_ COMPUTER SCIENCE PUBLICATION

DECENTRALIZED REMAPPING OF
DATA PARALLEL COMPUTATIONS WITH
THE GENERALIZED DIMENSION EXCHANGE METHOD

Cheng-Zhong Xu and Francis C.M. Lau

Technical Report TR-94-01

January 1994

DEPARTMENT OF COMPUTER SCIENCE
FACULTY OF ENGINEERING
UNIVERSITY OF HONG KONG
POKFULAM ROAD
HONG KONG

UNIVERSITY OF HONG KONG
LIBRARY

This book was a gift
from

Dept. of Computer Science
The University of Hong Kong

Decentralized Remapping of Data Parallel Computations with
the Generalized Dimension Exchange Method

Cheng-Zhong Xu and Francis C.M. Lau

Department of Computer Science, The University of Hong Kong

Abstract

The Generalized Dimension Exchange (GDE) method is a fully distributed load
balancing method that is most suitable for multicomputers with a direct communication
network. It is extremely easy to implement and can yield optimal performance given
a proper tuning. We propose a decentralized remapping method that uses the GDE
algorithm periodically to balance (remap) the system’s load. We implemented this
remapping method in two data parallel applications and found it to be effective in
reducing the computation time. The gains in performance (5 — 15%) due to remapping
are reasonably substantial given the fact that the two applications by their very nature
do not necessarily favor remapping.

1 Introduction

The mapping problem in parallel computations is to distribute the workload or processes
of a computation across the available processors so that each processor would end up with
more or less the same amount of work to do. In most cases, this is done prior to execution
and is done only once—called static mapping. Static mapping can be quite effective for
computations that have predictable runtime behaviors [8]. For computations whose runtime
behavior is non-deterministic or not so predictable, however, doing mapping only once in the
beginning is insufficient. For these cases, one might have to do the mapping more than once
or periodically during runtime——this is called dynamic remapping. Dynamic remapping
produces ideal load-balances at the cost of additional runtime overheads. A successful
remapping mechanism must therefore try to produce enough benefits that would outweigh
the overheads incurred. We introduce such a remapping mechanism in this paper, which
is based on a very simple but effective load balancing method, the Generalized Dimension
FEzchange (GDE) method [27, 26]. We demonstrate the effectiveness of this mechanism
through its application to two major applications.

A data parallel computation decomposes its problem domain into a number of subdo-

mains (data sets), and designates them to processes [8]. These processes simultaneously
perform the same functions across different data sets. Because the subdomains are con-
nected at their boundaries, processes in neighboring subdomains have to synchronize and
exchange boundary information with each other every now and then. These synchroniza-
tion points divide the computation into phases. During each phase, every process executes
some operations that might depend on the results from previous phases. This kind of
computations arises in a large variety of real applications. In a study of 84 successful par-
allel applications in various areas, it was found that nearly 83% used this form of data
parallelism [7].

In data parallel computations, the computational requirements associated with different
parts of a problem domain may change as the computation proceeds. This occurs when
the behavior of the physical system being modeled changes with time. Examples include
parallel iterative solutions of time-dependent partial differential equations [1], time-driven
discrete event simulations [18], and parallel image processing [4]. To implement this kind of
cornputations in a multicomputer, static domain decomposition techniques, such as strip-
wise. boxwise, and binary decompositions [2], often fail to maintain an even spread of
computational workloads across the processors during execution. Because of the need of
synchronization between phases, a processor that has finished its work in the current phase
has to wait for the more heavily loaded processors to finish their work before proceeding to
the next phase (see Figure 2). Consequently, the duration of a phase is determined by the
heavily loaded processors, and system performance may deteriorate in time.

To lessen the penalty due to synchronization and load imbalances, one must dynamically
remap (re-decompose) the problem domain onto the processors as the computation proceeds.
Remapping can be performed either from scratch—i.e., treating the current overall workload
as if it is a brand new workload to be decomposed—or through adjusting boundaries created
in the previous decﬁmposition, The former approach can be viewed as dynamic invocation
of a static decomposition. Since the global workload is to be taken as a whole for re-
decomposition, the work is most conveniently performed by a designated processor which
has a global view of the current state of affair. Such a centralized remapping can no doubt
vield a good workload distribution because of the existence of global knowledge. However,
the price to pay is the high cost of collecting the data sets from and communicating the
re-decomposed data sets to the processors, which could be prohibitive, especially in large
scale systems. Therefore, the second approach of adjusting boundaries from the previous
phase, which can easily be performed in a decentralized, parallel fashion,.is preferred. As
each processor has to deal only with its nearest neighbors, much fewer data transfers would
take place in the network as compared to the centralized approach. The difficulty lies in
how to decide in a distributed way when a remapping should be invoked and how to do

the adjusting of the subdomain boundaries among processors (also in a distributed way) so

that the result is a reasonably balanced workload.

In the literature, much attention has been given to dynamic remapping of data parallel
computations in recent years. Nicol et al. addressed the issue of deciding when to invoke
a remapping so that its performance gain will not be offset by its overhead [19, 18]. They
proposed two simple but effective heuristical invocation policies for two kinds of workload
models: one in which the computational requirements of a region evolve gradually, and
one abruptly. With these policies, the invocation decision is made in a centralized man-
ner and based on an assumption that the remapping cost is known in advance. Albeit
valid in centralized remapping, the assumption is obviously not applicable to decentralized
remapping.

De Keyser and Roose experimented with centralized remapping in the calculation of
dynamic unstructured finite element grids [14, 15]. The computation is solution-adaptive
in that the grids are refined according to the solution obtained so far. After the refinement
of the grids, a global remapping is imposed. Dynamic remapping for solution-adaptive grid
refinements was also considered by Williams [25]. He compared three complex parallél algo-
rithms for doing the remapping, the orthogonal recursive bisection, the simulated annealing,
and the eigenvalue recursive bisection, and concluded that the last one should be preferred.

