
Research Article

Decentralized Private Information Sharing Protocol on
Social Networks

Shu-ChuanChu,1LiliChen,1SachinKumar ,2SaruKumari ,3 Joel J.P.C.Rodrigues ,4,5

and Chien-Ming Chen 1

1College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
2Department of Computer Science and Engineering, Ajay Kumar Garg Engineering College, Ghaziabad, India
3Department of Mathematics, Chaudhary Charan Singh University, Meerut, India
4Federal University of Piauı́, 64049-550 Teresina, PI, Brazil
5Instituto de Telecomunicações, Lisboa 1049-001, Portugal

Correspondence should be addressed to Chien-Ming Chen; chienmingchen@ieee.org

Received 5 November 2019; Accepted 6 January 2020; Published 5 June 2020

Guest Editor: Isaac Woungang

Copyright © 2020 Shu-Chuan Chu et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Social networks are becoming popular, with people sharing information with their friends on social networking sites. On many of
these sites, shared information can be read by all of the friends; however, not all information is suitable for mass distribution and
access. Although people can form communities on some sites, this feature is not yet available on all sites. Additionally, it is
inconvenient to set receivers for a message when the target community is large. One characteristic of social networks is that people
who know each other tend to form densely connected clusters, and connections between clusters are relatively rare. Based on this
feature, community-finding algorithms have been proposed to detect communities on social networks. However, it is difficult to
apply community-finding algorithms to distributed social networks. In this paper, we propose a distributed privacy control
protocol for distributed social networks. By selecting only a small portion of people from a community, our protocol can transmit
information to the target community.

1. Introduction

Social networks are increasing in popularity, and people are
sharing information with their friends on social networking
sites (SNS). Most of these sites treat all contacts equally by
default. For example, if a person does not sort his/her friends
into groups, subsequently all of the person’s friends can view
his/her messages posted on a wall. Even if SNS provide a
grouping function, previous works have indicated that
sorting friends is inconvenient [1, 2]. In the real world,
individuals have distinct types of relationships with different
people. +e information a user wishes to share with a group
of people may not be appropriate for people in other groups,
even if they are all the user’s friends.

Hence, many privacy protection mechanisms have been
proposed [3–6]. +ese mechanisms, however, require users

to set access rights for all their friends in advance. Although
this provides accurate solutions for deciding who should
have access to certain information, it is inconvenient for a
user to manage them, especially when a user has many
friends. People may not maintain all the groups that they
join in real life on SNS. In addition, even though many social
networking sites provide group settings, famous SNS such as
Twitter do not have this feature yet. Jones and O’Neill [2]
suggested providing group-based privacy using naturally
organized groups, which reduces the burden of
configurations.

A naturally organized group is a densely connected
cluster on a social graph. People in real life tend to form
groups. For example, you and your high school classmates
form a group; you and your coworkers form another group;
members of a club you belong to form yet another group. As

Hindawi
Security and Communication Networks
Volume 2020, Article ID 7137480, 12 pages
https://doi.org/10.1155/2020/7137480

mailto:chienmingchen@ieee.org
https://orcid.org/0000-0002-5324-2156
https://orcid.org/0000-0003-4929-5383
https://orcid.org/0000-0001-8657-3800
https://orcid.org/0000-0002-6502-472X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7137480

indicated in previous studies, people who recognize each
other in real life are likely to establish connections on SNS.
Mayer and Puller [7] reported that only 0.4% of connections
were merely online interactions; therefore, it is safe to as-
sume that the connections on SNS between you and your
friends and those between your friends and your friends’
friends form clusters. While many ties exist inside a cluster,
only a few ties exist across different clusters. +ese clusters
become meaningful groups because connections in a cluster
are established for the same reason.

Typical community-finding algorithms only function
when a user have access to his/her own ego-network, which
includes connections between the user and his/her friends
(Level 1 friends) and between the user’s friends and their
friends (Level 2 friends). However, on many SNS such as
Facebook, a user does not have access to other people’s
relationship paths. In theory, a user may acquire all his/her
friends’ connection by asking his/her friends to use a
Facebook application written to collect data, which is almost
impossible to achieve.

Another approach to protect a user’s privacy is to es-
tablish a decentralized social network, that is, a social net-
work in which a user only knows his/her direct connections.
Although this is not yet popular, it has been discussed in
Safebook [8] and Helloworld [9]. Furthermore, several
studies have presented decentralized social network schemes
[10]. In this type of social network, it is impossible to learn
other people’s connections in advance.

Herein, we first present previous studies regarding
private information sharing in social networks; subse-
quently, we propose a new private-information sharing
protocol used on decentralized social networks. Our pro-
tocol, which is based on secret sharing, utilizes character-
istics of social networks. Our protocol exhibits the following
properties. First, to utilize naturally organized groups,
communities must be located using only information a user
can acquire. We assume that the information a user can
acquire is the list of her Level 1 friends. Next, this protocol
does not leak the friendship connections of the source to any
users. Furthermore, this protocol can be adapted to cen-
tralized social networks.

+e remainder of this paper is organized as follows. We
introduce the background and related studies in Section 2,
present the model of our study in Section 3, introduce and
analyze our protocol in Section 4, describe our experiments
in Section 5, discuss the results in Section 6, and provide the
conclusions in Section 7.

2. Background and Related Studies

2.1. Privacy Control on SNS. Security and privacy [11–14] are
two important topics that are often discussed in various
kinds of applications and environments [15–20].+e privacy
problem on SNS has been reported in previous studies.
Persona [3] combined attribute-based encryption with the
traditional public-key approach to provide user-defined
access control on SNS. flybynight [4] supported secure one-
to-one and one-to-many communications on Facebook by
applying RSA and El Gamal to encrypt and decrypt

information. NOYB [5] protects private data by partitioning
data into atoms and substituting these atoms with another
user’s atoms pseudorandomly. Lockr [21] provides access
control on Flickr. However, these mechanisms require users
to define the access ability for each of their friends in ad-
vance. By placing each of the user’s friends into a predefined
community, a user can share private information to only
those in the target groups. +ey use cryptography to protect
private information. +is results in a complicated key ex-
change, and it will be difficult to revoke the keys when the
connections on SNS are canceled.

2.2. Community-Finding Algorithms. Searching for com-
munities on complex networks is a well-studied topic.
Traditional methods based on graph partitioning, such as
Kernighan–Lin’s algorithm [22], divide a graph into n
clusters. Modern methods, such as Newman–Girvan’s al-
gorithm [23], utilize “modularity” to define the stop crite-
rion. Many community-finding algorithms [24, 25] based on
modularity demonstrate good partition results when mod-
ularity is maximized. CONGA [26] improved the original
Newman–Girvan algorithm so that overlapping groups
could be detected. Other algorithms such as those in [27, 28]
have been introduced to detect overlapping groups. +e
algorithms introduced above require a user to know the
entire network data. However, it is infeasible for a user to
obtain full network data on SNS or theWWW. Additionally,
local community-finding algorithms have been proposed.
Clauset [29] and others [30] proposed the local modularity
method. Bagrow [31] proposed the “outwardness” method.

