
1

Decentralized Rigidity Maintenance Control with

Range Measurements for Multi-Robot Systems
Daniel Zelazo, Antonio Franchi, Heinrich H. Bülthoff, and Paolo Robuffo Giordano

Abstract—This work proposes a fully decentralized strategy
for maintaining the formation rigidity of a multi-robot system
using only range measurements, while still allowing the graph
topology to change freely over time. In this direction, a first
contribution of this work is an extension of rigidity theory to
weighted frameworks and the rigidity eigenvalue, which when
positive ensures the infinitesimal rigidity of the framework. We
then propose a distributed algorithm for estimating a common
relative position reference frame amongst a team of robots with
only range measurements in addition to one agent endowed with
the capability of measuring the bearing to two other agents. This
first estimation step is embedded into a subsequent distributed
algorithm for estimating the rigidity eigenvalue associated with
the weighted framework. The estimate of the rigidity eigenvalue is
finally used to generate a local control action for each agent that
both maintains the rigidity property and enforces additional con-
straints such as collision avoidance and sensing/communication
range limits and occlusions. As an additional feature of our
approach, the communication and sensing links among the
robots are also left free to change over time while preserving
rigidity of the whole framework. The proposed scheme is then
experimentally validated with a robotic testbed consisting of 6
quadrotor UAVs operating in a cluttered environment.

Index Terms—graph rigidity, decentralized control, multi-
robot, distributed algorithms, distributed estimation.

I. INTRODUCTION

The coordinated and decentralized control of multi-robot

systems is an enabling technology for a variety of applications.

Multi-robot systems benefit from an increased robustness

against system failures due to their ability to adapt to dy-

namic and uncertain environments. There are also numerous

economic benefits by considering the price of small and cost-

effective autonomous systems as opposed to their more expen-

sive monolithic counterparts. Currently, there is a great interest

in implementing these systems from deep space interferometry

missions and distributed sensing and data collection, to civilian

search and rescue operations, among others (Akyildiz et al.,

2002; Anderson et al., 2008a; Bristow et al., 2000; Lindsey

et al., 2011; Mesbahi and Egerstedt, 2010; Michael et al.,

2009; Murray, 2006).

D. Zelazo is with the Faculty of Aerospace Engineering, Technion - Israel
Institute of Technology, Haifa 32000, Israel dzelazo@technion.ac.il

A Franchi is with the Centre National de la Recherche Scien-
tifique (CNRS), Laboratoire d’Analyse et d’Architecture des Systèmes
(LAAS), 7 Avenue du Colonel Roche, 31077 Toulouse CEDEX 4, France.
antonio.franchi@laas.fr

H. H. Bülthoff is with the Max Planck Institute for Biological Cybernetics,
Spemannstraße 38, 72076 Tübingen, Germany hhb@tuebingen.mpg.de.
H. H. Bülthoff is additionally with the Department of Brain and Cognitive
Engineering, Korea University, Seoul, 136-713 Korea.

P. Robuffo Giordano is with the CNRS at Irisa and Inria Rennes
Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes Cedex, France
prg@irisa.fr.

The challenges associated with the design and implemen-

tation of multi-agent systems range from hardware and soft-

ware considerations to the development of a solid theoretical

foundation for their operation. In particular, the sensing and

communication capabilities of each agent will dictate the

distributed protocols used to achieve team objectives. For

example, if each agent in a multi-robot system is equipped

with a GPS-like sensor, then tasks such as formation keeping

or localization can be trivially accomplished by communica-

tion between robots of their state information in a common

world-frame. However, in applications operating in harsher

environments, i.e., indoors, underwater, or in deep-space, GPS

is not a viable sensing option (Scaramuzza et al., 2014).

Indeed, in these situations, agents must rely on sensing without

knowledge of a common inertial reference frame (Franchi

et al., 2012a). In these scenarios, relative sensing can provide

accurate measurements of, for example, range or bearing, but

without any common reference frame.

A further challenge related to the sensing capabilities of

multi-robot systems is the availability of these measurements.

Sensing constraints such as line-of-sight requirements, range,

and power limitations introduce an important system-level

requirement, and also lead to an inherently time-varying

description of the sensing network. Successful decentralized

coordination protocols, therefore, must also be able to manage

these constraints.

These issues lead to important architectural requirements for

the sensing and communication topology in order to achieve

the desired higher level tasks (i.e., formation keeping or local-

ization). The connectivity of the sensing and communication

topology is one such property that has received considerable

attention in the multi-robot communities (Robuffo Giordano

et al., 2011, 2013; Ji and Egerstedt, 2007). However, con-

nectivity alone is not sufficient to perform certain tasks when

only relative sensing is used. For these systems, the concept

of rigidity provides the correct framework for defining an

appropriate sensing and communication topology architecture.

Rigidity is a combinatorial theory for characterizing the “stiff-

ness” or “flexibility” of structures formed by rigid bodies

connected by flexible linkages or hinges.

The study of rigidity has a rich history with contributions

from mathematics and engineering disciplines (Connelly and

Whiteley, 2009; Jacobs, 1997; Krick et al., 2009; Laman,

1970; Shames et al., 2009; Tay and Whiteley, 1985; Eren

et al., 2004). Recently, rigidity theory has taken an outstanding

role in the motion control of mobile robots. The rigidity

framework allows for applications, such as formation control,

to employ control algorithms relying on only relative distance

measurements, as opposed to relative position measurements

mailto:antonio.franchi@laas.fr
mailto:hhb@tuebingen.mpg.de

2

from a global or relative internal frame (Anderson et al.,

2008a,b; Baillieul and McCoy, 2007; Krick et al., 2009; Olfati-

Saber and Murray, 2002; Smith et al., 2007). For example, in

(Krick et al., 2009) it was shown that formation stabilization

using only distance measurements can be achieved only if

rigidity of the formation is maintained. Moreover, rigidity

represents also a necessary condition for estimating relative

positions using only relative distance measurements (Aspnes

et al., 2006; Calafiore et al., 2010a).

In a broader context, rigidity turns out to be an important

architectural property of many multi-agent systems when a

common inertial reference frame is unavailable. Applications

that rely on sensor fusion for localization, exploration, map-

ping and cooperative tracking of a target, all can benefit

from notions in rigidity theory (Shames et al., 2009; Aspnes

et al., 2006; Calafiore et al., 2010b; Williams et al., 2014; Wu

et al., 2010). The concept of rigidity, therefore, provides the

theoretical foundation for approaching decentralized solutions

to the aforementioned problems using distance measurement

sensors, and thus establishing an appropriate framework for

relating system level architectural requirements to the sensing

and communication capabilities of the system.

A. Main Contributions

In general, rigidity as a property of a given formation

(i.e., of the robot spatial arrangement) has been studied from

either a purely combinatorial perspective (Laman, 1970), or by

providing an algebraic characterization via the state-dependent

rigidity matrix (Tay and Whiteley, 1985). In our previous work

(Zelazo et al., 2012), we introduced a related matrix termed

the symmetric rigidity matrix. A main result of (Zelazo et al.,

2012) was to provide a necessary and sufficient conditions for

rigidity in the plane in terms of the positivity of a particular

eigenvalue of the symmetric rigidity matrix; this eigenvalue

we term the rigidity eigenvalue. This result is in the same

spirit as the celebrated Fiedler eigenvalue1 and its relation to

the connectivity of a graph (Godsil and Royle, 2001). A first

contribution of this work is the extension of the results on

the rigidity eigenvalue provided in (Zelazo et al., 2012) to

3-dimensional frameworks, as well as the introduction of the

concept of weighted rigidity and the corresponding weighted

rigidity matrix. This notion allows for the concept of rigidity

to include state-dependent weight functions on the edges of

the graph, weights which can then be exploited to take into

account inter-agent sensing and communication constraints

and/or requirements.

A gradient-based rigidity maintenance action aimed at

‘maximizing’ the rigidity eigenvalue was also proposed in (Ze-

lazo et al., 2012). However, while this gradient control law was

decentralized in structure, there was still a dependence on the

availability of several global quantities, namely, of the robot

relative positions in some common reference frame, of the

value of the rigidity eigenvalue, and of the rigidity eigenvector

associated with the rigidity eigenvalue. A main contribution of

this work is then the development of the machinery needed to

distributedly estimate all these global quantities by resorting

1The second smallest eigenvalue of the graph Laplacian matrix.

to only relative distance measurements among neighbors, so

as to ultimately allow for a fully distributed and range-based

implementation of the rigidity maintenance controller. To this

end, we first show that if the formation is infinitesimally rigid,

it is possible to distributedly estimate the relative positions of

neighboring robots in a common reference frame from only

range-based measurements. Our approach relies explicitly on

the form of the symmetric rigidity matrix developed here,

in contrast to other approaches focusing on distributed im-

plementations of centralized estimation schemes, such as a

Gauss-Newton approach used in Calafiore et al. (2010b).This

first step is then instrumental for the subsequent development

of the distributed estimation of the rigidity eigenvalue and

eigenvector needed by the rigidity gradient controller. This

is obtained by exploiting an appropriate modification of the

power iteration method for eigenvalue estimation following

from the works (Robuffo Giordano et al., 2011; Yang et al.,

2010) for the distributed estimation of the connectivity eigen-

value of the graph Laplacian and now applied to rigidity.

Finally, we show how to exploit the weights on the graph edges

to embed constraints and requirements such as inter-robot

and obstacle avoidance, limited communication and sensing

ranges, and line-of-sight occlusions, into a unified gradient-

based rigidity maintenance control law.

Our approach, therefore, can be considered as a contribution

to the general problem of distributed strategies for maintaining

certain architectural features of a multi-robot system (i.e. con-

nectivity or rigidity) with minimal sensing requirements (only

relative distance measurements). Additionally, we also provide

a thorough experimental validation of the entire framework by

employing a group of 6 quadrotor UAVs as robotic platforms

to demonstrate the feasibility of our approach in real-world

conditions.

The organization of this paper is as follows. Section I-B

provides a brief overview of some notation and fundamental

theoretical properties of graphs. In Section II, the theory

of rigidity is introduced, and our extension of the rigidity

eigenvalue to 3-dimensional weighted frameworks is given.

We then proceed to present a general strategy for a distributed

rigidity maintenance controller in Section III. This section

will provide details on certain operational constraints of the

multi-robot team and how these constraints can be embedded

in the control law. This section also highlights the need

to develop distributed algorithms for estimating a common

reference frame for the team, outlined in Section IV, and

estimation of the rigidity eigenvalue and eigenvector, detailed

in Section V. The results of the previous sections are then

summarized in Section VI where the full distributed rigidity

maintenance controller is given. The applicability of these

results are then experimentally demonstrated on a robotic

testbed consisting of 6 quadrotor UAVs operating in a obstacle

populated environment. Details of the experimental setup and

results are given in Section VII. Finally, some concluding

remarks are offered in Section VIII.