Choudhary et al. incorporated a remapping mechanism into a parallel motion estima-
tion system [4, 3]. The system consists of several stages: convolution, thresholding and
template matching. Remapping is invoked at the beginning of each stage, in which every
processor would broadcast information about the subdomain it is working on to all others,
and then do border adjustment based on the collected information. A similar idea based on
global knowledge was implemented by Hanxleden and Scott [10]. They invoked remapping
periodically in the course of a Monte Carlo dynamical simulation, and gained 10 — 15%
performance improvement using the optimal remapping interval.

This paper proposes a new and effective dynamic remapping method for time-dependent
data parallel computations. This method is fully distributed and is based on a very simple,
low-overhead load balancing algorithm that runs in every node. We prefer a distributed
method because it would have less chances of running into bottleneck problems and is gener-
ally more reliable. The method requires no global information, and there is no broadcasting
of information. Through some actual implementations (WaTor simulation and parallel thin-
ning of images), the net gain in performance due to the use of this method is found to be
reasonably substantial and comparable to performance results in the Lterature for decen-
tralized remapping. The simple load balancing algorithm that runs in every node is based
on the Generalized Dimension Exchange (GDE) load balancing method. With the GDE
method, each processor plays an identical role in making load balancing decisions, which is

3

based on knowledge of its nearest neighbors’ states. GDE load balancing is iterative: every
processor successively balances its workload with each one of nearest neighbors in an itera-
tion step until a global balanced state is reached. This global balanced state is detected by
a distributed termination detection algorithm embedded in the load balancing algorithm.
We have analyzed the GDE method rather thoroughly in our previous works, and showed
that that it is highly effective, scalable, and applicable to many network topologies [27, 26].
This paper on the one hand continues the study of the GDE method with emphasis on its
applicability to real problems, and on the other hand tries to demonstrate the benefits of
distributed remapping in general.

The rest of paper is organized as follows Section. 2 describes the computation model
and reviews the GDE method. Section 3 presents implementation aspects of our GDE-
based remapping mechanism. Section 4 evaliztés the performance of the mechanism in two
different data parallel applications. We make a conclusion in Section 5.

2 The computation model and the GDE method

2.1 The computation model

We consider time-dependent data parallel computations in multicomputers. A multicom-
puter is assumed to consist of V autonomous, homogeneous processors connected by a direct
communication network. We represent the network by a simple graph G = (V, E), where V
denotes the set of processors labeled from 1 to N,and £ C V X V is a set of edges. Each
edge (i,7) € E corresponds to the communication link between processors ¢ and j. Figure 1
presents several examples of popular network topologies.

o—0C—0C—70

chain L?_?ii?
o
i
S

mesh torus

|

ok,

QF0

Figure 1: Examples of network topologies

The parallel computation is assumed to follow the so-called Single-Program-Multiple-
Data (SPMD) paradigm in which each processor executes the same program but on different
subdomains of the problem [8]. It proceeds in phases that are separated by global synchro-
nization points. During each phase, the processors perform calculations independently and
then communicate with their data-dependent peers. Figure 2 shows a typical scenario of the
paradigm in a system of four processors. The horizontal scale corresponds to elapsed time
(or computation time) of the processors; the vertical lines represent synchronization points
at which a round of communications among the processors is due to begin. The shaded
and the dark horizontal bars repressent the communication time and the calculation time
respectively. The dotted empty bars correspond to the idle times of the processors, which
are the times spent in waiting for the next phase to come.

Processor
| ————— —
) .
g — — ——
4
k k+1 k+2 k+3 Phase
cam COMMunication e Calcaulation o idle

Figure 2: A example of time-dependent multiphase data parallel computations

Let tgg™™, t58l¢ and i, denote the communication time, the calculation time, and the
elapsed (or computation) time of processor i in the k% phase, respectively. Let T} denote
the duration of the 4% phase. Then, the computation time of the processor in this phase is
given by

tix = LT + 15 1)

and the duration of the phase by
Te = max(tig, t2ky - - oy INE)- (2)

Supposing that the computation requires K phases, then the total elapsed time of the
computation, denoted by T, is given by

K
T= Z T%. (3)
k=1

Clearly, the efficiency of this kind of computations is dependent upon two main fac-
tors: the interprocessor communication cost and the degree of load imbalances across the

5

processors during each phase. The interprocessor communication cost is reflected by the
ratio of ™™ to t"""’ These two times are functions of various parameters related to the
application in question as well as the underlying multicomputer system. Discussion of the
problem of how to tune these parameters to yield a better communication-calculation ratio
is beyond the scope of this paper. Readers are referred to the book by Cox et al. [8] for
discussion on this issue and practical techniques to use. In this paper, we assume that the
computation is dominated by their calculation times which is a reasonable assumption for
medium- and large-grain data parallel computations. As such, we can base the calcula-
tion of load imbalances on calculation times. These calculation times are in fact equal to

processors’ utilization, which is defined as

ZN%tlk . (4)

The objective of remapping is to minimize the total elapsed time through maximizing the
processor utilization U from phase to phase.

