations. The network detector used the vehicle
positions and a communication radius parameter to determine
if two vehicles were able to communicate and returned a list
of subnetworks. The local agent simulations implemented
models of the vehicles to execute the tasks in each agent’s
path. The mission control center maintained the list of tasks
by creating pop-up tasks and pruning completed tasks from
the list, in addition to implementing the responsibilities
for the different task adjustment methods described in the
previous section. The overall mission score was obtained by
adding the individual scores for the agents as described in
Section II-D

Figure 2 presents a snapshot of the simulation interface
showing the agent paths and schedules over the course of the
simulation. The display on the left shows the agents and their
proposed paths and the tasks along with a countdown to their
expiry time. The right display shows the agent schedules,
including the past history and the proposed future schedule
(on either side of the time line). The time-windows of validity
for the tasks are shown (in black) along with the actual time
that the agent executed the task (colored block).



Fig. 3. Comparison of mission scores, completed tasks and fuel consumption as a function of communication radius for different communication constraint
handling strategies

Fig. 2. Simulation showing 12 agents (6 UAVs & 6 UGVs) bidding on
and accomplishing a dynamic set of tasks

Using this simulation infrastructure as a testbed, the three
methods described in the previous section were implemented,
and Monte Carlo simulations of 200 iterations were exe-
cuted to compare the mission performance for these three
approaches under different communication radii. Figure 3
shows the overall mission scores, the number of completed
tasks and the team fuel consumption as a function of the
communication radius normalized by the maximum distance
of the theater of operation. The results show that for all three
methods the mission score increases as the communication
radius increases, since agent coordination improves with
communication. With a normalized communication radius
of about 0.3 and higher and with a team of 12 agents,
the network remains connected in most cases and all three
methods yield similar performance. With less agents this
communication radius threshold would be higher since, for
a given communication radius, it is more likely that the net-
work would lose connectivity with less agents. The baseline
case (No adjustment) is seen to have the lowest score and
highest fuel consumption, especially at low communication
radii. This is because without task list adjustments there will
be many assignment conflicts between different subnetworks,
resulting in unnecessary fuel usage from having multiple
agents attempt to perform the same tasks as well as a
lower number of overall completed tasks (since agents are
busy traveling to tasks that they will never accomplish).

As the connectivity decreases and the number of subnet-
works increases this problem becomes worse. With task list
adjustments the mission performance greatly improves as
seen in the results for both the central and local task list
adjustment methods. Since the task allocation is guaranteed
to be conflict-free over the entire team there is no excess
fuel usage and the total number of completed tasks is higher
since the coordination of the team is improved. The central
adjustment method has lower total fuel consumption than
the local adjustment method, however, due to the amount
of overhead required by the mission control center this
strategy does not scale well as the size of the team increases.
The local adjustment method achieves a similar number of
completed tasks as the central adjustment method, and al-
though the fuel usage is slightly higher, the overhead required
to implement this local adjustment strategy is significantly
lower. The next section describes the implementation of real-
time decentralized planning within local sub-networks on
actual vehicles in an indoor flight facility.

D. Complex Mission Execution in a Real Flight Environment

Flight experiments were conducted at the Boeing Ve-
hicle Swarm Technology Laboratory (VSTL) [11] and at
MIT’s Real-time indoor Autonomous Vehicle test ENviron-
ment (RAVEN) [13,19], shown in Figure 4. These indoor
flight facilities are equipped with a motion-capture system
which yields accurate, high-bandwidth position and attitude
data for all tracked vehicles within the flight volume. The
environmental conditions of these indoor facilities can be
carefully controlled for flight testing, and can range from
ideal to wind-induced. The controlled environment is avail-
able 24/7 since it is not dictated by weather, poor visibility,
day/night cycles, or other external factors.

Flight experiments were conducted for a heterogeneous
team of 6 agents (3 quad-rotor air vehicles and 3 ground
vehicles), with a normalized communication radius of 0.1.
CBBA with time-windows was used to perform the task
allocation and the different replanning architectures with
task list adjustments described in the previous sections were
implemented. The flight results, shown in Table I, exhibit
similar trends to those shown in the simulation results.
Both the central and local adjustment methods achieved



Cameras

Processing

Position reference system

Command 
and control

Ground computers

Vehicles

Fig. 4. Boeing Vehicle Swarm Technology Laboratory [11] (top) and MIT
RAVEN Multi-Vehicle Testbed [19] (bottom)

TABLE I
FLIGHT TEST RESULTS

Adjustment Method Score Tasks Fuel
No Adjustment 897.32 22 111.35
Central Adjustment 1561.44 37 62.79
Local Adjustment 1458.46 34 71.51

similar scores and number of tasks completed. The central
adjustment method performed slightly better than the local
adjustment method, with a lower overall fuel consumption
as expected, but with a higher computational and commu-
nication overhead. With no task list adjustments the team
performance was fairly poor with more fuel consumed and
less overall tasks completed.