B. Preliminaries and Notations

The notation employed is standard. Matrices are denoted

by capital letters (e.g., A), and vectors by lower case letters

3

(e.g., x). The ij-th entry of a matrix A is denoted [A]ij . The

rank of a matrix A is denoted rk[A]. Diagonal matrices will

be written as D = diag{d1, . . . , dn}; this notation will also

be employed for block-diagonal matrices. A matrix and/or a

vector that consists of all zero entries will be denoted by 0;

whereas, ‘0’ will simply denote the scalar zero. Similarly, the

vector ✶n denotes the n× 1 vector of all ones. The n × n
identity matrix is denoted as In. The set of real numbers will

be denoted as R, and ‖ · ‖ denotes the standard Euclidean

2-norm for vectors. The Kronecker product of two matrices A
and B is written as A⊗B (Horn and Johnson, 1991).

Graphs and the matrices associated with them will be widely

used in this work; see, e.g., (Godsil and Royle, 2001). An

undirected (simple) weighted graph G is specified by a vertex

set V , an edge set E whose elements characterize the incidence

relation between distinct pairs of V , and diagonal |E| × |E|
weight-matrix W , with [W]kk ≥ 0 the weight on edge ek ∈ E .

In this work we consider only finite graphs and denote the

cardinality of the node and edge sets as |V| = n and |E| = m.

Two vertices i and j are called adjacent (or neighbors) when

{i, j} ∈ E .The neighborhood of the vertex i is the set Ni =
{j ∈ V | {i, j} ∈ E}. An orientation of an undirected graph G
is the assignment of directions to its edges, i.e., an edge ek is

an ordered pair (i, j) such that i and j are, respectively, the

initial and the terminal nodes of ek.

The incidence matrix E(G) ∈ R
n×m is a {0,±1}-matrix

with rows and columns indexed by the vertices and edges

of G such that [E(G)]ik has the value ‘+1’ if node i is the

initial node of edge ek, ‘−1’ if it is the terminal node, and

‘0’ otherwise. The degree of vertex i, di, is the cardinality of

the set of vertices adjacent to it. The degree matrix, ∆(G),
and the adjacency matrix, A(G), are defined in the usual

way (Godsil and Royle, 2001). The (graph) Laplacian of

G, L(G) = E(G)E(G)T = ∆(G) − A(G), is a positive-

semidefinite matrix. One of the most important results from

algebraic graph theory in the context of collective motion

control states that a graph is connected if and only if the

second smallest eigenvalue of the Laplacian is positive (Godsil

and Royle, 2001).

Table I provides a summary of the notations used throughout

the document.

II. RIGIDITY AND THE RIGIDITY EIGENVALUE

In this section we review the fundamental concepts of graph

rigidity (Graver et al., 1993; Jackson, 2007). A contribution

of this work is an extension of our previous results on

the concepts of the symmetric rigidity matrix and rigidity

eigenvalue for 3-dimensional ambient spaces (Zelazo et al.,

2012), and the notion of weighted frameworks.

A. Graph Rigidity and the Rigidity Matrix

We consider graph rigidity from what is known as a d-

dimensional bar-and-joint framework. A framework is the pair

(G, p), where G = (V, E) is a graph, and p : V → R
d

maps each vertex to a point in R
d. In this work we consider

frameworks in a three-dimensional ambient space, i.e., d = 3.

Therefore, for node u ∈ V , p(u) =
[
pxu pyu pzu

]T
is

the position vector in R
3 for the mapped node. We refer to

the matrix p(V) =
[
p(v1) · · · p(vn)

]T ∈ R
n×3 as the

position matrix. We now provide some basic definitions.

Definition II.1. Frameworks (G, p0) and (G, p1) are equiva-

lent if ‖p0(u)− p0(v)‖ = ‖p1(u)− p1(v)‖ for all {u, v} ∈ E ,

and are congruent if ‖p0(u)− p0(v)‖ = ‖p1(u)− p1(v)‖ for

all {u, v} ∈ V .

Definition II.2. A framework (G, p0) is globally rigid if every

framework which is equivalent to (G, p0) is congruent to

(G, p0).
Definition II.3. A framework (G, p0) is rigid if there exists an

ǫ > 0 such that every framework (G, p1) which is equivalent

to (G, p0) and satisfies ‖p0(v)− p1(v)‖ < ǫ for all v ∈ V , is

congruent to (G, p0).
Definition II.4. A minimally rigid graph is a rigid graph such

that the removal of any edge results in a non-rigid graph.

Figure 1 shows three frameworks illustrating the above

definitions. The frameworks in Figure 1(a) are both minimally

rigid and are equivalent to each other, but are not congruent,

and therefore not globally rigid. By adding an additional edge,

as in Figure 1(b) (the edge {v4, v5}), the framework becomes

globally rigid. The key feature of global rigidity, therefore, is

that the distances between all node pairs are maintained for

different framework realizations, and not just those defined by

the edge set.

By parameterizing the position map by a positive scalar

representing time, we can also consider trajectories of a frame-

work. That is, the position map now becomes p : V×R → R
3

and is assumed to be continuously differentiable with respect

to time. We then explicitly write (G, p, t) so as to represent

a time-varying framework. In this direction, we can define a

TABLE I
NOTATIONS

G = (V, E) a graph defined by its vertex and edge sets

Ni(t) time-varying neighborhood of node vi ∈ V
p(i) position vector in R

3 of the mapped node vi ∈ V ;
psi s ∈ {x, y, z} coordinate of position vector for node i

p(V) stacked position matrix of all nodes (Rn×3)

ξ(i) velocity vector in R
3 of the node vi ∈ V

(G, p,W) a weighted framework

R(p,W) rigidity matrix of a weighted framework

R symmetric rigidity matrix of a weighted framework

λ7, v7 (v) rigidity eigenvalue and eigenvector

ℓij distance between nodes vi, vj ∈ V , i.e., ‖p(vi)− p(vj)‖

λ̂i
7

agent i’s estimate of the rigidity eigenvalue

v̂
s
i s-coordinate of the agent i estimation

of the rigidity eigenvector

p̂i,c agent i estimate of relative position vector pi − pc
p̂ stacked vector of the relative

position vector estimate pi − pc, i = 1 . . . n

avg(x) the average of a vector x ∈ R
n, avg(x) = 1

n

∑n
i=1

xi

v
x
i agent i estimate of avg(v̂x)

v
2x
i agent i estimate of avg(v̂x ◦ v̂

x)
z
xy
i agent i estimate of avg(p̂y,c ◦ v̂

x − p̂x,c ◦ v̂
y)

zxzi agent i estimate of avg(p̂z,c ◦ v̂
x − p̂x,c ◦ v̂

z)
z
yz
i agent i estimate of avg(p̂y,c ◦ v̂

z − p̂z,c ◦ v̂
y)

4

v4

v1

v2

v5

v3

v3

v1 v2

v4

v1

v2

v5

v3

v3

v1 v2

(a) Two equivalent minimally rigid frameworks in R
3. The framework on the

right side is obtained by the reflection of the position of v5 with respect to
the plane characterized by the positions of v1, v2, and v3 (as illustrated in
grey).

v4

v1

v2

v5

v3

v3

v1 v2

(b) An infinitesimally and globally
rigid framework in R

3.

v1
v2

v3

{v1, v2} {v2, v3}

{v1, v3}

(c) A non-infinitesimally rigid frame-
work (note that vertexes v1 and v3 are
connected).

Fig. 1. Examples of rigid and infinitesimally rigid frameworks in R
3. Notice

that in Figs. (a) and (b) the 3D points associated to each vertex do not lie on
the same plane, while in Fig. (c) the 3D points are aligned.

set of trajectories that are edge-length preserving, in the sense

that for each time t ≥ t0, the framework (G, p, t) is equivalent

to the framework (G, p, t0). More formally, an edge-length

preserving framework must satisfy the constraint

‖p(v, t)− p(u, t)‖ = ‖p(v, t0)− p(u, t0)‖ = ℓvu, ∀t ≥ t0 (1)

and for all {v, u} ∈ E .

One can similarly assign velocity vectors ξ(u, t) ∈ R
3 to

each vertex u ∈ V for each point in the configuration space

such that

(ξ(u, t)− ξ(v, t))T (p(u, t)− p(v, t)) = 0, ∀ {u, v} ∈ E . (2)

Note that this relation can be obtained by time-differentiation

of the length constraint described in (1). These motions are

referred to as infinitesimal motions of the mapped vertices

p(u, t), and one has

ṗ(u, t) = ξ(u, t). (3)

For the remainder of this paper, we drop the explicit inclusion

of time for frameworks and simply write (G, p) and p(u)
and ξ(u) for the time-varying positions and velocities. The

velocity vector ξ(u) will be treated as the agent velocity input

throughout the rest of the paper (see Section III).

Infinitesimal motions of a framework can be used to define

a stronger notion of rigidity.

Definition II.5. A framework is called infinitesimally rigid if

every possible motion that satisfies (2) is trivial (i.e., consists

of only global rotations and translations of the whole set of

points in the framework).

An example of an infinitesimally rigid graph in R
3 is shown

in Figure 1(b). Furthermore, note that infinitesimal rigidity

implies rigidity, but the converse is not true (Tay and Whiteley,

1985), see Figure 1(c) for a rigid graph in R
3 that is not

infinitesimally rigid.

The infinitesimal motions in (2) define a system of m
linear equations in the vector of unknown velocities ξ =
[ξT (v1) . . . ξT (vn)]

T ∈ R
3n. This system can be equivalently

written as the linear matrix equation

R(p)ξ = 0,

where R(p) ∈ R
m×3n is called rigidity matrix (Tay and

Whiteley, 1985). Each row of R(p) corresponds to an edge

e = {u, v} and the quantity (p(u) − p(v)) represents the

nonzero coefficients for that row. For example, the row corre-

sponding to edge e has the form

[−0− (p(u)− p(v))T
︸ ︷︷ ︸

vertex u

−0− (p(v)− p(u))T
︸ ︷︷ ︸

vertex v

−0−]

.

The definition of infinitesimal rigidity can then be restated in

the following form:

Lemma II.6 (Tay and Whiteley (1985)). A framework (G, p)
in R

3 is infinitesimally rigid if and only if rk[R(p)] = 3n−6.

Note that, as expected from Definition II.5, the six-

dimensional kernel of R(p) for an infinitesimally rigid graph

only allows for six independent feasible framework motions,

that is, the above-mentioned collective roto-translations in R
3

space. Note also that, despite its name, the rigidity matrix is

actually characterizing infinitesimal rigidity rather than rigidity

of a framework.

B. Rigidity of Weighted Frameworks

We now introduce an important generalization to the con-

cept of rigidity and the rigidity matrix by introducing weights

to the framework. Indeed, as discussed in the introduction,

our aim is to propose a control law able to not only maintain

infinitesimal rigidity of the formation as per Definition II.5, but

to also concurrently manage additional constraints typical of

multi-robot applications such as collision avoidance and lim-

ited sensing and communication.This latter objective will be

accomplished via the introduction of suitable state-dependent

weights, thus requiring an extension of the traditional results

on rigidity to a weighted case.