Since the execution of the remapping procedure is expected to incur non-negligible
delay, the decision of when to invoke a remapping must be carefully made so that the
remapping cost would not outweigh the performance gain. Notice that the distribution of
the computation times ?,; have much bearing on the reward of remapping. Given some
time-dependent computation whose execution behavior is non-deterministic, it is possible
for the distribution of 2z, 1 < ¢ £ N, in a phase to tend to uniform; and a uniformly
distributed %,; in some phase to become severely imbalanced in the next phase. That
is, for computations whose execution behavior is non-deterministic (and unpredictable),
the possibility that a version with no balancing would outperform a dynamically balanced
version exists, regardless of how well one can optimize the remapping procedure. Therefore,
in order for remapping to be promising in leading to appreciable performance gains, the
ideal arena in which to apply remapping would be the class of parallel computations whose
computational requirements vary gradually over time. There are a large number of practical
examples that fall into this class, including the two we implemented.

2.2 The GDE method

Our remapping mechanism invokes the GDE load balancing procedure between every two
successive phases, k and k + 1 say, so that hopefully an averaged computation time 2;;4)
may result across the processors. For simplicity, we use ?, to represent the expected com-
putation time t;(;.1) of processor ¢ prior to remapping. The goal of remapping with the
GDE method is to redistribute the system workload such that each processor would end up
with the same expected computation time ¢ = ¥ ¢;/N. Such a redistribution is possible if

the computation time ¢, is dominated by its calculation part £2%¢ and if 19/ is equivalent
to the fact that there are 5%/ pieces of work, each requiring one unit of execution time. If
that’s the case, we can count the outstanding pieces of work in a processor at the end of a
phase and use this number to calculate the average load to be assigned to every processor
in the next phase.

The GDE method evolves from the Dimension Exchange (DE) method which was inten-
sively studied in hypercube-structured multicomputers [5, 13, 20, 21]. With the DE method,
every processor successively balances its workload with each one of its direct neighbors in
an iteration step according to a dimension order of the hypercube. It was proved that
regardless of the dimension order, the DE method yields a uniform distribution from any
initial workload distribution after one round of iteration steps (called a sweep) [5]. For
non-hypercube structures, however, we proved that the DE method is not most efficient
(not optimal). Subsequently we derived the generalized version, the GDE method, which
can yield optimal results in non-hypercube networks. The GDE method is based on edge-
coloring of the interconnection graph G = (V, E). The edges of G are supposed to he
colored beforehand with the least number of colors (&, say), and no two adjoining edges are
assigned the same color number. We index the colors with integers from 1 to x. Figure 3(a)
shows a colored 4 X 4 mesh. The numbers in parentheses are the assigned color numbers

(or chromatic indices).

@mom@m@ oflcslello

’(3) }(3)](3) 3} 3

1
OO=020 Q0200

(O] ’(4) (4) (4) (4) (4 (4)

)
[¢)] @ [§)] D (2) M N
0 @ 0 @ (D -2
3

\
@ [¢3] o N @ ° edge color (D o @) e @

workload ®)

Figure 3: Change of workload distribution after an iteration sweep

In an edge-colored graph, a “dimension” is then equal to the set of all edges of the same
chromatic index. During each iteration sweep, a processor would exchange its load with
each one of its neighbors in turn according to the chromatic indices of its incident edges—
i.e., going through the dimensions in turn. During the process, the exchange operation
between a pair of processors would split the total workload of the two processors according
to a prescribed exchange parameter A. Specifically, for processor 7, the exchange of workload

-1

with a nearest neighbor j is executed as
1, = (1= At + Aty (5)

where t, and ¢, are the current workloads of processor ¢ and j respectively, and , is the
adjusted workload of processor #; processor j executes a similar operation. Note that when
X = 1/2, the GDE method is reduced to the original DE method [5, 13]. Figure 3 illustrates
the change of workload distribution subject to the integer ceiling and floor operations after
an iteration sweep of the DE method.

Clearly, for an arbitrary structure, it is unlikely that the DE method can yield a uniform
workload distribution after a single iteration sweep. The introduction of the exchange
parameter A aims at accelerating the convergence rate of the load balancing procedure.
Our previous work resulted in the determination of a necessary and sufficient condition for
values of this parameter that would lead to convergence. We also presented a sufficient
condition for a class of network topologies for which A = 1/2 yields the fastest convergence
rate. Examples of the members of this class include the hypercube and the product of any
two structures satisfying the condition.

For the popular structures of the n-dimensional & X ko X - -+ X k, mesh and 2k; x 2k x
-+ - X 2k, torus, we derived the optimal exchange parameters, Aop: = 1/(1+sin(x/k)), where
. = max{k,,1 < ¢ < n}. Note that the torus converges twice as fast as a mesh of the same
dimensions. Through extensive experimentation, we showed that these optimal parameters
did speed up the GDE balancing procedure significantly, and that the actual number of
iteration steps taken was encouragingly small. And we find that the performance of these
optimally tuned procedures is guite scalable: the number of iteration steps is found to be
O(N), where VN is the number of processors.

3 Distributed remapping with the GDE method

3.1 Distributed convergence detection

The distributed GDE load balancing procedure is invoked between consecutive phases.
Everytime when it finishes, the variance of the global workload distribution across the pro-
cessors is supposed to be less than a certain prescribed threshold. Such a state has to be
detected in order for the procedure to stop executing. From the practical point of view,
the detection of the global convergence is by no means trivial because the processors are
unaware of the global workload distribution during balancing. To assist the processors
to infer global termination of the load balancing procedure from local workload informa-
tion, we superimpose a distributed termination detection mechanism on the load balancing

8

procedure.

The problem of distributed termination detection per se is a popular research topic in
parallel and distributed computing realms. In the past, numerous solutions of diverse char-
acteristics have been proposed [9, 16, 22, 28]. For our situation, we need a fully distributed
and highly efficient method for the nodes to detect global termination because all the pro-
cessors are held up :waiting for the completion of the remapping procedure before they can
proceed into the next phase. The method’s delay in announcing termination after the in-
stant when every node enters into its locally terminated {or stable) state must be sufficiently
small. A stable state is one in which the workload remains unchanged after an iteration
sweep of the GDE load balancing. We adopt the method as proposed in [28], which is
especially effective for termination detection of loosely synchronized iteration computations
in general.