+e algorithms mentioned above require users to know
their Level 1 and Level 2 friends. However, on mobile
networks, a user cannot easily obtain other people’s con-
nections. In addition, SNS such as Facebook restrict users
from accessing other people’s contextual information, which
renders it difficult to apply these methods.

2.3. Group Communication. Applications on social net-
works are often related to group communication. Some have
already utilized the naturally organized community. Grob
et al. [1] conducted a survey and concluded that group
communication occurred frequently, but grouping functions
were rarely used. In their survey, only 16% of users used the
built-in grouping functions on mobile phones. +ey
implemented Cluestr and applied CONGA [26] to recom-
mend friends within a community. Jones and O’Neill
proposed using implicit communities that appeared on
people’s social graph for privacy control [2]. +ey used the
SCAN algorithm [32] to detect communities. Li et al. [33]
proposed a provably secure group key agreement scheme
with privacy preservation for online social networks using
extended chaotic maps.

3. Problem Statement and System Model

We model an online social network as a simple graph
G � (V, E), in which V is a set of users and E is a set of
connections on that online social network. Furthermore, we

2 Security and Communication Networks

model a real-life social network as a simple graph
G′ � (V′, E′), where V′ is a set of people and E′ is a set of
acquaintance links between each person. We assume that a
bijection function A: V′⟶ V exists. In other words, we
ignore people who do not exist on the online social network.
We model a real-life community C′ ⊂ V′. We assume that a
corresponding naturally formed communityC ∈ G exists for
every community C′ ∈ G′. +at is, a bijection function
C: C′⟶ C exists.

We define a friend set F(u) as a set of nodes] ∈ G, in
which for each v ∈], e � (u, v) exists.

3.1. Problem Statement. +e goal of our protocol is to enable
u ∈ V to transmit a secret m to C′ � c1, c2, . . . , cn{ } ⊂ V′,
where a corresponding C ⊂ V exists. For each ci ∈ C′, a
corresponding node ci ∈ C exists. Transmitting m to the
nodes in C is equivalent to transmitting it to C′.

3.2. Desired Properties. Our protocol exhibits the following
properties.

3.2.1. Decentralized. Our protocol can be applied to
decentralized social networks.

3.2.2. Privacy. Our protocol should protect all nodes’
identities and link privacy. A node’s u’s link privacy is the
knowledge of e � (u, v), v ∈ F(u). It is noteworthy that F(u)
means the friends of u. Its identity privacy is the knowledge
of u’s existence.

3.2.3. Robustness. Our protocol should adapt to constantly
changing social networks. +e set of users who receive the
private information should conform to the current social
network topology.

3.3. Adversary Model. Herein, we define a semihonest ad-
versary model. In this model, a node g follows the protocol
but may wish to discover e � (u, v) ∈ E, u, v ∈ V, where
u≠g, v≠g, and g is not the sender on m.

For each v ∈ V, if the adversary g can identify any
e � (u, v) ∈ E, u≠g, then the link privacy of v is leaked.

For v ∈ V who sends a secret in G, if an adversary g can
identify the identity of v without acquiring the full secret,
then v’s identity is leaked. +at is, a node should learn the
source of a secret if and only if it receives the secret.

An adversary can be an intermediate node, receiver, or
stranger that does not receive any tokens.

4. Protocol

In this section, we propose and analyze our privacy control
protocol, known as the decentralized private information
sharing protocol (DPISP). +e DPISP allows a node to
distribute private information on social networks to a group
of nodes without setting community members in advance.
Table 1 describes the notations.

In the DPISP, nodes in G are divided into three parties:

(i) A source node sends a secret to C ⊂ V.
(ii) A receiver receives any part of the secret.

(iii) An intermediate node forwards any part of the
secret to his/her friends. An intermediate node is
also a receiver.

Although a source node u knows only F(u), it can easily
identify the role of each v ∈ F(u) in G′. For example, a node
knows who its classmates are and who its coworkers are. To
send information to a particular community C on G, u can
select representative nodes that belong to the corresponding
communityC′ inG′.+e nodes selected are the intermediate
nodes.

+e set of receivers is controlled by two parameters, n
and k, along with the intermediate nodes designated by the
source node. n is the number of intermediate nodes plus the
source node, and k indicates the number of connections a
receiver has between n and him/her to receive the full
message. Refer to Figure 1 for an example: the diamond
nodes indicate the source node. +e four square nodes are
the intermediate nodes (n � 5). If we set k � 4, only the
squares will have access to the full information. If we set
k � 3, both the squares and circles will have access to the full
message. If we set k � 2, even the triangles will have access to
the message.

4.1. Protocol Overview. To send a private message to a
community C, the source node us first divides the private
message into n partial message; subsequently, us sends one
token comprising partial information and a TTL tag d � 1
(the TTL tag is used to indicate if a token should be
propagated further) along with an identity tag, n and k, to
each of the intermediate nodes, keeping one for him/herself.
+e source node sends the token with d � 0 to all his/her
friends. Tokens with the same identity tag indicate that they
are the partial message of the same private message. +e
intermediate nodes save a copy of the tokens received from
us, decrease the TTL by 1, and subsequently propagate the
tokens to all their friends. +ose who receive k or more
tokens with the same identity tag can recover the private
message.

However, in the case above, the source node’s link
privacy is leaked. If an intermediate node e receives a token
directly from us and a token propagated by another inter-
mediate node e′ also sent from u, then e can acquire us’s
connections with other people. Assume that us sets k � 3;

Table 1: Notations.

Symbol Statements

ui Node id
F(ui) Friends of ui
U A set of nodes
(k, n)-SS (k, n) Secret sharing scheme
ti A token
m Original message
d TTL (time to live)

Security and Communication Networks 3

although e cannot recover the full message, he/she can still
discover that e′ has a connection with us. Because the token
sent directly from us has d � 1, e instantly knows that the
source node of this token is us. Furthermore, because us is
the origin of the token propagated from e′, the two tokens’
identity tag will be the same; therefore, e knows that the
token propagated from e′ is also sent from us and realizes
that a connection exists between us and e′.

To solve this privacy leakage problem, the identity of the
source node cannot be identified by receivers, unless they
can recover the private information.

4.2. DPISP. +e DPISP is based on secret sharing. In secret
sharing, a secret is divided to n parts; anyone who receives k
of n parts can recover the secret, while those who receive
fewer than k parts cannot recover the secret and learn
anything from the information they have received. We
applied Shamir’s secret-sharing scheme [34] in our protocol.
+e DPISP contains two phases: the propagation and re-
covery phases. +e detailed procedures of these two phases
are shown in Figures 2 and 3.