Definition II.7. A d-dimensional weighted framework is the

triple (G, p,W), where G = (V, E) is a graph, p : V → R
d

is a function mapping each vertex to a point in R
d, and W :

(G, p) → R
m is a function of the framework that assigns a

scalar value to each edge in the graph.

Using this definition, we can also define the corresponding

weighted rigidity matrix, R(p,W) as

R(p,W) = W (G, p)R(p), (4)

where W (G, p) ∈ R
m×m is a diagonal matrix containing the

elements of the vector W(G, p) on the diagonal. Often we

5

will simply refer to the weight matrix W (G, p) as W when

the underlying graph and map p is understood.

Remark II.8. Note that the rigidity matrix R(p) can also be

considered as a weighted rigidity matrix with W (G, p) = I .

Another useful observation is that the unweighted framework

(G, p) can also be cast as a weighted framework (Kn, p,W),
where Kn is the complete graph on n nodes and [W (G, p)]ii is

1 whenever ei ∈ E(Kn) is also an edge in G, and 0 otherwise.

Weighted rigidity can lead to a slightly different interpre-

tation of infinitesimal rigidity, where the introduced weights

might cause the rigidity matrix to lose rank. That is, an

unweighted framework might be infinitesimally rigid, whereas

a weighted version might not. This observation is trivially

observed by considering a minimally infinitesimally rigid

framework (G, p) and introducing a weight with a 0 entry on

any edge. We formalize this with the following definitions.

Definition II.9. The unweigted counterpart of a weighted

framework (G, p,W) is the framework (Ĝ, p) where the graph

Ĝ = (V, Ê) is such that Ê ⊂ E and the edge ei ∈ E is also an

edge in Ĝ if and only if the corresponding weight is non-zero

(i.e. [W (G, p)]ii 6= 0).

Definition II.10. A weighted framework is called infinites-

imally rigid if its unweighted counterpart is infinitesimally

rigid.

We now present a corollary to Lemma II.6 for weighted

frameworks.

Corollary II.11. A weighted framework (G, p,W) in R
3 is

infinitesimally rigid if and only if rk[R(p,W)] = 3n− 6.

Proof: The statement follows from the fact that

rk[R(p,W)] = rk[R̂(p)], where R̂(p) is the rigidity matrix

for the unweighted counterpart of (G, p,W).

C. The Rigidity Eigenvalue

In our previous work (Zelazo et al., 2012), we introduced

an alternative representation of the rigidity matrix that trans-

parently separates the underlying graph from the positions of

each vertex. Here we recall the presentation and extend it to

the case of 3-dimensional frameworks.

Definition II.12 (Zelazo et al. (2012)). Consider a graph

G = (V, E) and its associated incidence matrix with arbitrary

orientation E(G). The directed local graph at node vj is the

sub-graph Gj = (V, Ej) induced by node vj such that

Ej = {(vj , vi) | ek = {vi, vj} ∈ E}.
The local incidence matrix at node vj is the matrix

El(Gj) = E(G)diag{s1, . . . , sm} ∈ R
n×m

where sk = 1 if ek ∈ Ej and sk = 0 otherwise.

Note, therefore, that the local incidence matrix will contain

columns of all zeros in correspondence to those edges not

adjacent to vj . This also implicitly assumes a predetermined

labeling of the edges.

Proposition II.13 (Zelazo et al. (2012)). Let p(V) ∈ R
n×3

be the position matrix for the framework (G, p). The rigidity

matrix R(p) can be defined as

R(p) =
[
El(G1)

T · · · El(Gn)
T

]
(In ⊗ p(V)) , (5)

where El(Gi) is the local incidence matrix for node vi.

A more detailed discussion and example of these definitions

are provided in Appendix B.

Lemma II.6 and Corollary II.11 relate the property of

infinitesimal rigidity for a given (weighted) framework to the

rank of a corresponding matrix. A contribution of this work

is the translation of the rank condition to that of a condition

on the spectrum of a corresponding matrix that we term the

symmetric rigidity matrix. For the remainder of this work,

we will only consider weighted frameworks, since from the

discussion in Remark II.8, any framework can be considered

as a weighted framework with appropriately defined weights.

The symmetric rigidity matrix for a weighted framework

(G, p,W) is a symmetric and positive-semidefinite matrix

defined as

R := R(p,W)TR(p,W) ∈ R
3n×3n. (6)

An immediate consequence of the construction of the sym-

metric rigidity matrix is that rk[R] = rk[R(p,W)] (Horn and

Johnson, 1985), leading to the following corollary.

Corollary II.14. A weighted framework (G, p,W) is infinites-

imally rigid if and only if rk[R] = 3n− 6.

The rank condition of Corollary II.14 can be equivalently

stated in terms of the eigenvalues of R. Denoting the eigen-

values of R as λ1 ≤ λ2 ≤ . . . ≤ λ3n, note that infinitesimal

rigidity is equivalent to λi = 0 for i = 1, . . . , 6 and λ7 > 0.

Consequently, we term λ7 the Rigidity Eigenvalue. We will

now show that, in fact, for any connected graph,2 the first six

eigenvalues are always 0.

The first result in this direction shows that the symmetric

rigidity matrix is similar to a weighted Laplacian matrix.

Proposition II.15. The symmetric rigidity matrix is similar to

the weighted Laplacian matrix via a permutation of the rows

and columns as

PRPT = (I3 ⊗ E(G)W)Q(p(V))
(
I3 ⊗WE(G)T

)
, (7)

with

Q(p(V)) =





Q2
x QxQy QxQz

QyQx Q2
y QyQz

QzQx QzQy Q2
z



∈ R
3m×3m, (8)

where Qx, Qy , and Qz are m×m diagonal weighting matrices

for each edge in G such that for the edge ek = (vi, vj),

[Qs]kk = (psi − psj), s ∈ {x, y, z}
and pxi (pyi , pzi) represents the x-coordinate (y-coordinate, z-

coordinate) of the position of agent i.

2If the graph is not connected, there will be additional eigenvalues at the
origin corresponding to the number of connected components of the graph,
see (Godsil and Royle, 2001).

6

Proof: The proof is by direct construction using Propo-

sition II.13 and (6). Consider the permutation matrix P as

P =





In ⊗
[
1 0 0

]

In ⊗
[
0 1 0

]

In ⊗
[
0 0 1

]



 . (9)

and let Ê =
[
El(G1)

T · · · El(Gn)
T

]
. It is straightfor-

ward to verify that

(In ⊗ (px)T)ÊTW = E(G)W







. . .

(pxi − pxj)
. . .







︸ ︷︷ ︸

diagonal matrix of size m×m

,

where px represents the first column of the position vector.

The structure of the matrix in (7) then follows directly.3

The representation of the symmetric rigidity matrix as a

weighted Laplacian allows for a more transparent understand-

ing of certain eigenvalues related to this matrix. The next result

shows that the first six eigenvalues of R must equal zero for

any connected graph G.

Theorem II.16. Assume that a weighted framework (G, p,W)
has weights such that the weight matrix W (G, p) is invertible

and the underlying graph G is connected. Then the symmetric

rigidity matrix has at least six eigenvalues at the origin; that

is, λi = 0 for i ∈ {1, . . . , 6}. Furthermore, a possible set

of linearly independent eigenvectors associated with each 0

eigenvalue is,





PT





✶n

0

0



 , PT





0

✶n

0



 , PT





0

0

✶n



 ,

PT





(py)
−(px)
0



 , PT





(pz)
0

−(px)



 , PT





0

(pz)
−(py)










,

where P is defined in (9).

Proof: Recall that for any connected graph, one has

E(G)T✶n = 0 (Godsil and Royle, 2001). Therefore, PRPT

must have three eigenvalues at the origin, with eigenvectors

u1 =
[
✶
T
n 0T 0T

]T
, u2 =

[
0T

✶
T
n 0T

]T
, and

u3 =
[
0T 0T

✶
T
n

]T
. We now demonstrate that the

remaining three eigenvectors proposed in the theorem are

indeed in the null-space of the symmetric rigidity matrix.

Let u4 =
[
(py)T −(px)T 0T

]T
. Observe that (I3 ⊗

WE(G)T)u4 =
[
bT1 bT2 0T

]T
is such that b1 is

±[W]kk(p
y
i − pyj) only for edges ek = {vi, vj} ∈ E , and

0 otherwise. Similarly, b2 is ±[W]kk(p
x
j − pxi) only for edges

ek = {vi, vj} ∈ E . The invertibility assumption of the weight

matrix also guarantees that [W]kk 6= 0. It can now be verified

that from this construction one has




Q2
x QxQy QxQz

QyQx Q2
y QyQz

QzQx QzQy Q2
z



 (I3 ⊗WE(G)T)u4 = 0.

3A more detailed proof for the two-dimensional case is provided in (Zelazo
et al., 2012).

The remaining two eigenvectors follow the same argument as

above. It is also straightforward to verify that u4, u5, and u6

are linearly independent of the first 3 eigenvectors.

Theorem II.16 provides a precise characterization of the

eigenvectors associated with the null-space of the symmetric

rigidity matrix for an infinitesimally rigid framework.

Remark II.17. It is important to note that the chosen eigen-

vectors associated with the null-space of the symmetric rigidity

matrix are expressed in terms of the absolute positions of the

nodes in the framework. We note that these eigenvectors can

also be expressed in terms of the relative position of each node

to any arbitrary reference point pc =
[
pxc pyc pzc

]T ∈ R
3.

For example, vector u4 could be replaced by

upc

4 = PT





py − pyc✶n

pxc✶n − px

0



 ,

that is a linear combination of the null-space eigenvectors

u1, u2 and u4. The use of eigenvectors defined on relative

positions, in fact, will be necessary for the implementation

of a distributed estimator for the rigidity eigenvector and

eigenvalue based on only relative measurements available from

onboard sensing.

Theorem II.16 can be used to arrive at the main result

relating infinitesimal rigidity to the rigidity eigenvalue.

Theorem II.18. A weighted framework (G, p,W) is infinites-

imally rigid if and only if the rigidity eigenvalue is strictly

positive, i.e., λ7 > 0.

Proof: The proof is a direct consequence of Corollary

II.14 and Theorem II.16.

Another useful observation relates infinitesimal rigidity of

a framework to connectedness of the underlying graph.

Corollary II.19. Rigidity of the weighted framework (G, p,W)
implies connectedness of the graph G.

The connection between infinitesimal rigidity of a frame-

work and the spectral properties of the symmetric rigidity

matrix inherits many similarities between the well studied re-

lationship between graph connectivity and the graph Laplacian

matrix (Mesbahi and Egerstedt, 2010).