The method (see the algorithm below) makes use of global virtual time advanced by
the iteration sweeps. For termination detection, every node maintains an integer counter
State to record its current state and the historical states of others. State is equal to zero if
and only if the node is in an unstable state. Every node exchanges its counter value with
its nearest neighbors in a manner that is exactly like the exchange of workload information
in the GDE method. By executing the operation Fzchange(c), a node sends out its local
counter value and receives its neighbor’s counter value along the channel with chromatic
index ¢. The variable InputState temporarily stores the neighbor’s counter value received in
the current exchange operation. The counter State changes as the load balancing procedure,
LoadBalance(), progresses. Global termination of the load balancing procedure is detected
when the counter value State reaches a prescribed value, A, which is a function of the
structure of the underlying colored system graph. In [28], we showed that this A is in fact
equal to the minimum number of sweeps required by a processor to obtain knowledge of
others’ statuses. In the color mesh of Figure 3(a), for example, A = 2, because it takes a
minimum of two sweeps for any node to transmit a message to any other node. As a counter
would keep counting up after the system has entered a global stable state, this method is
time-optimal.

Algorithm: TerminationDetector
State = 0;
while (State < A) {
for (c=Le< nye++) {
if there exists an incident edge of color ¢ {
InputState = Ezchange(c, State);
State = min{State, InputState};

}
LoadBalance();

if (LocalT erminated)
State = State + 1;
else
State = 0;

3.2 Implementation of a GDE-based remapping mechanism

Even though the analysis of the GDE method ignores the interprocessor communication
overhead, the method is applicable to the computations in practice whose interprocessor
communication cost is non-negligible. Basically, what the GDE load balancing ends up with
are near-neighbor communications that shift the loads across short distances. By adopting
the approach of adjusting boundaries of the problem domain, the GDE balancing procedure
preserves the communication locality and hence the stability of the original communication
structure through the series of re-decompositions.

The problem domain can be treated as a group of internal load distributions together
with a corresponding ezternal load distrbution. Every subdomain in a node is represented
by an internal load distribution for the computational requirements of its internal finer
portions, and by an external integer value for its total workload. Table 1 shows an example
of the internal and external load distributions of a 64 x 64 problem domain. The domain
is supposed to be distributed in strips across eight processors connected as a chain. Each
strip is made up of 8 rows (i.e., internal finer portions of a strip). We take a row as the
basic unit in the re-decomposition, and attach to it an external integer value to represent

its computational requirement.

The remapping mechanism has two components: the decision maker and the workload
adjuster. The decision maker is concerned only with the external load distribution, and is
responsible for calculating the amount of workload inflow or outflow along each link of a
node necessary for workload balancing. The workload adjuster is responsible for actually
adjusting the borders of the problem domain according to the results of the decision maker.

The decision maker uses the GDE method with which a node iteratively balances its
workload with its nearest neighbors until a uniform workload distribution is reached and de-
tected. Note that the balance operator does not involve real workload. The workload is rep-
resented abstractly in this decision making process by simple integer variables: WorkLoad
for the node’s workload before the decision making and Load a temporary variable for

10

Table 1: Load distributions of a problem domain

Node index Internal distribution External load
1 (11, 15, 18, 18, 19, 20, 22, 21) 140
2 (21, 22, 21, 22, 21, 21, 22, 23) 173
"3 (24, 22, 23, 23, 23, 24, 24, 22) 189
4 (20, 19, 18, 18, 18, 19, 20, 21) 154
5 (28, 28, 26, 28, 32, 33, 34, 37) 248
6 (34, 24, 22, 21, 21, 17, 17, 17) 171
7 (16, 14, 14, 16, 17, 16, 17, 18) 127
8 (18, 15, 14, 14, 13, 11, 11, 11) 106

workload during the process. We also introduce a vector FlowTrace to keep track of the
workload flows along each link of a node. Initially, each element FlowT'race[s] is set to
zero. For each sweep of the iterative decision making procedure, the amount of workload
which is to be sent away or absorbed along a link { is added to FlowTrace(i] as a positive
or negative value respectively. Thus, at the end of the decision making, FlowTrace records

the inflow or outflow amount along each link.

Below, we outline the algorithm of the decision maker, which combines the GDE algo-
rithm and the termination detection algorithm. LocalTerminated becomes true in processor
i when no change occurs in FlowT'race[i] after a sweep of exchanges with the processor’s

neighbors.

Algorithm: DecisionMaker
State = 0;
Load = WorkLoad;
while (State < A) {
for (c=1lic< ke ++) {
if there exists an edge of color ¢ {
(InputState, Input Load) = Ezchange(c, State, Load);
if (InputLoad > Load)
temp = |(InputLoad — Load) x A];
else
Flow[c] = [(InputLoad — Load) x Al;
FlowTrace(c] = FlowTrace[c] + temp;
Load = Load + temp;

11

State = min{State, InputState};

}
}
if (LocalTerminated)
State = State + 1;
else
State = 0

Applying the algorithm to the external load distribution in Table 1, we obtain the inflow
or outflow value for each link, as illustrated in Figure 4.