4.2.1. Shamir’s Secret Sharing. Shamir’s secret sharing
contains the following two schemes: the distribution scheme
(SS) and the reconstruction scheme (SS− 1). Figure 4 shows
the detailed functions.

A node runs SS(n, k, s) to generate the shares from the
secret s.+e input n indicates the number of shares it creates,
and k indicates the number of shares it has to recover the
secret.

In SS(n, k, s), a trusted dealer does the following:

(i) Randomly chooses k − 1 coefficients, denoted by
a1, a2, . . . , ak−1

(ii) Constructs a polynomial f(x) � s + a1x + · · · +
ak−1x

k− 1

(iii) Computes shares si by evaluating f(x) in n distinct
points

A node runs SS− 1(k,D) to recover the secret s. +e input
k indicates the number of shares it has to recover the secret;
the input D is a set of different shares denoted by

Figure 1: Diamond node is the source node, and square nodes are
the intermediate nodes.

Figure 2: Propagation phase.

Figure 3: Recovery phase.

Figure 4: Shamir’s secret sharing.

4 Security and Communication Networks

xi1, xi2, . . . , xij{ }, where 0< j< n. In SS− 1(D), a node adapts
Lagrange’s interpolation with the set D to reconstruct the

polynomial f′(x). If D contains k or more different shares,

f′(x) � f(x); otherwise, f′(x)≠f(x) and no information
is revealed from f′(x).

4.2.2. Protocol Description. Figure 2 shows the propagation
phase of our protocol. +e source node us first selects C ⊂ G
that it wishes to share the private information m with. It
selects n − 1 members that it recognizes in real life from that
group as its intermediate nodes, where n is smaller than the
group size. Next, us applies SS(n, k, s) to generate n shares
(i, si), where s � m|h, h � hash(m), by evaluating the
polynomial f(x) in i and 0≤ i< n. For each si, us constructs
the corresponding tokens ti � ((i, si) | n | k | d) with d � 1 for
ti, where 1≤ i< n and d � 0 for t0. +e elements of the token
are described as follows: (i, si) is the share that us distributes
to ui; n indicates the total number of different shares that us
distributes; k represents the number of shares a node has to
hold to reconstruct the message; and d is a TTL tag. It sends
token t1, t2, . . ., tn to the corresponding nodes that it selects
earlier and sends t0 to all its friends.

A node that receives any share first verifies d. If d> 0, the
node decreases d by 1 and sends the token to all its friends.
Additionally, the node maintains a copy of the token.

Figure 3 shows the recovery phase of the DPISP. To
recover the private information from the tokens a node u
receives, he runs the recovery phase of the DPISP. To de-
crease the calculation cost, u groups all the tokens by their
(n, k), creating |mn,k| sets. Subsequently, he puts the tokens
with the same i in each mn,k into the same subsets, creating
subsets mn,k,i, where 0< i≤ n. After grouping u’s tokens, he
runs SS−1 with all the combinations of tokens in each set
mn,k. In other words, u selects k subsets from mn,k and runs
SS− 1 for every possible combination of tokens among those k
subsets. If a secret s′|h is recovered successfully, u removes
the tokens belonging to that secret. After testing all the
possible combinations, u selects another k subset and repeats
the same procedure until all the possible combinations of k
subsets are tested.

To verify if s′ is recovered successfully, a node calculates
hash(s′) and verifies if h � hash(s′).

4.2.3. Analysis. First, we examine the privacy of our pro-
tocol. As we have described earlier, a node u on decen-
tralized social networks only has knowledge of node set
F(u). By the DPISP, u recovers the information if and only if
|F(u)∩ us ∪ I{ }|≥ k, where I is the set containing n − 1 in-
termediate nodes.

+e types of privacy involved in this study are as follows:

(1) ?e Source Node’s Privacy. Given that any v receives one
or more tokens, v cannot distinguish its source u. In ad-
dition, v cannot distinguish if a connection exists between u
and any i ∈ V unless v can read the secret.

(2) ?e Intermediate Node’s Privacy. Given that any v re-
ceives one or more tokens, v cannot distinguish if a con-
nection exists between the intermediate node and any i ∈ V
unless v can recover the secret.

(3) ?e Receiver’s Privacy. Any v ∈ V cannot distinguish the
receiver’s identity and its connections to other nodes in V.

We discuss the privacy of the three roles. First, we show
that DPISP protects the privacy of the source node by
demonstrating that the identity of the source node is not
revealed to those who cannot recover the secret s. Assume
that a receiver cannot reconstruct s; as the elements of the
tokens do not reveal the identity of the source node, the
origin of the tokens cannot be distinguished. +e only ex-
ception is that the intermediate nodes know the origin
because d � 1; however, this is not a privacy leakage because
the source node and intermediate nodes are already friends.
In addition, knowing the information of one token does not
reveal the source of other tokens.

Next, we demonstrate that the link privacy of the in-
termediate nodes is not revealed. Similar to the above, as the
receivers do not know the origin of a token unless they can
recover the private information, the identity of the source
node is not revealed. +erefore, the receivers cannot acquire
any knowledge regarding e � (us, ui) and, hence, the link
privacy of the intermediate nodes is protected.

Finally, the privacy of the receivers is not revealed be-
cause the receivers do not provide any information to other
nodes. +e receivers can recover the private information by
evaluating si using the reconstruction method of Shamir’s
secret-sharing protocol. With this information, they can
identify shares that belong to the same us. Because they know
the identity of the intermediate nodes that sent these shares
to them and they know us because they can recover the
private information, they know that connections exist be-
tween the intermediate nodes and the source node. How-
ever, we do not consider this a privacy leakage because we
assume that nodes that can decode the message are in the
same community as us and the intermediate nodes; there-
fore, the receiver should know that us and the intermediate
nodes are Level 1 friends.

Next, we analyze the overhead of the DPISP. During the
propagation phase of the DPISP, the source node sends
tokens to all its friends; subsequently, all the intermediate
nodes send tokens to their friends. Assume that the source
node us has |Fus| friends; among its friends, it selects n − 1
intermediate nodes, denoted by u1, . . ., un, and each of them
has |Fui| friends. +e total number of tokens transmitted
during the propagation phase is |Fs| + |Fu1| + · · · + |Fun|.

During the recovery phase of the DPISP, a node places
the tokens into the subsets according to its (n, k) and i.
Assume that |mn,k| different (n, k) pairs exist; therefore, it

has to perform a maximum of SS− 1 for |mn,k| · Σ
ni
ki

() ·
|mni ,ki,xi1

| · |mni,ki ,xi2
| · · · · · |mni ,ki ,xiki

| times to recover any se-

crets. Although a node has to perform SS− 1 times, the time
cost is not as large as one might imagine.