In the next section, we exploit this similarity and propose

a rigidity maintenance control law that aims to ensure the

rigidity eigenvalue is always positive. Such a control action

will be shown to depend on the rigidity eigenvalue, on its

eigenvector, and on relative positions among neighboring pairs

expressed in a common frame. The issue of how every agent

in the group can distributedly estimate these quantities will be

addressed in Sections IV and V.

III. A DECENTRALIZED CONTROL STRATEGY

FOR RIGIDITY MAINTENANCE

The results of Section II highlight the role of the rigidity

eigenvalue λ7 as a measure of the “degree of infinitesimal

rigidity” of a weighted framework (G, p,W). It provides a

linear algebraic condition to test the infinitesimal rigidity of a

framework and, especially in the case of weighted frameworks,

7

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

λ7

V
λ
(λ

7
)

Fig. 2. A possible shape for the rigidity potential function Vλ(λ7) with
λmin
7

= 5.

provides a means of quantifying “how rigid” a weighted

framework is. Moreover, the symmetric rigidity matrix was

shown to have a structure reminiscent of a weighted graph

Laplacian matrix, and thus can be considered as a naturally

distributed operator.

The basic approach we consider for the maintenance of

rigidity is to define a scalar potential function of the rigidity

eigenvalue, Vλ(λ7) > 0, with the properties of growing

unbounded as λ7 → λmin
7 > 0 and vanishing (with vanishing

derivative) as λ7 → ∞ (see Fig. 2 for one possible shape

or Vλ with λmin
7 = 5). Here, λmin

7 represents some predeter-

mined minimum allowable value for the rigidity eigenvalue

determined by the needs of the application. In addition to

maintaining rigidity, the potential function should also capture

additional constraints in the system, such as collision avoid-

ance or formation maintenance. Each agent should then follow

the anti-gradient of this potential function, that is

ξ(u) = ṗu(t) = − ∂Vλ

∂pu(t)
= −∂Vλ

∂λ7

∂λ7

∂pu(t)
, (10)

where ξ(u) is the velocity input of agent u, as defined

in (3), and pu =
[
pxu pyu pzu

]T
is the position vector of

the u-th agent. This strategy will ensure that the formation

maintains a “minimum” level of rigidity (i.e., λmin
7) at all

times. Of course, this strategy is an inherently centralized

one, as the computation of the rigidity eigenvalue and of

its gradient require full knowledge of the symmetric rigidity

matrix. Nevertheless, we will proceed with this strategy and

demonstrate that it can be implemented in a fully decentralized

manner.

In the sequel, we examine in more detail the structure of

the control scheme (10). First, we show how the formalization

of weighted frameworks allows to embed additional weights

within the rigidity property that enforce explicit inter-agent

sensing and communication constraints and group require-

ments such as collision avoidance and formation control. For

instance, the weighting machinery will be exploited so as to

induce the agents to keep a desired inter-agent distance ℓ0 and

to ensure a minimum safety distance ℓmin from neighboring

agents and obstacles. With these constraints, the controller

will simultaneously maintain a minimum level of rigidity

while also respecting the additional inter-agent constraints.

We then provide an explicit characterization of the gradient

of the rigidity eigenvalue with respect to the agent positions,

and highlight its distributed structure. Finally, we present the

0 1 2 3 4 5 6 7
0

0.5

1

1.5

ℓuv

γ
a u
v
(ℓ

u
v
)

(a)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

ℓuvo

γ
b u
v
(d

u
v
o
)

(b)

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

ℓuv

β
u
v
(ℓ

u
v
)

(c)

Fig. 3. The shape of γa
uv(ℓuv) for D = 6 (a), γb

uv(ℓuvo) for ℓmin = 1
(b), and βuv(ℓuv) for ℓ0 = 4 (c).

general control architecture for implementing (10) in a fully

decentralized way.

A. Embedding Constraints in a Weighted Framework

In real-world applications a team of mobile robots may not

be able to maintain the same interaction graph throughout the

duration of a mission because of various sensing and commu-

nication constraints preventing mutual information exchange

and relative sensing. Furthermore, additional requirements

such as collision avoidance with obstacles and among robots,

as well as some degree of formation control, must be typically

satisfied during the mission execution. Building on the design

guidelines proposed in (Robuffo Giordano et al., 2013) for

dealing with connectivity maintenance, we briefly discuss here

a possible design of weights W aimed at taking into account

the above-mentioned sensing and communication constraints

and group requirements within the rigidity maintenance action.

To this end, we start with the following definition of

neighboring agents:

Definition III.1. Two agents u and v are considered neighbors

if and only if (i) their relative distance ℓuv = ‖p(u)− p(v)‖
is smaller than D ∈ R

+ (the sensing range), (ii) the distance

ℓuvo between the segment joining u and v and the closest

obstacle point o is larger than ℓmin (the minimum line-of-sight

visibility), and (iii) neither u nor v are closer than ℓmin to

any other agent or obstacle.

Conditions (i) and (ii) are meant to take into account

two typical sensing constraints in multi-robot applications:

maximum communication and sensing ranges and line-of-sight

occlusions. The purpose of condition (iii), which will be better

detailed later on, is to force disconnection from the group if

an agent is colliding with any other agent or obstacle in the

environment. In the following we will denote with Su the set

of neighbors of agent u induced by Definition III.1.

This neighboring definition can be conveniently taken into

account by designing the inter-agent weights Wuv as state-

dependent functions smoothly vanishing as any of the above

constraints and requirements are not met by the pair (u, v)
with the desired accuracy. Indeed, the use of state-dependent

weights allows us to consider the ensemble of robots in the

context of weighted frameworks, as introduced in Definition

II.7. In particular, we take the underlying graph to be the

complete graph Kn and the map p corresponds to the physical

position state of each agent in a common global frame. The

8

weights are the maps Wuv , and the weighted framework is the

triple (Kn, p,W) with, therefore, Nu = {v ∈ V| Wuv 6= 0}.

Following what was proposed in (Robuffo Giordano et al.,

2013), and recalling that ℓuvo represents the distance between

the segment joining agents u and v and the closest obstacle

point o, we then take

Wuv = αuvβuvγ
a
uvγ

b
uv, (11)

with αuv = αuv(ℓuk|k∈Su
, ℓvk|k∈Sv

), βuv = βuv(ℓuv), γ
a
uv =

γa
uv(ℓuv), γ

b
uv = γb

uv(ℓuvo) and such that

• – limℓuk→ℓmin
αuv = 0, ∀k ∈ Su,

– limℓvk→ℓmin αuv = 0, ∀k ∈ Sv , and

– αuv ≡ 0 if ℓuk ≤ ℓmin or ℓvk ≤ ℓmin, for any

k ∈ Su, k ∈ Sv;

• lim|ℓuv−ℓ0|→∞ βuv = 0 with β(ℓuv) < β(ℓ0) ∀ ℓuv 6= ℓ0;

• limℓuv→D γa
uv = 0 with γa

uv ≡ 0 ∀ ℓuv ≥ D;

• limℓuvo→ℓmin
γb
uv = 0 with γb

uv ≡ 0 ∀ ℓuvo ≤ ℓmin.

As explained, ℓmin is a predetermined minimum safety dis-

tance for avoiding collisions and line-of-sight occlusions.

Figures 3(a)–(c) show an illustrative shape of weights γa
uv ,

γb
uv and βuv . The shape of the weights αuv is conceptually

equivalent to that of weights γb
uv in Fig. 3(b).

This weight design results in the following properties: for

a given pair of agents (u, v), the weight Wuv will vanish

(because of the term γa
uvγ

b
uv) whenever the sensing and

communication constraints of Definition III.1 are violated

(maximum range, obstacle occlusion), thus resulting in a

decreased degree of connectivity of the graph G (edge {u, v}
is lost). The same will happen as the inter-distance ℓuv deviates

too much from the desired ℓ0 because of the term βuv . Finally,

the term αuv will force complete disconnection of vertexes u
and v from the other vertexes and therefore a complete loss of

connectivity for the graph G whenever a collision with another

agent is approached.4

We now recall from Corollary II.19 that infinitesimal rigid-

ity implies graph connectivity. Therefore, any decrease in the

degree of graph connectivity due to the weights Wuv vanishing

will also result in a decrease of rigidity of the weighted frame-

work (Kn, p,W) (in particular, rigidity is obviously lost for

a disconnected graph). By maintaining λ7 > 0 (in the context

of weighted frameworks) over time, it is then possible to

preserve formation rigidity while, at the same time, explicitly

considering and managing the above-mentioned sensing and

communication constraints and requirements.

Remark III.2. We note that the purpose of the weight βuv

in (11) is to embed a basic level of formation control into the

rigidity maintenance action: indeed, every neighboring pair

will try to keep the desired distance ℓ0 thanks to the shape of

the weights βuv . More complex formation control behaviors

could be obtained by different choices of functions βuv (e.g.,

for maintaining given relative positions). Furthermore, forma-

tion shapes can be uniquely specified owing to the infinitesimal

rigidity property of the configuration.

4As for collision with obstacles, an equivalent behavior is automatically
obtained from weights γb

uv , see again (Robuffo Giordano et al., 2013) for a
full explanation. Also note that, because of the definition of weights Wuv ,
one has Nu ⊆ Su but Su 6⊂ Nu.

Remark III.3. We further highlight the following properties

whose explicit proof can be found in (Robuffo Giordano et al.,

2013): the chosen weights Wuv are functions of only relative

distances to other agents and obstacles, while their gradients

with respect to the agent position pu (resp. pv) are functions

of relative positions expressed in a common reference frame.

Furthermore, Wuv = Wvu and ∂Wuv

∂pu
= 0, ∀v /∈ Nu. Finally,

the evaluation of weights Wuv and of their gradients can be

performed in a decentralized way by agent u (reps. v) by only

resorting to local information and 1-hop communication.

As shown the next developments, these properties will

be instrumental for expressing the gradient of the rigidity

eigenvalue as a function of purely relative quantities with

respect to only 1-hop neighbors.

B. The Gradient of the Rigidity Eigenvalue

We now present an explicit characterization of the gradient

of the rigidity eigenvalue with respect to the agent positions,

as used in the control (10). We first recall that the rigidity

eigenvalue can be expressed as

λ7 = vT
7 Rv7,

where v7 is the normalized rigidity eigenvector associated

with λ7. For notational convenience, we consider the permuted

rigidity eigenvector Pv7 =
[
(vx)T (vy)T (vz)T

]T
,

where P is defined in Theorem II.16. For the remainder of

the work, we drop the subscript and reserve the bold font

v for the rigidity eigenvector. Note that in fact, the rigidity

eigenvalue and eigenvector are state-dependent, and therefore

also time-varying when the formation is induced by the spatial

orientation of a mobile team of robots, or due to the action

of state-dependent weights on the sensing and communication

links.