@ﬁ@f—@;@—@g@—:@:

94 58

Figure 4: Hlustration of in/out-flow along each link

Following the decision making, the workload adjuster of every node would start to work
on its internal load distribution according to the FlowT race vector generated by the decision
maker. It involves selecting data set(s) to be split, transferring the split data sets between
nodes, and merging of received data set(s) with the original subdomain. In principle, the
splitting and merging of data sets are such that the geometric adjacency of data points in the
problem domain are kept intact—basically adjusting of borders. For stripwise-partitioned
subdomains such as those in Table 1, this can be done rather conveniently through shift-
ing rows (or columns) between neighboring subdomains. Details of how this is done will
be presented in the next section when the implementations of two real applications are

discussed.

4 Performance evaluation

The time-dependent data parallel applications we have chosen for testing the performance
of the GDE-based remapping mechanism are the WaTor simulation [6] and parallel thinning
of images [12, 11]. They are representatives of two different load variation models: in the
Wator simulation, computation requirements in a phase are independent of the previous
phase, whereas in image thinning, the computation requirements of a phase are dependent
on the previous phase. The experiments were coded in INMOS Parallel C [24], and run on
a group of T805-30 transputers [23]. The main metric of interest is the improvement in

12

execution time due to remapping, denoted by 7remap, Which is defined as

iWithoutR = twath
Tremap = 1thout Remap 1ithRemap % 100%
tW:thoutRemap

where tWithoutRemap 204 tWithRemap are the execution times without and with remapping
respectively. Another metric of interest is the overhead of the remarping mechanism. The
timings are expressed in ticks. A tick is the basic timing unit in transputer and is equivalent

of 64 microseconds.

4.1 WaTor—A Monte Carlo dynamical simulation

WaTor is an experiment that simulates the activities of fishes in a two-dimensional periodic
ocean. The name WaTor comes from the toroidal topology of the imaginary watery planet.
Fishes in the ocean breed, move, eat and die according to certain non-deterministic rules.
The simulation is Monte Carlo in nature, and can be used to lustrate many of the crucial
ideas in dynamic time- and event-driven simulations.

In the simulation, the ocean space is divided into a fine grid which is structured as a
torus. Fishes are allowed to live only on grid points, and move around within neighboring
points in a simulation step. There are two kinds of fishes in the ocean: the minnows and
the sharks. They adhere to the following rules as they strive to live.

1. Each fish is updated as the the simulation progresses in a series of discrete time steps.

2. A minnow locates a vacant position randomly in up, down, left or right direction. If
the vacant position is found, the minnow moves there, and leaves a new minnow of
age 0 in the original location if it is mature with respect to the minnow breeding age;
otherwise, the minnow stays where it is and cannot breed regardless of its age.

3. A shark locates a minnow within its neighboring positions at first. If found, it eats
the minnow and moves to that location; otherwise, the shark then locates a vacant
position like what the minnow does. If the shark moves to a new location and it
is mature with respect to the shark breeding age, a new shark of age 0 is left in its
original location. If a shark has not eaten any minnows within a starvation period, it
dies.

Since the ocean structure is torojdal, we implement the WaTor algorithm on 2 ring-
structured system (a ring is a special case of a torus). The parallel implementation de-
composes the ocean grid into strips, and assigns each of them to a processing node. Each
simulation step consists of three substeps:

13

1. EzBound: exchange of contents of grid points along a strip’s boundaries;
2. Update: update of fishes in the strip;

3. EzFish: boundary-crossing of fishes that have to leave the strip.

The routine Update follows the above live-and-die rules for fishes. Fishes bound for neigh-
boring strips are not transferred individually. Instead, they are held until the end of the
Update procedure, and then bundled up to cross the boundaries in the routine EzFish.
Thus, the duration of the a simulation step in a processor i is given by

T, = tiEzBound + t?pdatc + thFish

where tEzBound tUrdate and tB=Fish are the times spent in the respective procedures. Since
the boundary-crossing fishes are bundled and transferred in one message, every processor
transmits the same number of messages to its neighbors and hence incurs approximately

the same communication cost.

The simulation is done for a 256 x 256 ocean grid which is mapped onto 16 transputers.
And it is Tun for as many as 100 simulation steps. The minnow breeding, the shark breeding
and the shark starvation parameters are set to be 7, 12, and 5 steps respectively, Initially, the
ocean is populated by minnows and sharks generated from a random uniform distribution,
which are distributed by rows among the 16 transputers. The total simulation time for 100
steps is 274716 ticks.

The computational requirement of a processor is proportional to the density of fishes in
the strip that it is simulating. More fishes exist, more computation time is needed for the
update. Owing to the tendency of the fishes to form schools dynamically and unpredictable
breeding, eating and dying of the fishes, the processor utilization Uy (as defined in Section 2)
of the processors varies not so smoothly over time, as shown in the TIME curve of Figure 5.
We apply remapping based to the GDE method periodically on the parallel simulation.
Since the computational workload of a processor is proportional to the number of fishes in
the strip, we use the latter as the measure of workload. The remapping procedure then
tries to split the number of fishes between nodes as evenly as possible. Figure 5 (the FISH
curve) also plots the processor utilization in terms of the number of fishes of each processor
at various simulation steps. From the simulation data, it is observed that the variance of the
computation time distribution changes with time and the change tendency is unpredictable.
The close agreement in shape of the two curves confirms the reasonableness of measuring
the computational load in terms of the number of fishes.