Security and Communication Networks 5

4.3. Semidecentralized Protocol. +e most pressing problem
of the DPISP is that nodes may spend a significant amount of
time recovering secrets if they receive many tokens. To avoid
an exhaustive search, we propose a semidecentralized in-
formation sharing protocol, that is, the SDPISP.

+e SDPISP utilizes a server to log tokens. +e server
provides two functions: register (R, k) and query (R), in
which R is a set of integers, and k is the threshold. A source
node registers a group of numbers to the server by calling the
register function. +e server records these numbers into a
single entry via an eventid in its database. Each entry con-
tains the threshold k. A receiver calls the query function to
verify if any set of tokens that is valid for recovery exists.

To send private information using the SDPISP, us de-
cides a target community and divides the secret s � m|h,
where m is the private information and h � hash(m), into n
shares by applying SS(n, k, s). Subsequently, instead of
generating tokens without any identity tags, it generates
tokens ti � (ri |(i, si) | n | k | d), with 1≤ i≤ n, where ri is a
random number. Next, us calls register (R, k), R � ri | 1≤{
i≤ n}, to send these random numbers to the server.

To recover secrets, a receiver calls query (R) and inputs
all the random numbers he/she received. +e server returns
the sets of random numbers that get recorded under the
same eventid if the receiver holds k or more tokens.

Figure 5 illustrates the concept of the SDPISP. A and B
wish to send some data to their friends. +ey set n � 3 and
k � 2. +ey first create tokens with random numbers 1, 2, 3
and 4, 5, 6, respectively. Subsequently, they register these
numbers to a server and send the tokens to the intermediate
users. +ose who receive any tokens, for example, C who
receives tokens with ri � 1, 2, 3, 4, call the query function to
the server; subsequently, the server returns 1, 2, 3{ } to C. +e
server does not return 4 because C only obtains one token
from B, and C cannot recover the data only by token 4. Take
D as another example: D receives tokens 2, 3, 5, 6 and calls
the query function; the server returns 2, 3 and 5, 6 to D.
SubsequentlyD knows that he/she can recover two different
sets of data from them.

4.3.1. Analysis. Using a server, receivers are not required to
calculate all possible token combinations. By the SDPISP,
they ask a server if any set of tokens that belongs to the same
secret exists.

We examine the privacy of this semidecentralized
protocol and ignore the chance of two random numbers
colliding. In the SDPISP, the identity and link privacy of the
participants are not leaked to each other. Additionally, the
link privacy is not leaked to the server. If a node u registers
some random numbers to the server and a node v queries the
server with any random number that is registered by u, then
the server will not knowwhether v is a Level 1 friend of u or a
Level 2 friend of u.

5. Experiments

Assume that a community is an isolated, fully connected
network, where all people belonging to the community are
connected to each other, while no connections exist between

people in different categories. In this case, it is sufficient for a
user to set n � 2 and k � 2. All the members in the com-
munity recover the information, but those who do not
belong to the community will not receive enough shares to
reconstruct the data.

However, on real social networks, two cases can occur.
First, two users in the same community may not have a
connection with each other. Second, one or more users may
have connections to the people who are not in the same
community as them. To improve the accuracy, we con-
ducted experiments to obtain adequate settings for n and k
for communities with different sizes and clustering
coefficients.

5.1. Data Collection. Owing to the lack of ground truth,
which is the information of the communities each user
belongs to, existing social network graphs such as those in
[35, 36] cannot be applied to our experiments. Many pre-
vious studies collected data from Facebook. However,
querying other people’s contextual information is not
allowed by the Facebook API unless they agree to provide
the information. +e only information we can easily acquire
is the participants’ Level 1 friends. To collect the Level 2
friends, we can develop a Facebook application to collect the
information and ask the participants’ friends to use it;
however, it is unrealistic to expect all of them to use it.
Because we require both the Level 1 and Level 2 connections
of the participants to perform the experiments, we cannot
collect data from Facebook. +erefore, we collected data
from Plurk.

Plurk is a famous microblog in Taiwan. According to
Alexa [37], on April 4, 2011, 41.5% of Plurk traffic was from
Taiwan, where it ranked 27th, as well as 1297th worldwide.
+e Plurk API allows us to collect other users’ data provided
that the information is publicly available. +erefore, we
asked students at both HIT.SZ and IIIRC to provide their
friendship connections on Plurk.

In our experiments, we collected the friendship graph of
eight students from HIT.SZ and two students from IIIRC
whose Karma were all higher than 60—Karma is a value that
evaluates the liveness of a user on Plurk. We extracted the
links between these participants and their Level 1 and Level 2
friends. Subsequently, we placed their friends into one or
more communities that were defined by the participants. For
example, Table 2 shows the list of communities given by
participant A. He/she defined 4 communities to represent
the social network and each of his/her friends can belong to 1
to 4 communities. Similarly, we collected 42 communities
from them, in which the minimum community size was 3
and the maximum community size was 61; we denote the
community size as β in the following sections. Furthermore,
we calculated the clustering coefficient (c) of each com-
munity, which measures the degree of which users in a
community tend to cluster together. Equation (1) shows the
definition of c, where l and lmax indicate the actual and
maximum number of links between each user in a com-
munity, respectively. +e maximum number of links be-

tween each user in a community is
n
2

(), where n is the

6 Security and Communication Networks

community size. Table 3 shows the detailed data that we

collected from Plurk.

c �
l

lmax
. (1)

After we have collected data from the participants, we
performed experiments and recorded users who were not
direct friends of the sender but had recovered the token. We
sorted the list by the number of appearances each user
emerged in the community during the experiments; sub-
sequently, we asked the participants to confirm whether
those who appeared on the lists were members of that
community. Most participants indicated that they could not
accurately determine whether a user on the list belonged to
any of their defined communities. However, among the data
we collected, we were confident that two participants could
correctly identify their Level 2 friends who belonged to one
of their communities.

Because it is easier for a user to select community
members manually when the community is small, we ig-
nored communities smaller than nine in our subsequent
experiments. Hence, our test cases were formed by 31
communities that contain 9 to 61 members.

We only considered the neighbors of participants in a
community because the participants cannot accurately tag
those who are not their neighbors in the social network.
+erefore, in our subsequent experiments, the results in-
volve only the neighbors of each participant.

5.2. Accuracy of the DPISP. A feature of the DPISP is that the
secret-sharing parameter (n, k) can be dynamically adjusted.
+at is, people may decide if they want more or fewer users
to receive the token. +e secret-sharing parameter n indi-
cates the number of shares a user has to send to the in-
termediate users, and k means the number of shares a user
has to receive to recover the message. We measured the
results of the DPISP by calculating the precision and recall.