We can now exploit the structure of the symmetric rigid-

ity matrix for weighted frameworks. Using the form of the

symmetric rigidity matrix given in (7), we define Q̃(p(V)) =
(I3 ⊗ W)Q(p(V))(I3 ⊗ W) as a generalized weight matrix,

and observe that

PRPT = (I3 ⊗ E(G)) Q̃(p(V))
(
I3 ⊗ E(G)T

)
.

The elements of Q̃(p(V)) are entirely in terms of the relative

positions of each agent and the weighting functions defined

on the edges as in (11).

The rigidity eigenvalue can now be expressed explicitly as

λ7 =
∑

(i, j)∈E

Wij

(

(p
x
i − p

x
j)

2
(v

x
i − v

x
j)

2
+ (p

y

i − p
y

j)
2
(v

y

i − v
y

j)
2
+

(p
z
i − p

z
j)

2
(v

z
i − v

z
j)

2
+ 2(p

x
i − p

x
j)(p

y

i − p
y

j)(v
x
i − v

x
j)(v

y

i − v
y

j)+

2(p
x
i − p

x
j)(p

z
i − p

z
j)(v

x
i − v

x
j)(v

z
i − v

z
j)+

2 (p
y

i − p
y

j)(p
z
i − p

z
j)(v

y

i − v
y

j)(v
z
i − v

z
j)

)

=
∑

(i, j)∈E

WijSij .

(12)

From (12), one can then derive a closed-form expression for
∂λ7

∂ps
i

, s ∈ {x, y, z}, i.e., the gradient of λ7 with respect to each

agent’s position. In particular, by exploiting the structure of

the terms Sij and the properties of the employed weights Wij

9

Control

Robot i
Position

Estimator
Environment

...

Rigidity

Estimator

...

...

λ̂7

v̂k, k ∈ Ni(t)

v̂i

pk, k ∈ Ni(t)

kpk − pik

k ∈ Ni(t) p̂
c

i

p̂c
k
, k ∈ Ni(t)

Fig. 4. Control architecture for distributed rigidity maintenance.

(see, in particular, the previous Remark III.3), it is possible to

reduce ∂λ7

∂px
i

to the following sum over the neighbors,

∂λ7

∂px
i

=
∑

j∈Ni

Wij

(

2(p
y

i − p
y

j)(v
x
i − v

x
j)(v

y

i − v
y

j)+

2(p
x
i − p

x
j)(v

x
i − v

x
j)

2
+ 2(p

z
i − p

z
j)(v

x
i − v

x
j)(v

z
i − v

z
j)

)

+
∂Wij

∂px
i

Sij ,

(13)

and similarly for the y and z components.

The gradient (13) possesses the following key feature: it is

a function of relative quantities, in particular of (i) relative

components of the eigenvector v, (ii) relative distances, and

(iii) relative positions with respect to neighboring agents (see,

again, Remark III.3 for what concerns weights Wij), thus

allowing for a distributed computation of its value once these

quantities are locally available. The next sections IV and V

will detail two estimation schemes able to recover all these

relative quantities by resorting to only measured distances with

respect to 1-hop neighbors owing to the infinitesimal rigidity

of the group formation.

C. The Control Architecture

The explicit description of the gradient of the rigidity eigen-

value in (13) motivates the general control architecture for

the implementation of the rigidity maintenance action in (10).

We observe that each agent requires knowledge of the rigidity

eigenvalue, appropriate components of the rigidity eigenvector,

and relative positions with respect to neighboring agents in

a common reference frame. As already mentioned, all these

quantities are inherently global quantities, and thus a fully

distributed implementation of (10) must include appropriate

estimators for recovering these parameters in a distributed

manner.

As a preview of the next sections in this work, Figure 4

depicts the general architecture needed by each agent to

implement the rigidity maintenance control action (10):

1) exploiting measured distances with respect to its 1-hop

neighbors, and owing to the formation rigidity, each

agent distributely estimates relative positions in a com-

mon reference frame, labeled as the position estimator

in the figure. This block is fully explained in section IV;

2) the output of the position estimator is then used by each

agent to perform a distributed estimation of the rigidity

eigenvalue (λ̂7) and of the relative components of the

eigenvector (v̂), labeled as the rigidity estimator in the

figure. This procedure is explained in section V;

3) thanks to these estimated quantities (relative positions,

λ̂7 and v̂), each agent can finally implement the control

action (10) in a distributed way for maintaining infinites-

imal rigidity of the formation during the group motion

(while also coping with the various constraints and

requirements embedded into weights W). Maintaining

infinitesimal rigidity guarantees in turn convergence of

the position estimator from measured distances of step

1), and thus closes the ‘estimation-control loop.’

We finally note that the proposed control architecture also

implicitly assumes the initial spatial configuration of the

agents (i.e., their positions p(V) at time 0) to be infinitesimally

rigid (with, in particular, a λ7 > λmin
7). This assumption on

the group initial condition is formally stated below.

Assumption III.4. The initial spatial configuration of the

agents, p(V) at time t = 0, is infinitesimally rigid with

λ7 > λmin
7 .

The purpose of requiring a minimum level of rigidity (λmin
7)

is discussed in greater detail in Section VII.

IV. DECENTRALIZED ESTIMATION OF

POSITIONS IN A COMMON FRAME

As explained, evaluation of the gradient control (13) re-

quires that each agent has access to the relative positions of

its neighboring agents. A main focus of this work, however,

is to achieve rigidity maintenance using only relative distance

measurements. In this section, we leverage the infinitesimal

rigidity of the formation to estimate the relative position with

respect to a common reference point, pc, shared by all agents.

In particular, each agent i, with i = 1 . . . n, will be able to

compute an estimate p̂i,c of its relative position pi,c = pi− pc
to this common point. By exchanging their estimates over 1-

hop communication channels, two neighboring agents i and j
can then build an estimate p̂j,c − p̂i,c of their actual relative

position pj − pj in a common reference frame. Notice that

both the graph (i.e., neighbor sets, edges, etc.) and the robot

positions are time-varying quantities. However, in this section

we omit dependency on time for the sake of conciseness.

We also note that this common reference point does not need

to be stationary, i.e., it can move over time. In the following,

we choose the point pc to be attached to a special agent in the

group, determined a priori. This agent will be denoted with

the index ic and, in the remainder of this section, we set pc =
pic . We now proceed to describe a distributed scheme able to

recover an estimation of the relative position pi,c = pi − pic
for any agent in the group by exploiting the measured relative

distances and the rigidity property of the formation.

To achieve this estimation, we first introduce additional

assumptions on the capabilities of the special agent ic. While

all agents other than ic are able to measure only the relative

distance to their neighbors, the special agent ic is required to

be endowed with an additional sensor able to also measure,

at any time t, the relative position (i.e., distance and bearing

10

angles) of at least 2 non-collinear neighbors;5 these two sensed

neighbors will be denoted with the indexes (ι(t), κ(t)) ∈
Nic(t).

Remark IV.1. We stress that the agent indexes ι(t) and κ(t)
are time-varying; indeed, contrarily to the special agent ic,

ι(t) and κ(t) are not preassigned to any particular agent in

the multi-robot team. Therefore the special agent ic only needs

to measure its relative positions pι(t)−pic and pκ(t)−pic with

respect to any two agents within its neighborhood (ι and κ are

effectively arbitrary), with the points pic , pι(t) and pκ(t) being

non-collinear ∀t ≥ t0. We believe this assumption is not too

restrictive in practice, as it only require the presence of at least

one robot equipped with a range plus bearing sensor while all

the remaining ones can be equipped with simple range-only

sensors.

In the following we omit for brevity the dependency upon

the time t of the quantities ι and κ.

In order to perform the distributed estimation of pi,c =
pi − pc, ∀i ∈ {1, . . . , n} we follow the approach presented

in (Calafiore et al., 2010a), with some slight modifications

dictated by the nature of our problem. Consistently with our

notation, we define p̂ =
[
p̂T1,c . . . p̂Tn,c

]T ∈ R
3n. For

compactness, we also denote by ℓij the measured distance

‖pj − pi‖, as introduced in Definition III.1. We then consider

the following least squares estimation error:

e(p̂) =
1

4

∑

{i,j}∈E

(
‖p̂j,c − p̂i,c‖2 − ℓ2ij

)2
+

1

2
‖p̂ic,c‖2+

+
1

2
‖p̂ι,c − (pι − pic)‖2 +

1

2
‖p̂κ,c − (pκ − pic)‖2.

(14)

Notice that the quantities ℓij , pι − pic , and pκ − pic are mea-

sured while all the other quantities represent local estimates

of the robots.

The nonnegative error function e(p̂) is zero if and only if:

• ‖p̂j,c − p̂i,c‖ is equal to the measured distance ℓij for all

the pairs {i, j} ∈ E ;

• ‖p̂ic,c‖ = 0;

• p̂ι,c and p̂κ,c are equal to the measured relative positions

pι − pic and pκ − pic , respectively.

Note that the estimates p̂ic,c, p̂ι,c and p̂κ,c could be directly

set to 0, (pι − pic), and (pι − pic), respectively, since the first

quantity is known and the last two are measured. Nevertheless,

we prefer to let the estimator obtaining these values via a

‘filtering action’ for the following reasons: first, the estimator

provides a relatively simple way to filter out noise that might

affect the relative position measurements; secondly, implemen-

tation of the rigidity maintenance controller only requires that

(p̂j,c− p̂i,c) → (pj−pi), which is achieved if p̂j,c → pj− p̂ic,c
and p̂i,c → pi−p̂ic,c for any common value of p̂ic,c. Therefore

any additional hard constraint on p̂ic,c (e.g., p̂ic,c ≡ 0) might

unnecessarily over-constrain the estimator.

Applying a first-order gradient descent method to e(p̂), we

finally obtain the following decentralized update rule for the

5Formation rigidity implies presence of at least 2 non-collinear neighbors
for each agent (Laman, 1970).

i-th agent (i 6= ic):

˙̂pi,c = −
∂e

∂p̂i,c
=

∑

j∈Ni

(‖p̂j,c − p̂i,c‖
2 − ℓ

2

ij)(p̂j,c − p̂i,c)−

δiic p̂i,c − δiι (p̂ι,c − (pι − pic))− δiκ (p̂κ,c − (pκ − pic)) ,
(15)

where δij is the well known Kronecker’s delta.6 The estima-

tor (15) is clearly decentralized since:

• ℓij is locally measured by agent i;
• p̂i,c is locally available to agent i;
• p̂j,c can be transmitted using one-hop communication

from agent j to agent i, for every j ∈ Ni;

• (pι−pic) and (pκ−pic) are measured by agent ic and can

be transmitted using one-hop communication to agents ι
and κ respectively.

In order to show the relation between the proposed decentral-

ized position estimator scheme and the infinitesimal rigidity

property, one can restate (15) in matrix form as

˙̂p = −R(p̂)p̂+R(p̂)ℓ+∆c (16)

where R(p̂) and R(p̂) are the symmetric rigidity matrix and

the rigidity matrix computed with the estimated positions,

ℓ ∈ R
|E| is a vector whose entries are ℓ2ij , ∀{i, j} ∈ E , and

∆c ∈ R
|E| contains the remaining terms of the right-hand-side

of (15).