We examine the benefits of GDE-based remapping for various sizes of the remapping
interval. Other than the remapping interval, the remapping cost relative to the computation

14

0.9

0.8

0.7

06—

0.5

04—

0.3~

T T T T T T T T T T T T T T
0 25 50 75 100

Figure 5: Processor utilization at various simulation steps

time per simulation step is also an important parameter for determining the improvement
due to remapping. The remapping cost is the time #¢¢*%" required for decision-making,
plus the time tfd’“’t spent in the workload adjustment. The latter is dependent on the
internal fish distribution of processors at the time the remapping is invoked and the results
of the decision making. Table 2 presents the scenario of a remapping instance which is
invoked after the simulation has passed 30 steps. The distribution of number of fishes f7™
prior to the remapping is given in the second column. For comparison, we also record
in the next column the actual update time of each processor,
imposed. The fourth column presents the time t#e#e" which js the product of the number
of iteration sweeps NS spent in decision making using the GDE method (among which are
8 sweeps for global convergence detection) and a constant representing the time complexity
of a sweep. The fifth column gives the number of fishes that are migrated upwards (f;'%)
and downwards (f9e¥") due to the remapping. A positive number means “take” and a
negative number means “give away”. Correspondingly, the time spent in load adjustment
124 is presented in the sixth column. The last column is the distribution of fishes after

upddte . .
17P%%% if no remapping is

remapping, f7°%.

It can be seen from the table that the time for decision making t¥@#" (= 43} is
relatively insignificant when compared with the update time 1¥P4% (1900 on average), and
the cost of remapping is dominated by the time for load adjustment Zf‘i"‘“. It is because the
load adjustment procedure involves a number of time-consuming steps including memory
allocation/deallocation and transmission of the fishes concerned.

15

Table 2: Scenario of a remapping instance

pre-remapping

decision-making

load adjustment

post-remapping

i f,?re t:.zpdatc (NS, tigecisim) (j;jup’ fidown) t?djust fipost
12014 | 4135 (-121,0) 583 1893
2 | 2094 | 4464 (0,0) 2094
211909 | 3762 (0,0) 1909
411927 | 3974 (0,0 2 1927
512160 | 4322 (0, -126) 528 2034
6| 2123 | 4277 (126,-228) | 1120 2021
711737 3518 (228,0) | 1116 1965
81727 | 3651 (17, 43) (0, 109) 393 1836
9| 2042 | 4235 (-109, 0) 393 1933

10 | 2132 | 4194 (0, 0) 2 2132

11 {2017 | 3997 (0,-117) | 545 1900

12 | 1876 | 4069 (117,0) | 543 1993

13 | 1743 | 3612 (0,0) 2 1743

14 | 1848 | 3923 (0, 122) 479 1970

15 | 1931 | 3897 (-122,139) | 647 1948

16 | 2030 | 4165 (-139, 121) 646 2012

16

The improvements due to remapping for different sizes of the remapping interval are
plotted in Figure 6 (the curve of DR,EL=0; where DR stands for distributed remapping,
and EL stands for extra workload). The horizontal scale is the number of simulation steps
between two successive remapping instances; for example, a 20 means remapping is invoked
once every 20 simulation steps. The curve shows that relatively frequent remapping gives
an improvement of 7 — 15% in the overall simulation time. Because of its rather low cost,
remapping is favorable even in the case that the simulation is interrupted by remapping
once every simulation step. Conversely, less frequent remapping (e.g., once every 30 to
50 steps) could end up with no improvement or even degradation of performance. It is
because the load distribution across processors changes in a haphazard way over time. This
is characteristic of WaTor simulations.

n
30
-+ DR, EL=0
25
O DR, EL=1
20 ¥ DR, EL=2
I
15— A CR.EL=0
10 ==
54
0 40 S0
0 T T T T T T T AV
2 3 4 5 3 7 8 9 10 20
57 interval
~10 -

-15

Figure 6: Improvement due to remapping for various interval sizes

Since the decision making and the load adjustment are based on the number of fishes, the
remapping cost does not change with the increase of the time a fish spends in a simulation
step. Hence, remapping would be even more beneficial if a fish does some extra work in a
simulation step such as spending more time in its moving, eating, breeding and dying. This
“better” performance is shown in Figure 6: the cases of DR,EL=1 and DR,EL=2, in which
the time for the update of a fish is increased by an extra load of 1 and 2 ticks respectively.

For comparison, we also give improvements resulting from an efficient implementation
of a centralized remapping method in the figure (the case of CR,EL=0; CR stands for
centralized remapping). With the method, a designated processor takes the responsibility
of making decisions according to the external load distribution [10]. This centralized version

17

takes a much longer time (100-200 ticks) to do decision making than the decentralized
version based on GDE. It can be measured that the GDE-based remapping method, when
frequently invoked, outperforms the centralized method by a factor of 40% or so.

4.2 Parallel thinning of images

Thinning is a fundamental preprocessing operation to be applied over a binary image to
produce a version that shows the significant features of the image (see Figure 7). In the
process, information that is deemed redundant is removed from the image. It takes as
input a binary picture consisting of objects and a background which are represented by
1-valued pixels and 0-valued pixels respectively. It produces object skeletons that preserve
the original shapes and connectivity. An iterative thinning algorithm performs successive
iterations on the picture by converting those 1-valued pixels that are judged to be not
belonging to the skeletons into 0-valued pixels until no more conversions are necessary. In
general, the conversion (or survival) condition of a pixel, say P, is dependent upon the
values of its eight neighboring pixels, as depicted below.

NW N NE
w P E
SwW § SE

A paralle] thinning algorithm decomposes the image domain into a number of portions
and applies the thinning operator to all portions simultaneously. Since the study of parallel
thinning algorithms itself is beyond the scope of this study, we arbitrarily picked an existing
parallel thinning algorithm, the HSCP algorithm [12], and implemented it on a chain-
structured system using stripwise decomposition. The algorithm is sketched below.