+e parameters used in this study are defined as follows:

(i) True Positive (TP): users retrieved by the DPISP
who are in the community defined by the
participant.

(ii) False Positive (FP): users retrieved by the DPISP
who are not in the community defined by the
participant.

(iii) False Negative (FN): users who are in the com-
munity defined by the participant but were not
retrieved by the DPISP

(iv) Precision: fraction of users retrieved by the DPISP
that belonged to the community tagged by the
participant.

Precision �
TP

TP + FP
. (2)

(v) Recall: fraction of users retrieved by the DPISP that
belonged to the community tagged by the
participant.

Recall �
TP

TP + FN
. (3)

In our experiments, we divided the test cases based on
their sizes (β) and clustering coefficients. For each test case,
we tested them by setting n to 3 to 8. For each n, we produced

Register (1, 2, 3) Resgister (4, 5, 6)Query (1, 2, 3, 4)

Query (2, 3, 5, 6)

1 1 1

2 2 2

2

2

3

3 3

3

4

4

5

5

6

6

6

A

D

B

C

Figure 5: Example of using SDPISP.

Table 2: Communities given by participant A.

Group name Size

CS13 46
Club 13
Labmate 55
High school 5

Security and Communication Networks 7

(β, n − 1) possible intermediate users sets. Subsequently, we
tested the results for k ranging from 2 to n for each inter-
mediate user sets.

An intermediate user set is the n − 1 intermediate user
selected by the source user. Owing to high time cost, if the
number of possible combinations of (β, n − 1) is smaller
than or equal to 5000, then we test all the possible inter-
mediate user sets; if the number of possible combinations is
larger than 5000, then we randomly select 5000 possible
intermediate user sets to test.

5.2.1. Relation between (n, k) and Group Size. We present
the result by dividing the test cases into three categories
according to their sizes. Categories A, B, and C contain the
test cases with community sizes between 9 and 16, between
17 and 32, and larger than 32, respectively. +e clustering
coefficients of these categories are 0.5878, 0.5126, and 0.5394,
respectively.

Figures 6 and 7 show the average precision and recall of
each category: in all three categories, when k is fixed, the
precision decreases and the recall increases as n increases.
+is is because if more intermediate users exist, more people
will receive the shares, thereby increasing the probability of
people who are/are not community members that recover
the token.

According to these data, while k increases, recall de-
creases quickly. For example, in category B, recall is 0.7278
for k � 2 and decreases to 0.1646 for k � 5 when n � 5. +is
is because users must receive more shares to recover the
token; hence, the number of users who can recover the token
decreases. Consequently, we recommend that users select a
small k. Meanwhile, the precision decreases and the recall
increases slightly when n increases. +e precision is 0.73 for
n � 6 and decreases to 0.7008 for n � 8 when k � 3; the recall
increases from 0.57 to 0.66 for the same (n, k) pairs. +is
implies that users do not have to select a large n to obtain the
best result. Instead, they can select a smaller n and the result
will still be acceptable.

Additionally, we observed that the average precision
increased with the community size. In our opinion, this was
caused by an overlap in these communities. For instance, a
user’s “good friend” group might be a subset of his/her
“classmates” group. Figure 8 illustrates an example of
overlapping communities. Suppose a user wishes to send a
message to his/her “good friends”; therefore, she sends shares
to the intermediate users among her “good friends.” How-
ever, some of her “classmates” can recover the token because
the network is densely connected, thereby reducing the
precision.

5.2.2. Relation between (n, k) and the Clustering Coefficient.
We divided the test cases into four categories according to
their c, where category A contains test cases with c< 0.4,

category B contains test cases with 0.4≤ c< 0.5, category C
contains test cases with 0.5≤ c< 0.6, and category D con-
tains test cases with c≥ 0.6.

Figure 9 shows the average recalls of the four categories.
We observed that the recalls reduced quickly while k in-
creased for communities with c< 0.6 but decreased slightly
while k increased for communities with c≥ 0.6.

Even though the users may not know the clustering
coefficient of their desired communities in advance, they can
estimate whether the community is densely or loosely
connected. For example, ifAwishes to send amessage to his/
her laboratory, he/she can assume that the members of this
community are familiar with each other; therefore, the
community is highly clustered, and he/she can set k to 4 or 5
to minimize the chances of outliers recovering the token.
Meanwhile, if A wishes to send a message to his/her friends
in his department, he/she should set k to 2 or 3 to maximize
the chances of the members of the department to recover the
token.

5.2.3. Token Transmitted during DPISP. +e number of
tokens that the source and intermediate users must transmit
must be equal to that of their friends. Figure 10 shows the
average number of tokens transmitted during the protocol;
the total number of tokens transmitted during the protocol
increases with n.

For each n, regardless of the value of k, the number of
tokens transmitted should be the same. However, as
shown by the results, the number of tokens differs when k
changes. +is is because not every round appears during
the experiments when a user recovers the token. Occa-
sionally, no user can recover the token because none has
received enough shares. We only counted the rounds
where one user at the least recovered the message in the
experiments.

5.3. Success Rate of the DPISP. Transmitting tokens through
different intermediate user sets causes different groups of
users to receive the tokens. While some intermediate user
sets yield good results, occasionally no user can recover the
information sent by the source user.

Herein, we present the success rate of the DPISP. For
each test case, we measured the results for a maximum of
5000 rounds. We considered a test round successful if one or
more users could recover the token. +e results shown in
Section 5.2 only incorporated the successful rounds.

We measured the success rate of our protocol by the
following formula:

p(n,k) �
∑ sr(n,k),i∑ r(n,k),i , (4)

Table 3: Statistics of the collected communities.

Groups Min size Max size Avg. size St. dev. size Min c Max c Avg. c St. dev. c

42 3 61 19.5476 15.7824 0.1429 1.0 0.5752 0.2095

8 Security and Communication Networks

where p(n,k) indicates the average success rate tested in (n, k)
for all test cases, sr(n,k),i indicates the number of successful
rounds tested in (n, k) for the ith test case, and sr(n,k),i
indicates the number of total rounds tested in (n, k) for the
ith test case.

Figure 11 depicts the success rates, average number of
failure rounds, and average number of total rounds of each
(n, k) calculated by the test cases. Although the success rate
decreases when k increases, it is near 100% when k is small,
which means that even if a user selects intermediate users
randomly, the information can still be propagated to
someone.

5.4.Choosing IntermediateUsers. In the DPISP, a user selects
intermediate users from those who belong to that com-
munity. If, unfortunately, he/she selects “bad” intermediate
users (i.e., users who have only a few links to the community
members), the precision will be low, or the recall will be high.