Proposition IV.2. If the framework is (infinitesimally)

rigid then the vector of true values p − (✶n ⊗ pc) =
[
(p1 − pc)

T · · · (pn − pc)
T

]T
is an isolated local min-

imizer of e(p̂). Therefore, there exists an ǫ > 0 such that, for

all initial conditions satisfying ‖p̂(0) − p − (✶n ⊗ pc)‖ < ǫ,
the estimation p̂ converges to p− (✶n ⊗ pc).

We point out that the estimator in the form (16) is identical

to the formation controller proposed in (Krick et al., 2009).

Consequently, we refer the reader to this work for a discussion

on the stability and convergence properties of this model. A

similar estimation scheme is also proposed in (Calafiore et al.,

2010a). We briefly emphasize that the property of having the

true value of relative positions p − (✶n ⊗ pc) as an isolated

local minimizer of (14) is a consequence of the definition of

infinitesimal rigidity and of the non-collinearity assumption of

the agents ic, ι, and κ.

We finally note that, in general, the rate of convergence of

a gradient descent method is known to be slower than other

estimation methods. However, we opted for this method since

is its directly amenable to a distributed implementation and

requires only first-order derivative information.

V. DISTRIBUTED ESTIMATION OF THE

RIGIDITY EIGENVALUE AND EIGENVECTOR

As seen in section IV, when the multi-robot team possesses

the infinitesimal rigidity property, it is possible to distributedly

estimate the relative positions in a common reference frame

for each agent. However, the proposed distributed rigidity

maintenance control action (10) requires knowledge of some

6δij = 0 if i 6= j and δij = 1 otherwise.

11

additional global quantities that are explicitly expressed in

the expressions (13) and (10). In particular, each agent must

know also the current value of the rigidity eigenvalue and

certain components of the rigidity eigenvector. In this sec-

tion we propose a distributed estimation scheme inspired by

the distributed connectivity maintenance solution proposed in

(Yang et al., 2010) for obtaining the rigidity eigenvalue and

eigenvector.

For the reader’s convenience, we first provide a brief

summary of the power iteration method for estimating the

eigenvalues and eigenvectors of a matrix. We then proceed

to show how this estimation process can be distributed by

employing PI consensus filters and by suitably exploiting the

structure of the symmetric rigidity matrix.

A. Power Iteration Method

The power iteration method is one of a suite of iterative

algorithms for estimating the dominant eigenvalue and eigen-

vector of a matrix. Following the same procedure as in (Yang

et al., 2010), we employ a continuous-time variation of the

algorithm that will compute the smallest non-zero eigenvalue

and eigenvector of the symmetric rigidity matrix.

The discrete-time power iteration algorithm is based on the

following iteration,

x(k+1) =
Ax(k)

‖Ax(k)‖ =
Akx(0)

‖Akx(0)‖ .

Under certain assumptions for the matrix A (i.e., no repeated

eigenvalues), the iteration converges to the eigenvector asso-

ciated to the largest eigenvalue of the matrix.

To adapt the power iteration to compute the rigidity eigen-

vector and eigenvalue, we leverage the results of Theorem

II.16 and consider the iteration on a deflated version of the

symmetric rigidity matrix, i.e. R̃ = I − TTT − αR for some

small enough α > 0. The power iteration method estimates the

largest eigenvalue of a matrix. As all the eigenvalues of the

symmetric rigidity matrix are non-negative, the largest eigen-

value of the deflated version R̃ will correspond to 1 − αλ7,

and thus can be used to estimate λ7. The constant α ensures

the matrix R̃ is positive semi-definite.The columns of the

matrix T ∈ R
3n×6 contain the eigenvectors corresponding to

the zero eigenvalues of R, for example, as characterized in

Theorem II.16. Note that the power iteration applied to the

matrix R̃ will compute the eigenvector associated with the

rigidity eigenvalue.7

The continuous-time counterpart of the power iteration

algorithm now takes the form (Yang et al., 2010)

˙̂v(t) =−
(

k1TT
T+k2R+k3

(
v̂(t)T v̂(t)

3n −1
)

I
)

v̂(t), (17)

where v̂ is the estimate of the rigidity eigenvector, and the

constants k1, k2, k3 > 0 are chosen to ensure the trajectories

converge to the rigidity eigenvector.8 We present here the main

7Assuming the rigidity eigenvalue is unique and the framework is infinites-
imally rigid (i.e., the rigidity eigenvalue is positive). We will discuss the
implications of this assumption later.

8Note that the constant α used to describe the deflated symmetric rigidity
matrix is effectively replaced by k2 in this formulation.

result and refer the reader to Yang et al. (2010) for details of

the proof, noting that the proof methodologies are the same

for the system (17) as that proposed in Yang et al. (2010).

Theorem V.1. Assume that the weighted framework (G, p,W)
with symmetric rigidity matrix R is infinitesimally rigid and

has distinct non-zero eigenvalues, and let v denote the rigidity

eigenvector. Then for any initial condition v̂(t0) ∈ R
3n

such that vT v̂(t0) 6= 0, the trajectories of (17) converge

to the subspace spanned by the rigidity eigenvector, i.e.,

limt→∞ v̂(t) = γv for γ ∈ R, if and only if the gains k1, k2
and k3 satisfy the following conditions:

1) k1, k2, k3 > 0,

2) k1 > k2λ7,

3) k3 > k2λ7.

Furthermore, for any choice of constants k1, k2, k3 > 0, the

trajectories of (17) remain bounded and satisfy

‖v̂(t)‖ ≤ max
{

‖v̂(t0)‖,
√
3n

}

, ∀ t ≥ t0.

In particular, the trajectory converges to the rigidity eigenvec-

tor with

lim
t→∞

‖v̂(t)‖ =

√

3n

(

1− k2
k3

)

λ7.

Remark V.2. The power iteration proposed in (17) assumes

that the symmetric rigidity matrix is static. However, in a

dynamic setting the parameters of the rigidity matrix are a

function of the state of the robots in a multi-robot system, and

both the symmetric rigidity matrix and the expression of its null

space are inherently time-varying. While the proof provided in

(Yang et al., 2010) does not explicitly address the time-varying

case, our experience suggests that the dynamics of (17) is able

to track even a time-varying rigidity eigenvector, so long as

the dynamics of the robots are slower than the estimator. The

speed of convergence of (17), of course, is also tunable by the

constants ki.

Remark V.3. Another important subtlety of the dynamics (17)

is the requirement that the rigidity eigenvalue is unique.

When the rigidity eigenvalue is not unique, the associated

eigenvector can belong to (at least) a two-dimensional sub-

space L, so that (17) can not be expected to converge to

a unique eigenvector but rather to an equilibrium point in

L (see, e.g., (Yang et al., 2010)). This can pose difficulties

in real-world conditions since non-idealities such as noise in

measuring the agent states (used in evaluating the symmet-

ric rigidity matrix R), and discretization when numerically

integrating (17), can make the equilibrium point for (17) in

L to abruptly vary over time, thus preventing a successful

convergence of the estimation of v.

B. A Distributed Implementation

The results of section V-A provide a continuous-time esti-

mator for estimating the rigidity eigenvalue and eigenvector

of the symmetric rigidity matrix. The estimator given in

(17), however, is a centralized implementation. Moreover,

certain parameters used in (17) are expressed using a common

reference frame (i.e., the quantity TTT , see Theorem II.16

12

and Remark II.17) or require each robot to know the entire

estimator state (i.e., the quantity v̂(t)T v̂(t) in (17)). We

propose in this sub-section a distributed implementation for

the rigidity estimator that overcomes these difficulties, in

particular by leveraging the results of Section IV. In the same

spirit as the solution proposed in (Yang et al., 2010), we make

use of the PI average consensus filter (Freeman et al., 2006)

to distributedly compute the necessary quantities of interest,

and strongly exploit the particular structure of the symmetric

rigidity matrix.

Our approach to the distribution of (17) is to exploit both the

built-in distributed structure (i.e., the symmetric rigidity matrix

R) and the reduction of the other parameters to values that all

agents can obtain via a distributed algorithm. In this direction,

we now proceed to analyze each term in (17) and discuss

the appropriate strategies for implementing the estimator in a

distributed fashion.

Concerning the first term TTT v̂, Theorem II.16 provides an

analytic characterization of the eigenvectors associated with

the zero eigenvalues of the symmetric rigidity matrix (assum-

ing the graph is infinitesimally rigid). To begin the analysis,

we explicitly write out the matrix T and examine the elements

of the matrix TTT . Following the comments of Remark

II.17, we express the null-space vectors in terms of relative

positions to an arbitrary point pc=
[
pxc pyc pzc

]
∈ R

3; in

particular, the point pc will be the special agent ic described

in Section IV.

T =





✶n 0 0 py − pyc✶n pz − pzc✶n 0

0 ✶n 0 pxc✶n − px 0 pz − pzc✶n

0 0 ✶n 0 pxc✶n − px pyc✶n − py





For the remainder of this discussion, we assume that all agents

have access to their state in an estimated coordinate frame

relative to the point pic , the details of which were described

in Section IV.

To simplify notations, we write as in Section IV, for exam-

ple, py,c = py−pyc✶n, and pi,c = pi−pc. Following our earlier

notation, we also partition the vector v̂ into each coordinate,

v̂x, v̂y , and v̂z . Let avg(r) denote the average value of the

elements in the vector r ∈ R
n, i.e. avg(r) = 1

n
✶
T
n r. Then it

is straightforward to verify that

✶n✶
T
n v̂

k(t) = navg(v̂k(t))✶n, k ∈ {x, y, z} (19)

pi,c(pj,c)
T v̂k(t) = navg(pj,c ◦ v̂k)pi,c, i, j, k ∈ {x, y, z},

(20)

where ‘◦’ denotes the element-wise multiplication of two

vectors.

This characterization highlights that, in order to evaluate the

term TTT v̂, each agent must compute the average amongst all

agents of a certain value that is a function of the current state of

the estimator and of the positions in some common reference

frame whose origin is the point pc. It is well known that the

consensus protocol can be used to distributedly compute the

average of a set of numbers (Mesbahi and Egerstedt, 2010).

The speed at which the consensus protocol can compute this

value is a function of the connectivity of the underlying graph

and the weights used in the protocol. In this framework,

PI

Consensus

Filter

PI

Consensus

Filter

PI

Consensus

Filter

G(t)

δp
x(t)

δp
y(t)

δp
z(t)

v
z(t)

v
x(t)

v
y(t)

X

X

X

[

I 0 0
]

TT
T

2

4

v
x(t)

v
y(t)

v
z(t)

3

5

n

n

n

Fig. 5. Block diagram showing PI consensus filters in calculation of
TTT

v̂(t).

however, a direct application of the consensus protocol will

not be sufficient. Indeed, it is expected that each agent will be

physically moving, leading to a time-varying description of the

matrix TTT (see Remark V.2). Additionally, the underlying

network is also dynamic as sensing links between agents are

inherently state dependent.