IV. CONCLUSION

This paper presents a real-time decentralized task alloca-
tion algorithm for a team of heterogeneous agents operating
in a complex environment. The algorithm described is an
extension of the CBBA planning algorithm, a polynomial-
time decentralized auction protocol that provides provably
good approximate solutions for multi-agent multi-task allo-
cation problems. This paper extends the CBBA algorithm to
explicitly account for tasks with future time-windows of va-
lidity and heterogeneous agent-task compatibility constraints.
A real-time replanning architecture is presented along with
task list adjustment methods to handle dynamic network
topologies and advantages and drawbacks for the different
methods are discussed. Implementing local task list adjust-

ments is shown to drastically improve mission performance
under low communication environments, with only marginal
increases in required overhead. Simulation and experimental
flight tests have verified that this decentralized algorithm
can successfully enable a heterogeneous team to perform
complex missions in real-time dynamic environments under
varying communication constraints.

ACKNOWLEDGMENTS

This research was supported in part by AFOSR (FA9550-
08-1-0086), MURI (FA9550-08-1-0356), and Boeing Re-
search and Technology.

REFERENCES

[1] Unmanned aircraft systems roadmap, 2005-2030. Technical report,
Office of the Secretary of Defense, August 2005.

[2] A. Ahmed, A. Patel, T. Brown, M. Ham, M. Jang, and G. Agha. Task
assignment for a physical agent team via a dynamic forward/reverse
auction mechanism. In International Conference on Integration of
Knowledge Intensive Multi-Agent Systems, 2005.

[3] M. Alighanbari and J. P. How. Decentralized task assignment for
unmanned aerial vehicles. In Proceedings of the 44th IEEE Conference
on Decision and Control, and the European Control Conference, 2005.

[4] M. Alighanbari, Y. Kuwata, and J. How. Coordination and control
of multiple uavs with timing constraints and loitering. In American
Control Conference, 2003. Proceedings of the 2003, volume 6, pages
5311–5316 vol.6, June 2003.

[5] J. Bellingham, M. Tillerson, A. Richards, and J. How. Multi-Task
Allocation and Path Planning for Cooperating UAVs. In Proceedings
of Conference of Cooperative Control and Optimization, Nov. 2001.

[6] D. Bertsimas and R. Weismantel. Optimization over integers. Dynamic
Ideas Belmont, MA, 2005.

[7] L. Bertuccelli, H. Choi, P. Cho, and J. How. Real-time Multi-UAV
Task Assignment in Dynamic and Uncertain Environments.

[8] H.-L. Choi, L. Brunet, and J. P. How. Consensus-based decentralized
auctions for robust task allocation. IEEE Trans. on Robotics, 25
(4):912 – 926, 2009.

[9] C. Dixon and E. Frew. Maintaining optimal communication chains in
robotic sensor networks using mobility control. Mobile Networks and
Applications, 14(3):281–291, 2009.

[10] R. Dondo and J. Cerdá. An MILP framework for dynamic vehicle
routing problems with time windows. Latin American Applied Re-
search, 36(4):255–261, 2006.

[11] E. Saad, J. Vian, G.J. Clark and S. Bieniawski. Vehicle Swarm Rapid
Prototyping Testbed. In AIAA Infotech@Aerospace, Seattle, WA, 2009.

[12] A. Ibrahim, K. Seddik, and K. Liu. Improving connectivity via
relays deployment in wireless sensor networks. In Proc. IEEE
Global Telecommunications Conference (Globecom07), pages 1159–
1163, 2007.

[13] J. How, B. Bethke, A. Frank, D. Dale, and J. Vian. Real-time indoor
autonomous vehicle test environment. Control Systems Magazine,
28(2):51–64, April 2008.

[14] Q. Jun, J. Wang, and B. Zheng. A Hybrid Multi-objective Algorithm
for Dynamic Vehicle Routing Problems. Lecture Notes in Computer
Science, 5103:674–681, 2008.

[15] H. Nguyen, N. Pezeshkian, M. Raymond, A. Gupta, and J. Spector.
Autonomous communication relays for tactical robots. In Proceedings
of the International Conference on Advanced Robotics (ICAR), 2003.

[16] M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler. A stochastic and
dynamic vehicle routing problem with time windows and customer
impatience. Mobile Networks and Applications, 14(3):350–364, 2009.

[17] S. Sariel and T. Balch. Real time auction based allocation of tasks
for multi-robot exploration problem in dynamic environments. In
Proceedings of the AIAA Workshop on ”Integrating Planning Into
Scheduling”, 2005.

[18] P. Toth and D. Vigo. The vehicle routing problem. Society for
Industrial Mathematics, 1987.

[19] M. Valenti, B. Bethke, G. Fiore, J. How, and E. Feron. Indoor Multi-
Vehicle Flight Testbed for Fault Detection, Isolation, and Recovery.
In Proceedings of the AIAA Guidance, Navigation, and Control
Conference and Exhibit, Keystone, CO, August 2006.