To help users find “good” intermediate users, a user can
send a link to all of his/her friends and ask them to register
on that link to prove in advance that sufficient connections
exist between them. Hence, a user us first generates |Fus|
shares from the link and distributes these shares individually
to each of his/her friends. Anyone who receives the shares
recovers the link by applying the reconstruction method of
secret sharing. Subsequently, he/she registers him/herself on
that link.

Figure 12 shows the results of selecting those who have
many connections with the community members. As
shown in previous data, setting k≥ 4 yields a low recall and
only a few people can recover the private information. +e
experimental result shows an example of selecting good
intermediate users. If a user selects 6 intermediate users
who are tightly connected with the community members,
even if he/she sets k � 5, the recall will be approximately
0.9. Conversely, if he/she chooses intermediate users
randomly, the recall will only be 0.6. According to pre-
vious results, the precision increases with k; therefore,
selecting good intermediate users yields better precisions
and recalls.

0.4

0.6

0.8

1.0

3 4 5 6 7 8

K = 8

K = 7
K = 6
K = 5

K = 4

K = 3

K = 2

n

P
r
e
c
is

io
n

(a)

3 4 5 6 7 8

n

0.4

0.6

0.8

1.0

K = 8

K = 7
K = 6

K = 5

K = 4

K = 3

K = 2

P
r
e
c
is

io
n

(b)

3 4 5 6 7 8

n

P
r
e
c
is

io
n

0.8

1.0 K = 8
K = 7
K = 6

K = 5

K = 4

K = 3

K = 2

(c)

Figure 6: Relation of precision between (n, k) and community size: (a) contains communities with a size between 9 and 15; (b) contains
communities with a size between 16 and 31; (c) contains communities with a size larger than 32.

0.0

0.2

0.4

0.6

0.8

1.0

3 4 5 6 7 8

K = 8

K = 7

K = 6

K = 5

K = 4

K = 3

K = 2

R
e
c
a
ll

n

(a)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

3 4 5 6 7 8

n

K = 8

K = 7

K = 6

K = 5

K = 4

K = 3

K = 2

(b)

0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

3 4 5 6 7 8

n

K = 8

K = 7

K = 6

K = 5

K = 4

K = 3

K = 2

(c)

Figure 7: Relation of recall between (n, k) and community size: (a) contains communities with a size between 9 and 15; (b) contains
communities with a size between 16 and 31; (c) contains communities with a size larger than 32.

Figure 8: Two overlapped communities: the red area represents a
user’s “good friends,” and the blue area represents his/her
“classmates.”

Security and Communication Networks 9

5.5. Computation Cost of the Recovery Phase. In this section,
we discuss the cost of the DPISP’s recovery phase. At first
glance, it seems that a user must spend a large amount of
time to reconstruct the secrets. In theory, a user must

perform |mn,k| · Σ
ni
ki

() · |mni ,ki ,xi1
| · |mni,ki ,xi2

| · · · · · |mni ,ki,xiki
|

times of SS− 1 to construct all possible secrets, where |mn,k| is
the number of tokens with different (n, k) pairs.

To examine the efficiency of the DPISP, we analyzed the
number of SS− 1 a user has to performwith respect to (n, k) and
the number of users who have sent secrets. Furthermore, we
analyzed the time required by SS− 1. Simulations were per-
formed on a PC with a 4-core 3.2GHz Intel CPU and 4Gb of
RAM. We implemented the secret-sharing functions using the
C# SecretSharp library [38] on Microsoft Visual Studio 2010.

In our experiments, we simulated q users simultaneously
and sent their secrets with the (n, k) settings in the ranges of
(3, 2) to (8, 2) and (6, 3) to (8, 3). In each case, a user can
receive a maximum of qn tokens decentralized in n bins, and
each bin contains a maximum of q tokens. +erefore, a user

has to perform a maximum of qk ·
n
k

() secret sharing to

recover all the secrets. Table 4 shows the results of the
simulations, with q � 5, 10, 15, 20.+e size of the coefficients
of a polynomial is 1024 bits. In other words, the maximum
secret size is 128 bytes. As shown by the results, a user can
perform ≈ 6500 times of SS− 1 per second. If a user sets
(8, 3), 448,000 possible combinations exist, which requires
slightly more than one minute to recover all the secrets.

6. Discussion

In this section, we discuss the causes of the inaccuracy of the
DPISP and a method to improve the efficiency of the DPISP
recovery phase. Additionally, we discuss the method of
sharing large data.

0

100

200

300

400

500

600

700

800

Tokens

(n, k)

A
vg

.t
o

k
en

s
p

er
 r

o
u

n
d

(8
,8

)
(8

,7
)

(8
,6

)
(8

,5
)

(8
,4

)
(8

,3
)

(8
,2

)
(7

,7
)

(7
,6

)
(7

,5
)

(7
,4

)
(7

,3
)

(7
,2

)
(6

,6
)

(6
,5

)
(6

,4
)

(6
,3

)
(6

,2
)

(5
,5

)
(5

,4
)

(5
,3

)
(5

,2
)

(4
,4

)
(4

,3
)

(4
,2

)
(3

,3
)

(3
,2

)

Figure 10: Average tokens transmitted during the protocol for
each (n, k).

0.0

0.2

0.4

0.6

0.8

1.0

0.6 ≤ γ ≤ 1.0

0.4 ≤ γ < 0.5

0.5 ≤ γ <0.6

0.2 ≤ γ <0.4

R
ec

al
l

(8
,8

)
(8

,7
)

(8
,6

)
(8

,5
)

(8
,4

)
(8

,3
)

(8
,2

)
(7

,7
)

(7
,6

)
(7

,5
)

(7
,4

)
(7

,3
)

(7
,2

)
(6

,6
)

(6
,5

)
(6

,4
)

(6
,3

)
(6

,2
)

(5
,5

)
(5

,4
)

(5
,3

)
(5

,2
)

(4
,4

)
(4

,3
)

(4
,2

)
(3

,3
)

(3
,2

)

Figure 9: Recall for each (n, k) of each category based on c.

0.0

0.2

0.4

0.6

0.8

1.0

0

500

1000

1500

2000

2500

3000

3500

Success rate

Round

Fail round

S
u

cc
es

s
ra

te

R
o

u
n

d
s

(8
,8

)

(8
,7

)

(8
,6

)

(8
,5

)

(8
,4

)

(8
,3

)

(8
,2

)

(7
,7

)

(7
,6

)

(7
,5

)

(7
,4

)

(7
,3

)

(7
,2

)

(6
,6

)

(6
,5

)

(6
,4

)

(6
,3

)

(6
,2

)

(5
,5

)

(5
,4

)

(5
,3

)

(5
,2

)

(4
,4

)

(4
,3

)

(4
,2

)

(3
,3

)

(3
,2

)

Figure 11: Average success rate, average number of failure rounds,
and average number of total rounds for each (n, k).