The use of a dynamic consensus protocol introduces ad-

ditional tuning parameters that can be used to ensure that

the distributed average calculation converges faster than the

underlying dynamics of each agent in the system, as well as

the ability to track the average of a time-varying signal. We

employ the following PI average consensus filter proposed in

(Freeman et al., 2006),

[
ż(t)
ẇ(t)

]

=

[
−γIn −KPL(G(t)) KIL(G(t))

−KIL(G(t)) 0

] [
z(t)
w(t)

]

+

[
γIn
0

]

u(t) (21)

y(t) =
[
In 0

]
[

z(t)
w(t)

]

. (22)

The parameters KP ,KI ∈ R and γ ∈ R are used to ensure

stability and tune the speed of the filter. An analysis of the

stability and performance of this scheme with time-varying

graphs is given in (Freeman et al., 2006). Figure 5 provides a

block diagram representation of how the PI consensus filters

are embedded into the calculation of TTT v̂(t) (in only the

x-coordinate).

As for the second term in (17), as shown in §II-C the sym-

metric rigidity matrix is by construction a distributed operator.

The term Rv̂(t) can be computed using only information

exchanged between neighboring agents, as determined by the

sensing graph.

The final term in (17) is a normalization used to drive the

eigenvector estimate to the surface of a sphere of radius
√
3n.

Using the same analysis as above, it can be verified that
(
v̂(t)T v̂(t)

3n
− 1

)

v̂(t) = (avg(v̂(t) ◦ v̂(t))− 1) v̂(t). (23)

This quantity can therefore be distributedly computed using

an additional PI consensus filter.

13

TTT =





✶n✶
T
n + py,c(py,c)T + pz,c(pz,c)T −py,c(px,c)T −pz,c(px,c)T

−px,c(py,c)T ✶n✶
T
n + px,c(px,c)T + pz,c(pz,c)T −pz,c(py,c)T

−px,c(pz,c)T −py,c(pz,c)T ✶n✶
T
n + px,c(px,c)T + py,c(py,c)T



 (18)

Using the result of Theorem V.1 and the PI consensus filters,

each agent is also able to estimate the rigidity eigenvalue.

Corollary V.4. Let v2
i (t) denote the output of the PI consensus

filter for estimating the quantity avg(v̂(t) ◦ v̂(t)) for agent i.
Then agent i’s estimate of the rigidity eigenvalue, λ̂i

7, can be

obtained as

λ̂i
7 =

k3
k2

(
1− v2

i (t)
)
.

In summary, each agent implements the following filters:

• Estimation of a common reference frame using (15).

• Estimation of the rigidity eigenvector using (17).

• A PI-Consensus filter for tracking the average of the

estimate of the rigidity eigenvector, (19).

• A PI-Consensus filter for tracking the quantity described

in (20).

• A PI-Consensus filter for tracking the average of the

square of the rigidity eigenvector estimate, (23).

For completeness, we now present the full set of filters that

each robot executes in (24)-(33). These equations are written

only for the x-coordinate associated with all the quantities.

Observe, however, that the filters needed for the y− and

z−coordinates do not require additional integrators, as similar

filters can be vectorized (for example, the PI filters can be

combined as in (21)). For the readers convenience, a summary

of the notations and variable definitions used in (24)-(33) is

provided in Table I.

Remark V.5. Equations (24)-(33) show that each agent re-

quires a 10-th order dynamic estimator for estimating the

rigidity eigenvector and eigenvalue. This filter is comprised of

three PI-Consensus filters, an relative position estimation filter,

and the power iteration filter. An important point to emphasize

is the order of the overall filter is independent of the number

of agents in the ensemble, and thus is a scalable solution.

VI. THE RIGIDITY MAINTENANCE CONTROLLER

The primary focus of this work until now was a detailed

description of how the rigidity of a multi-robot formation can

be maintained in a distributed fashion. The basic idea was

to follow the gradient of an appropriately defined potential

function of the rigidity eigenvalue; this control strategy was

presented in (13). The fundamental challenge for the imple-

mentation of this control strategy was twofold: on the one

hand, rigidity of a formation is an inherently global property of

the network, and on the other hand, the control law depended

on relative position measurements in a common reference

fame.

A truly distributed solution based on this control strategy

requires each agent to estimate a common inertial reference

frame and also estimate the rigidity eigenvalue and eigenvector

of the formation. The solution to these estimation problems

was presented in Sections IV and V, with the complete set

of filter equations summarized in (24)–(33). Note that both

estimation strategies implicitly require that the underlying

formation is infinitesimally rigid (see also Assumption III.4).

The final step for implementation of the rigidity maintenance

controller is then to replace all the state-variables given in (13)

with the appropriate estimated states computed by the relative

position estimators and rigidity eigenvalue estimators. The

local controller for each agent is thus given as,9

ξ
x
i = −

∂V (λ̂i
7)

∂λ7

∑

j∈Ni

Wij

(

2(p̂
x
i,c − p̂

x
j,c)(v̂

x
i − v̂

x
j)

2
+

2(p̂
y

i,c − p̂
y

j,c)(v̂
x
i − v̂

x
j)(v̂

y

i − v̂
y

j) + 2(p̂
z
i,c − p̂

z
j,c)(v̂

x
i − v̂

x
j)(v̂

z
i − v̂

z
j)

)

+

∂Wij

∂px
i

Ŝij ,

(34)

in conjunction with all the estimation filters of (24)-(33).

Remark VI.1. The interconnection of the relative position

estimator, rigidity eigenvalue estimator, and gradient con-

troller leads to a highly non-linear dynamics for which a

formal proof analysis is not straightfoward. While we are

currently working towards a deeper analysis in this sense, the

approach taken in this work is to exploit the typical (although

informal) time-scale separation argument commonly found in

many robotics applications relying on feedback control from

an estimated state (as, e.g., when using an extended Kalman

filter). Basically, the estimator dynamics is assumed “fast

enough” such that its transient behavior can be considered as

a second-order perturbation with respect to the robot motion

(see also (Yang et al., 2010)) for an equivalent assumption in

the context of decentralized connectivity maintenance control.

VII. EXPERIMENTAL RESULTS

In this section we report some experimental results aimed

at illustrating the machinery proposed so far for distributed

rigidity maintenance. The experiments involved a total of

N = 6 quadorotor UAVs (5 real and 1 simulated) flying the

environment shown in Fig. 6. A video illustrating the various

phases of the experiment (Multimedia Extension 1) is attached

to the paper.

All the quadrotor UAVs were implementing the rigidity

maintenance action (34) in addition to the estimation filters

presented in (24)-(33). Additionally, for two of the quadrotor

UAVs (namely, quadrotors 1 and 2) an exogenous bounded

velocity term ξ∗i ∈ R
3 was also added to (34); this allows for

two human operators to independently control the motion of

quadrotors 1 and 2 during the experiment, so as to steer the

whole formation and trigger the various behaviors embedded

9The control is shown in the x-coordinate; a similar expression can be
obtained for the y- and z- coordinates.

14

˙̂vx
i = −k1n

(
vx
i + zxyi (t)p̂yi,c + zxzi p̂zi,c(t)

)
− k2

∑

j∈Ni(t)

Wij

(
v̂x
i (t)− v̂x

j

)
− k3 (v

x
i − 1) v̂x

i (24)

˙̂pi,c =
∑

j∈Ni(t)

(‖p̂j,c − p̂i,c‖2 − ℓ2ij)(p̂j,c − p̂i,c)− δiic p̂i,c − δiι (p̂ι,c − (pι − pic))− δiκ (p̂κ,c − (pκ − pic)) (25)

v̇
x

i = γ (v̂x
i − vx

i)−KP

∑

j∈Ni

(
vx
i − vx

j (t)
)
+KI

∑

j∈Ni(t)

(
wx

i − wx
j

)
(26)

ẇ
x

i = −KI

∑

j∈Ni(t)

(
vx
i − vx

j

)
(27)

v̇
2x

i = γ
(
(v̂x

i)
2 − v2x

i

)
−KP

∑

j∈Ni(t)

(
v2x
i − v2x

j

)
+KI

∑

j∈Ni(t)

(
w2x

i − w2x
j

)
(28)

ẇ
2x
i = −KI

∑

j∈Ni(t)

(
v2x
i − v2x

j

)
(29)

żxyi = γ ((p̂y ◦ v̂x − p̂x ◦ v̂y)− zxyi)−KP

∑

j∈Ni(t)

(
zxyi − zxyj

)
+KI

∑

j∈Ni(t)

(
wxy

i (t)− wxy
j

)
(30)

ẇxy
i = −KI

∑

j∈Ni(t)

(
zxyi − zxyj

)
(31)

żxzi = γ ((p̂z ◦ v̂x − p̂x ◦ v̂z)− zxzi)−KP

∑

j∈Ni(t)

(
zxyi − zxyj

)
+KI

∑

j∈Ni(t)

(
wxy

i − wxy
j

)
(32)

ẇxz
i = −KI

∑

j∈Ni(t)

(
zxzi − zxzj

)
(33)

in the weights Wuv (formation control, obstacle avoidance,

sensing limitations).10

Our experimental quadrotor platform is a customized ver-

sion of the MK-Quadro11 implementing the TeleKyb ROS

framework12 for flight control, experimental workflow man-

agement and human inputing. Attitude is stabilized with a

fast inner loop that takes advantage of high-rate/onboard

accelerometer and gyroscope measurements while the velocity

stabilization is achieved by a slower control loop that measures

the current velocity thanks to an external motion capture

system. The motion capture system is also used to obtain

relative distance measurements among the robots and the two

bearing measurements needed by the special robot ic. The

reader is referred to (Franchi et al., 2012b) for a detailed

description of the quadrotor-based experimental setup.

We start illustrating the behavior of the relative position

estimator described in Sect. IV and upon which all the subse-

quent steps are based (estimation of λ7 and v and evaluation

of the control action (10)). As explained in Sect. IV, owing

to the formation infinitesimal rigidity, the scheme (15) allows

each agent i to build an estimation p̂i,c of its relative position

pi − pc with respect to the agent ic, with ic = 1 in this

experiment. Figures 7(a–e) report the behavior of the norm of

the estimation errors ‖pi − pc − p̂i,c‖ for i = 2 . . . 6 together

with their mean values (dashed horizontal black line). It is

then possible to verify how the relative position estimation

10We note that, being ξ∗i bounded, its effect does not threaten rigidity
maintenance since the control action ξi in (10) always results dominant as
Vλ(λ7) → ∞ if λ7(t) → λmin

7
.