Algorithm: Thinning
while (1GlobalTerminated) {
ExBound();
if (1LocalTerminated) {
ComputeEdge();
ExEdge();
LocalTerminated = Erosion();

}

At the beginning of each thinning iteration step, the boundary pixels of each strip are
exchanged with those of the neighboring strips in the routine EzBound. The heart of the

18

algorithm is the routine Erogion which applies the thinning operator to each pixel according
to the following survival condition.

p && (ledge(P) ||
(edge(E) && n && s) |
(edge(5) && w && e) ||
{edge(E) && edge(SE) && edge(S)))

where a small letter denotes the pixel value at a location identified by the corresponding
capital letter; the function edge tells whether a pixel is on the edge of an object skeleton.
The edge value of a pixel is determined by the values of its surrounding pixels, and is
computable in advance. The routine ComputeEdge is for computing the edge values of all
pixels. The edge values of boundary pixels are exchanged in the routine EzFdge.

We use a typical image, that of a man body, as shown in Figure 7, to be the test pattern.
The dots are 1-pixels, the white space is the 0-pixels, and the asterisks are the result of the
thinning process. For the image of size 128 x 128, the number of iterations required by the

Figure 7: The image pattern and the thinning result

thinning algorithm is 15. The thinning time and other performance data of the algorithm
for various numbers of the processors are tabularized in Table 3. The “efficiency” measure
is to reflect the effectiveness of using more processors to solve the same problem. The loss of

19

Table 3: Performance of parallel thinning

Number of processors 1 2 3 4 5 6 7 8
Thinning time 53346 26987 19867 15230 12394 11148 9054 8679
Speedup 1 1977 2685 3.503 4.304 4.785 5.892 6.148
Efficiency 1 0988 0.893 0.875 0.861 0.798 0.842 0.768
Communication cost (%) — 1112 1510 1.970 2.318 2.681 3.313 3.457

the efficiency as the number of processors increases is due to interprocessor communication
costs and load imbalances. From the thinning algorithm, we see that each thinning iteration
step involves two communication operations with neighboring nodes (in a chain, each node
has one or two neighbors): the exchange of boundary rows and the exchange of edge values
of boundary pixels. An exchange operator is made up of sending and receiving a fixed
size message in parallel. It is measured that the operator uses about 10 ticks. The total
communication time is thus about 300 (10 X 2 X 15) ticks, which is the same for any number
of processors. Its contribution in percentage to the overall thinning time is shown in the
last row of Table 3.

We see that in parallel thinning, the computational requirement of a node is mainly
dependent on the l-pixels. The amount of conversions of 1-pixels to 0-pixels in an iteration
step is unpredictable, and hence the computational workload can be somewhat varied over
time. We thus resort to dynamic remapping to balance the workload over the course of
thinning. We approximate the computational workload of a processor at an iteration by
the processing time spent in the previous iteration. This approximation is reasonable since
erosion takes place gradually along the edges of object skeletons, and thus the processing
times of two consecutive iterations should not differ by a great deal.

From the experience in the WaTor simulation, we try two invocation policies for the
remapping. One is to invoke the remapping once every two steps, and the other is to invoke
the remapping only once at beginning of the thinning process. Since no computation time is
available before the first iteration step to serve as an estimate of the workload, we perform
the remapping between the first and the second iteration step. Figure 8 plots the processor
utilization Uy across eight processors at various iteration steps for cases with and without
remapping.

The curve for case 1 (without remapping) shows that the initial unbalanced workload
distribution tends to uniform as the thinning algorithm proceeds. This points to the fact
that the problem in question does not favor remapping. In fact, by applying the once-at-

20

Qs | A S S RS N RS SR R S RN S
7 8 9 10 1 12 13 14

Figure 8: Processor utilizations at various iteration steps (8 processors)

the-beginning remapping to the problem (case 2), the overall performance seems to become
worse: the initial balanced load distribution which is the result of the remapping. unfor-
tunately, tends to non-uniform afterwards. To preserve the uniform distribution, it seems
necessary to invoke the remapping periodically (case 3). This time improvement is evident,
as can be seen in the figure. Then in Figure 9, we show the improvement due to remapping
(cases 2 and 3) in overall thinning time for different numbers of processors. Note that even
though case 2 has seemed to be not so satisfactory in terms of processor utilization as shown
in Figure 8, it does however reap performance gain in terms of thinning time most of the
time, even outperforming case 3 in some instances.

From Figure 9, it is clear that the parallel thinning algorithm does benefit from remap-
ping. Although the once-at-the-beginning remapping could sometimes outperform frequent
remapping, the latter tends to give smoother performance throughout. As we have already
pointed out, this particular test image is unfavorable as far as remapping is concerned be-
cause its workload distribution would tend to a uniform distribution as thinning progresses.
Therefore, we consider the saving due to remapping of only a few percents in the overall
thinning time in both cases satisfactory. In comparison with the interprocessor communi-
cation cost which accounts also for a few percents (see Table 3), this saving is significant.

21

O case2

O case3

Figure 9: Improvement due to remapping for various numbers of processors.

5 Conclusion

In this paper, we study distributed remapping with the generalized dimension exchange
method. We evalnate its performance in two data parallel computations. In the WaTor
simulation of 2 256 x 256 torodial ocean running on 16 processors, it is found that frequent
remapping leads to about 15% improvement in simulation time over static mapping, and it
outperforms centralized remapping by a factor of 50%. In parallel thinning of a 128 x 128
image on 8 processors, the policy of frequent remapping still saves about 5% thinning
time although the test image is unsuitable for remapping. We consider these gains in
performance (in the order of 10 — 20%) due to remapping satisfactory because our test
problems are themselves balanced in statistical sense—i.e., the mean and variance of the
workload distribution are more or less homogeneous across the domain, and the imbalances
are mainly due to statistical fluctuations. We believe this is typical of many real data
parallel problems. For other problems that have substantial imbalances (the simulation of
timed Petri nets, for instance), improvements on the order of hundreds of percents could
sometimes be observed [17].