% of community members who have a connection
with this person on Plurk

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

k = 2

k = 3

k = 4

k = 5

n = 6

0.6 0.7 0.8 0.9 1

Figure 12: Choosing “good” intermediate users yielding a higher
recall.

10 Security and Communication Networks

6.1. Improving DPISP Accuracy. We discuss possible reasons
for the inaccuracy of the protocol in this section.

First, inaccuracy can be caused by users who do not
publish their friendship connections. Many social networks
allow users to set whether their information can be accessed
by other people. If any of the intermediate users do not share
their connections during the experiments, the share sent to
him/her cannot be further transmitted to other users,
thereby decreasing the probability of users related to the
corresponding intermediate user recovering the token.

Next, inaccuracy may be caused by robots. Many “ro-
bots” exist on Plurk.+ese robots were developed to perform
automated message broadcasting or to be an “oracle,” which
allows users to ask questions and provide answers. Almost all
users on Plurk have connections with the default account
“plurk buddy” and many other robots. +erefore, although
these robots are not in user-defined communities, they have
a high chance of recovering the token.

+is problem can be mitigated by creating a list of ig-
nored users. When we execute the protocol, we can ignore
users who are not normal users.

6.2. Sharing Large Data. Using Shamir’s secret sharing, the
maximum size of a message is restricted by the coefficient
size of a polynomial. For example, if the coefficient size is
1024 bits, the maximum message size is 128 bytes. If the size
of a private information is larger than 128 bytes, a user has to
partition the message into 128-byte blocks and a receiver has
to spend more time recovering the private information.

+e constant of the polynomial is insufficient for placing
large data, that is, file, photographs, and so forth. Re-
searchers have proposed several multi-secret-sharing
schemes [39–42]. For example, Yang et al. [39] proposed a
scheme that shares p secrets instead of one secret in a
polynomial; however, the threshold of that polynomial is
extremely high according to their experiments. +e DPISP
performs well only when k is small. Hence, it is difficult to
apply these algorithms unless a user selects a large k.

Instead of sharing data directly, a user can encrypt
data with a session key; furthermore, they can share the
key and a path to the data with his/her friends using the
DPISP.

7. Conclusion

In this paper, we present DPISP, an information sharing
protocol used on social networks. On decentralized social
networks or on SNS like Facebook, where users cannot
directly access other people’s contextual information , our
method provides a more realistic way to implement group
communication functions using naturally organized com-
munities. We also demonstrate that our method protects
users’ link privacy. In addition, DPISP runs without using
any key or passwords, so it adapts to changes of the net-
works. One does not have to redistribute keys to all of her
friends when she adds or remove friends.

By tuning the parameters (n, k), an information can be
sent to different subsets of community members. Our results
show that among the users who can recover secrets, about
60% to 80% belong to the target communities; about 50% to
70% of a community can recover the secret correctly.

Data Availability

+e experimental data used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is work was supported by national funding from Fun-
dação para a Ciência e a Tecnologia (FCT) through the UID/
EEA/50008/2019 Project and by the Brazilian National
Council for Research and Development (CNPq) via Grant
no. 309335/2017-5.

References

[1] R. Grob, M. Kuhn, R. Wattenhofer, and M. Wirz, “Cluestr:
mobile social networking for enhanced group communica-
tion,” in Proceedings of the ACM International Conference on
Supporting Group Work, pp. 81–90, Sanibel Island, FA, USA,
May 2009.

[2] S. Jones and E. O’Neill, “Feasibility of structural network
clustering for group-based privacy control in social net-
works,” in Proceedings of the 6th Symposium on Usable Privacy
and Security, Redmond, WA, USA, July 2010.

[3] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and
D. Starin, “Persona: an online social network with user-de-
fined privacy,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4, pp. 135–146, 2009.

[4] M. Lucas and N. Borisov, “Flybynight: mitigating the privacy
risks of social networking,” in Proceedings of the 7th ACM
Workshop on Privacy in the Electronic Society, 2008, pp. 1–8,
Alexandria, VA, USA, October 2008.

[5] S. Guha, K. Tang, and P. Francis, “NOYB: privacy in online social
networks,” in Proceedings of the 1st Workshop on Online Social
Networks, 2008, pp. 49–54, Seattle, WA, USA, August 2008.

[6] A. K. Das, M. Wazid, N. Kumar, A. V. Vasilakos, and
J. J. P. C. Rodrigues, “Biometrics-based privacy-preserving
user authentication scheme for cloud-based industrial

Table 4: Time cost for the recovery phase: run: the maximum
possible combinations of tokens a user must test, time: the time to
test all combinations in milliseconds.

(n, k)
5 10 15 20

Run Time Run Time Run Time Run Time

(3, 2) 75 10 300 40 675 90 1200 160
(4, 2) 150 20 600 80 1350 180 2400 317
(5, 2) 250 33 1000 133 2250 300 4000 527
(6, 2) 375 50 1500 199 3375 449 6000 790
(7, 2) 525 70 2100 278 4725 630 8400 1110
(8, 2) 700 97 2800 372 6300 840 11200 1500
(6, 3) 2500 455 20000 3550 67500 12000 160000 28000
(7, 3) 4375 785 35000 6250 118125 21000 280000 49200
(8, 3) 7000 1280 56000 9970 189000 34600 448000 79140

Security and Communication Networks 11

internet of things deployment,” IEEE Internet of ?ings
Journal, vol. 5, no. 6, pp. 4900–4913, 2018.

[7] A. Mayer and S. Puller, “+e old boy (and girl) network: social
network formation on university campuses,” Journal of Public
Economics, vol. 92, no. 1-2, pp. 329–347, 2008.

[8] L. Cutillo, R. Molva, and T. Strufe, “Safebook: feasibility of
transitive cooperation for privacy on a decentralized social
network,” in Proceedings of the IEEE International Symposium
on World of Wireless, Mobile and Multimedia Networks &
Workshops, 2009, pp. 1–6, Kos, Greece, June 2009.

[9] M. Ackermann, K. Hymon, B. Ludwig, and K. Wilhelm,
“Helloworld: an open source, distributed and secure social
network,” in Proceedings of the W3C Workshop on the Future
of Social Networking, Barcelona, Spain, January 2009.

[10] L. Aiello and G. Ruffo, “Secure and flexible framework for
decentralized social network services,” in Proceedings of the
8th IEEE International Conference on Pervasive Computing
and Communications Workshops, 2010, pp. 594–599, Man-
nheim, Germany, March 2010.

[11] C.-M. Chen, Y. Huang, K.-H.Wang, S. Kumari, andM.-E. Wu,
“A secure authenticated and key exchange scheme for fog
computing,” Enterprise Information Systems, pp. 1–16, 2020.

[12] K. Renuka, S. Kumar, S. Kumari, and C.-M. Chen, “Crypt-
analysis and improvement of a privacy-preserving three-
factor authentication protocol for wireless sensor networks,”
Sensors, vol. 19, no. 21, p. 4625, 2019.

[13] T.-Y. Wu, C.-M. Chen, K.-H. Wang, C. Meng, and
E. K. Wang, “A provably secure certificateless public key
encryption with keyword search,” Journal of the Chinese
Institute of Engineers, vol. 42, no. 1, pp. 20–28, 2019.

[14] H. Xiong, Y. Zhao, L. Peng, H. Zhang, and K.-H. Yeh,
“Partially policy-hidden attribute-based broadcast encryption
with secure delegation in edge computing,” Future Generation
Computer Systems, vol. 97, pp. 453–461, 2019.

[15] C.-M. Chen, B. Xiang, Y. Liu, and K.-H. Wang, “A secure
authentication protocol for internet of vehicles,” IEEE Access,
vol. 7, pp. 12047–12057, 2019.

[16] C.-M. Chen, K.-H. Wang, K.-H. Yeh, B. Xiang, and T.-Y. Wu,
“Attacks and solutions on a three-party password-based
authenticated key exchange protocol for wireless communi-
cations,” Journal of Ambient Intelligence and Humanized
Computing, vol. 10, no. 8, pp. 3133–3142, 2019.

[17] J. M.-T. Wu, J. C.-W. Lin, and A. Tamrakar, “High-utility
itemset mining with effective pruning strategies,” ACM
Transactions on Knowledge Discovery from Data (TKDD),
vol. 13, no. 6, p. 58, 2019.

[18] J.-S. Pan, C.-Y. Lee, A. Sghaier, M. Zeghid, and J. Xie, “Novel
systolization of subquadratic space complexity multipliers
based on toeplitz matrix-vector product approach,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 27, no. 7, pp. 1614–1622, 2019.

[19] W. Gan, J. C.-W. Lin, P. Fournier-Viger, H.-C. Chao, V. S. Tseng,
and P. S. Yu, “A survey of utility-oriented pattern mining,” IEEE
Transactions on Knowledge and Data Engineering, pp. 1–20, 2019.

[20] S.-C. Chu, X. Xue, J.-S. Pan, and X.Wu, “Optimizing ontology
alignment in vector space,” Journal of Internet Technology,
vol. 21, no. 1, pp. 15–22, 2020.

[21] A. Tootoonchian, K. Gollu, S. Saroiu, Y. Ganjali, and
A. Wolman, “Lockr: social access control for web 2.0,” in
Proceedings of the 1st Workshop on Online Social Networks,
2008, pp. 43–48, Seattle, WA, USA, August 2008.

[22] B. W. Kernighan and S. Lin, “An efficient heuristic procedure
for partitioning graphs,” Bell System Technical Journal, vol. 49,
no. 2, pp. 291–307, 1970.

[23] M. Newman and M. Girvan, “Finding and evaluating com-
munity structure in networks,” Physical Review E, vol. 69,
no. 2, Article ID 026113, 2004.

[24] E. A. Leicht and M. E. J. Newman, “Community structure in
directed networks,” Physical Review Letters, vol. 100, no. 11,
Article ID 118703, 2008.

[25] U. Brandes, D. Delling, M. Gaertler et al., “On finding graph
clusterings with maximum modularity,” in Graph-?eoretic
Concepts in Computer Science, pp. 121–132, Springer, Berlin,
Germany, 2007.

[26] S. Gregory, “An algorithm to find overlapping community
structure in networks,” in Proceedings of the International
Conference on Knowledge Discovery in Databases, 2007,
pp. 91–102, Warsaw, Poland, September 2007.

[27] B. Karrer, E. Levina, and M. Newman, “Robustness of
community structure in networks,” Physical Review E, vol. 77,
no. 4, Article ID 046119, 2008.

[28] N. Du, B. Wu, X. Pei, B. Wang, and L. Xu, “Community
detection in large-scale social networks,” in Proceedings of the
9th WebKDD and 1st SNA-KDD Workshop on Web Mining
and Social Network Analysis, 2007, pp. 16–25, San Jose, CA,
USA, August 2007.

[29] A. Clauset, “Finding local community structure in networks,”
Physical Review E, vol. 72, no. 2, Article ID 026132, 2005.

[30] S. Muff, F. Rao, and A. Caflisch, “Local modularity measure
for network clusterizations,” Physical Review E, vol. 72, no. 5,
Article ID 056107, 2005.

[31] J. Bagrow, “Evaluating local community methods in net-
works,” Journal of Statistical Mechanics: ?eory and Experi-
ment, vol. 2008, no. 5, Article ID P05001, 2008.

[32] X. Xu, N. Yuruk, Z. Feng, and T. Schweiger, “Scan: a structural
clustering algorithm for networks,” in Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2007, pp. 824–833, San Jose, CA,
USA, August 2007.

[33] C.-T. Li, T.-Y.Wu, and C.-M. Chen, “A provably secure group
key agreement scheme with privacy preservation for online
social networks using extended chaotic maps,” IEEE Access,
vol. 6, pp. 66742–66753, 2018.

[34] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612-613, 1979.

[35] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Measurement and analysis of online social
networks,” inProceedings of the 5th ACM/USENIX Conference on
Internet Measurement, 2007, SanDiego, CA, USA, October 2007.

[36] K. Lewis, J. Kaufman, M. Gonzalez, A. Wimmer, and
N. Christakis, “Tastes, ties, and time: a new social network
dataset using facebook.com,” Social Networks, vol. 30, no. 4,
pp. 330–342, 2008.

[37] Alexa, http://www.alexa.com/siteinfo/plurk.com.
[38] SecretSharp, http://sourceforge.net/projects/secretsharp/.
[39] C.-C. Yang, T.-Y. Chang, and M.-S. Hwang, “A (t,n) multi-

secret sharing scheme,” Applied Mathematics and Compu-
tation, vol. 151, no. 2, pp. 483–490, 2004.

[40] J. Shao and Z. Cao, “A new efficient (t,n) verifiable multi-secret
sharing (VMSS) based on YCH scheme,” Applied Mathematics
and Computation, vol. 168, no. 1, pp. 135–140, 2005.

[41] L.-J. Pang and Y.-M. Wang, “A new (t,n) multi-secret sharing
scheme based on Shamir’s secret sharing,” Applied Mathe-
matics and Computation, vol. 167, no. 2, pp. 840–848, 2005.

[42] H. Chien, J. Jan, and Y. Tseng, “A practical (t,n) multi-secret
sharing scheme,” IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, vol. 83,
no. 12, pp. 2762–2765, 2000.

12 Security and Communication Networks

http://www.alexa.com/siteinfo/plurk.com
http://sourceforge.net/projects/secretsharp/