References

(1] D. C. Amney and J. E. Flaherty. An adaptive mesh-moving and local refinement method
for time-dependent partial differential equations. ACM Transactions on Mathematical
Software, 16(1):48~71, March 1990.

22

[2] M. J. Berger and S. H. Bohari, A partitioning strategy for nonuniform problems on
multiprocessors. [EEE Transactions on Computers, 36(5):570-580, May 1987.

[3] A. N. Choudhary, B. Narahari, and R. Krishnamurti. An efficient heuristic scheme for
dynamic remapping of parallel computations. Parallel Computing, 19:621-632, 1993.

[4] A. N. Choudhary and R. Ponnusamy. Run-time data decomposition for parallel imple-
mentation of image processing and computer vision tasks. Concurrency: Practice and
Ezperience, 4(4):313-334, June 1992.

[5] G. Cybenko. Load balancing for distributed memory multiprocessors. Journal of
Parallel and Distributed Computing, 7:279-301, 1989.

[6] A. K. Dewdney. Computer recreations. Science America, December 1984.

[7] G. C. Fox. Applications of parallel supercomputers: Scientific results and computer
science lessons. In Natural and Artifical Parallel Computation. The MIT press, Cam-
bridge, 1990.

[8] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.
Walker. Solving problems on concurrent processors, Volume I. Prentice Hall Inc., 1988.

[9] N. Francez. Distributed termination. ACM Transactions on Programming Languages
Systems, 2:42-45, January 1980.

[10] R. V. Hanxleden and L. R. Scott. Load balancing on message passing architectures.
Journal of Parallel and Distributed Computing, 13(3):312-324, November 1991.

[11] S. Heydorn and P. Weidner. Optimization and performance analysis of thinning algo-
rithm on parallel computers. Parallel Computing, 17:17-27, 1991.

[12]) C. M. Holt, A. Stewart, M. Clint, and R. D. Perrott. An improved parallel thinning
algorithm. Communications of ACM, 30(2):156-160, February 1987.

[13] S. H. Hosseini, B. Litow, M. Malkawi, J. Mcpherson, and K. Vairavan. Analysis of
a graph coloring based distributed load balancing algorithm. Journal of Parallel and
Distributed Computing, 10:160-166, 1990.

[14] J. De Keyser and D. Roose. A software tool for load balanced adaptive multiple grids on
distributed memory computers. In Proceedings of 6th Distributed Memory Computing
Conference, pages 122-128, April 1991.

[15] J. De Keyser and D. Roose. Multigrid with solution-adaptive irregular grids on dis-
tributed memory computers. In D. J. Evans, G. R. Joubert, and H. Liddell, editors,
Parallel Computing, pages 375-382. Elsevier Science Publishers, 1992.

23

[16] F. Mattern. Asynchronous distributed termination: parallel and symmetric solutions
with echo algorithms. Algorithmica, pages 325-340, May 1990.

{17] D. M. Nicol. Personal communications, May 1993.

[18] D. M. Nicol and P. F. Reynolds. Optimal dynamic remapping of data parallel compu-
tation. IEEE Trans. on Computers, 39(2):206-219, February 1990.

[19] D. M. Nicol and J. H. Saltz. Dynamic remapping of parallel computations with varying
resource demands. IEEE Transactions on Computers, 37(9):1073-1087, September
1988.

[20] S. Ranka, Y. Won, and S. Sahni. Programming a hypercube multicomputer. IEEE
Software, 5:69~77, September 1988.

[21] Y. Shih and J. Fier. Hypercube systems and key applications. In K. Hwang and
D. Degroot, editors, Parallel Processing for Supercomputers and Artifical Intelligence,
pages 203-243. McGraw-Hill Publishing Co., 1989.

[22] B. Szymanski, Y. Shi, and S. Prywes. Synchronized distributed termination. [EEE
Transactions on Software Engineering, SE-11(10):1136-1140, October 1985.

[23] Inmos Limited (U.K.). The Transputer Databook. 1989.
[24] Inmos Limited (U.K), ANSI C Toolset User Manual. 1990.

[25] R. D. Williams. Performance of dynamic load balancing algorithms for unstructured
mesh calculations. Concurrency: Practice and Ezperience, 3(5):451-481, October 1991.

(26] C.-Z. Xu and F.C.M. Lau. The generalized dimension exchange method for load bal-
ancing in k-ary n-cubes and variants. Journal of Parallel and Distributed Computing.
To appear. (Available as Tech. Report TR-92-02, Dept. of Computer Science, The
Univ. of Hong Kong, Jan. 1992).

[27] C.-Z. Xu and F.C.M. Lau. Analysis of the generalized dimension exchange method for
dynamic load balancing. Journal of Parallel and Distributed Computing, 16(4):385-393,
December 1992.

[28] C.-Z. Xu and F.C.M. Lau. Termination detection for loosely synchronized computa-
tions. In Proceedings of 4th IEEE Symposium on Parallel and Distributed Processing,
pages 196-203, December 1992.

24

X09003405

CLHNTIEI

P 004.35 X8 C1

Xu, C. Z.

Decentralized remapping of
data parallel computations
with the generalized dimension
exchange method

Hong Kong : Department of

	COVER
	Abstract
	1 Introduction
	2 The computation model and the GDE method
	2.1 The computation model
	2.2 The GDE method
	3 Distributed remapping with the GDE method
	3.1 Distributed convergence detection
	3.2 Implementation of a GDE-based remapping mechanism
	4 Performance evaluation
	4.1 Wator-a monte carlo dynamical simulation
	4.2 Parallel thinning of images
	5 Conclusion
	References
	COVER BACK
	CONTENTS