11mikrokopter.de
12ros.org/wiki/telekyb

Fig. 6. Two snapshots of the reported experiment. Left: simulated 3D
views showing, in particular, the inter-agent links (red – almost disconnected
link, green – optimally connected link). Right: corresponding pictures of
the experimental setup. The two highlighted quadrotor UAVs are partially
controlled by two human operators

errors keep low values over time, thus effectively allowing

every agent to recover its correct relative position with respect

to pc from the measured relative distances.

As for the rigidity eigenvalue estimation of Sect. V, Fig. 8(a)

reports the behavior of λ7(t) (solid blue line), of the 6
estimations λ̂i

7(t) (solid colored lines almost superimposed to

λ7(t)), and of the minimum threshold λmin
7 = 7.5 (horizontal

dashed line). From the plot one can verify: (i) the accuracy

mikrokopter.de

15

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

time [s]

‖
p
2
−

p
c
−

p̂
2
,
c
‖
[m

]

(a)

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time [s]

‖
p
3
−

p
c
−

p̂
3
,
c
‖
[m

]

(b)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

time [s]

‖
p
4
−

p
c
−

p̂
4
,
c
‖
[m

]

(c)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time [s]

‖
p
5
−

p
c
−

p̂
5
,
c
‖
[m

]

(d)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time [s]

‖
p
6
−

p
c
−

p̂
6
,
c
‖
[m

]

(e)

Fig. 7. Behavior of ‖pi−pc− p̂i,c‖, i = 2 . . . 6, the norm of the estimation
error for the relative positions of agents 2 . . . 6 w.r.t. agent ic = 1. The
horizontal dashed black line represents the mean value of each error norm over
time. Note how the estimation errors keep a low value during the group motion
and thus indicate the ability of each robot to recover its relative position with
respect to the robot ic = 1 by only exploiting measured distances with respect
to its neighbors and the infinitesimal rigidity of the formation

in recovering the value of λ7(t) (note how the 6 estimations

are almost superimposed on the real value) and (ii) that

λ7(t) > λmin
7 at all times apart from few isolated spikes,

implying that formation rigidity was maintained during the

task execution. As an additional indication of the eigenvalue

estimation performance, Fig. 8(b) shows the total estimation

error for the rigidity eigenvalue

eλ(t) =

∑N
i=1 |λ7(t)− λ̂i

7(t)|
N

(35)

which again confirms the accuracy of the estimation strategy.

Figures 9(a–o) report the behavior of the 15 weights Wuv

defined in (11) and associated to the all the possible edges of

graph G in order to show their time-varying nature because of

the constraints and requirements listed in Sect. III-A. Note how

the value of some weight drops to zero over time (e.g., W45(t)
at about t = 25 [s] or W24(t) at about t = 210 [s]), thus

indicating loss of the corresponding edge. In the same spirit,

0 50 100 150 200 250 300
4

5

6

7

8

9

10

11

12

13

14

time [s]

λ
7
,
λ̂
i 7,

λ
8

(a)

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time [s]

e
λ
7

(b)

Fig. 8. Left: behavior of λ7(t) (blue line) and the 6 estimations λ̂i
7
(t)

(dashed colored lines) which result almost coincident. Right: behavior of the
overall rigidity eigenvalue estimation error eλ(t) as defined in (35)

Fig. 10 shows the total number of edges |Ê | of the unweighted

graph Ĝ (i.e., of non-zero weights Wuv , see Definition II.9)

during the group motion. These results highlight the time-

varying nature of graph G which, as explained in the previous

sections, is not constrained to keep a given fixed topology but

is free to lose or gain edges as long as infinitesimal rigidity

of the formation is preserved.

Finally, Figs. 11(a–f) report the behavior over time of pi(t)
(the i-th agent position, solid lines) and of pi,real(t) (the i-th
quadrotor position, dashed lines) while tracking the motion of

pi(t). The two position vectors result almost perfectly coinci-

dent, thus indicating a successful tracking performance of the

quadrotors (and the soundness of our modeling assumptions).

As a further confirmation of this fact, the norm of the overall

tracking error defined as

etrack(t) =

∑N
i=1 ‖pi(t)− pi,real(t)‖

N
(36)

is also reported in Fig. 12.

VIII. CONCLUDING REMARKS

This work presented a fully distributed solution for the

rigidity maintenance control of a multi-robot system. As dis-

cussed in the introduction, rigidity is an important architectural

feature for multi-robot systems that enables, for example,

formation keeping and localization using only range-based

measurements. The main theme of this work, therefore, was

the distributed implementation of a number of algorithms

for estimation and control in a multi-robot system related to

rigidity maintenance. In particular, we demonstrated how the

rigidity eigenvalue and eigenvector, used to decide if a for-

mation is infinitesimally rigid, can be distributedly estimated

using a suite of estimators based on dynamic consensus filters

and the power iteration method for eigenvalue estimation. The

rigidity property also allowed for estimation of a common

inertial reference frame using only range based measurements,

along with one single endowed agent that is able to sense both

range and bearing. The estimation of these quantities were

then embedded in a gradient-based distributed control action

ensuring each agent moves in a way that guarantees rigidity

of the formation is maintained. This control scheme also

explicitly handles a variety of practical multi-robot constraints,

16

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
1
2

(a)

0 50 100 150 200 250 300
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time [s]

W
1
3

(b)

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
1
4

(c)

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
1
5

(d)

0 50 100 150 200 250 300
0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
1
6

(e)

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
2
3

(f)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
2
4

(g)

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
2
5

(h)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
2
6

(i)

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
3
4

(j)

0 50 100 150 200 250 300
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time [s]

W
3
5

(k)

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
3
6

(l)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
4
5

(m)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
4
6

(n)

0 50 100 150 200 250 300

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

W
5
6

(o)

Fig. 9. Behavior of the 15 weights Wuv(t) for all the possible edges of
graph G. Note how the values of weights Wuv(t) vary over time because
of the sensing/communication constraints and requirements embedded within
their definition (see sec. III-A). Some weights (e.g., W24 and W45) also
temporarily vanish indicating loss of the corresponding edge (and, thus, the
time-varying nature of graph G)

0 50 100 150 200 250 300
14

14.2

14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

16

time [s]

|E
|

Fig. 10. Total number of edges in the graph G during the group motion

including sensing and communication ranges, collision and ob-

stacle avoidance, and line-of-sight requirements. The validity

of the proposed algorithms was demonstrated by a team of 6

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

time [s]

p
1
,
p
1
,
re
a
l[
m
]

(a)

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

time [s]

p
2
,
p
2
,
re
a
l[
m
]

(b)

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

4

5

time [s]

p
3
,
p
3
,
re
a
l[
m
]

(c)

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

5

time [s]

p
4
,
p
4
,
re
a
l[
m
]

(d)

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

4

5

time [s]

p
5
,
p
5
,
re
a
l[
m
]

(e)

0 50 100 150 200 250 300
−5

−4

−3

−2

−1

0

1

2

3

4

time [s]

p
6
,
p
6
,
re
a
l[
m
]

(f)

Fig. 11. Figs. (a–f): behavior of pi(t) (solid) and pi,real (dashed): these are
basically superimposed, showing the accuracy of the quadrotors in tracking
the reference trajectory pi(t). In the plots the following color code is used:
blue/red/green solid/dashed lines correspond to the x/y/z components of pi(t)
and pi,real

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time [s]

e
tr
a
ck
[m

]

Fig. 12. Behavior of the tracking error etrack(t) defined in (36) showing
again the good tracking performance of the 6 quadrotors

quadrotor UAVs flying in a cluttered environment.

This work also highlighted a number of directions for future

research. In particular, the estimation of the rigidity eigen-

value assumed that there is a separation between the rigidity

eigenvalue and the next largest eigenvalue, i.e. |λ7 − λ8| > 0.

While the reported experimental results showed a large degree

of robustness w.r.t. this effect, there remain both theoretical

and practical questions related to this problem. For instance,

it would be interesting to complement the rigidity mainte-

nance controller with an additional term meant to maintain a

17

minimum separation among λ8 and λ7. Another extension is

to relax the requirement for having a special agent endowed

with additional sensing capabilities (i.e. range and bearing).

This would lead to a distributed solution involving only range

measurements for all robots in the ensemble.

Despite these remaining challenges, this work has suc-

cessfully demonstrated the power of distributed strategies for

multi-robot systems. Indeed, it is remarkable to observe the be-

havior of the multi-robot team running many distributed filters

to achieve a common global objective. The refinement of these

strategies will no doubt become an important requirement as

autonomous multi-robot systems are integrated more into a

variety of application domains.

APPENDIX A: INDEX TO MULTIMEDIA EXTENSIONS

The multimedia extensions to this article are at: http://www.

ijrr.org.

Extension Type Description

1 Video Experiments of rigidity mainte-

nance with a group of UAVs

APPENDIX B: RIGIDITY MATRIX EXAMPLE

The development of the alternative representation of the

Rigidity Matrix given in Proposition II.13 of the document

is aided by a simple example. To begin, we make some

qualitative observations of the rigidity matrix. For this example

we consider a framework in R
2 with the complete graph on

3 nodes (denoted K3). The rigidity matrix can be written by

inspection as

R(p) =




px1 − px2 py1 − py2 px2 − px1 py2 − py1 0 0
px1 − px3 py1 − py3 0 0 px3 − px1 py3 − py1

0 0 px2 − px3 py2 − py3 px3 − px2 py3 − py2



 .

For the complete graph and an arbitrary orientation assigned

to each edge, the incidence matrix E(G) can be written as

E(G) =





1 1 0
−1 0 1
0 −1 −1



 .

The transpose of the incidence matrix functions as a “dif-

ference” operator. If the position of each agent is formed into

a vector, we have

E(G)T




px1 py1
px2 py2
px3 py3



 =





px1 − px2 py1 − py2
px1 − px3 py1 − py3
px2 − px3 py2 − py3



 .

The point to illustrate here is that this difference operation

between positions is redundantly embedded inside the rigidity

matrix. This fact can be made more precise by defining

a directed local graph at node vi from the graph G as

in Definition II.12 in the main text. Intuitively, the idea is

that each node only has some local information about the

connectivity of the entire graph; indeed, it only knows of the

existence of other nodes that it can sense. In this way, we

can define a sub-graph induced by each node in the graph as

follows.

(a) A graph. (b) Local directed graph at a node.

Fig. 13. Example of a directed local graph.

Let Gj = (V, Ej) be a sub-graph induced by node vj such

that

Ej = {(vj , vi) | {vi, vj} ∈ E}.

Here we emphasize that the original graph G is undirected,

while in the new induced graph Gi we assign a direction to

the edge such that node vj is always the head. Furthermore,

observe that ∪jGj = G.13 This is illustrated in Figure 13.

To continue with the K3 example, we can write the local

incidence matrix for node v1 as

El(G1) =





1 1 0
−1 0 0
0 −1 0



 .

Note that this matrix is not truly an incidence matrix for the

graph G1; “placeholders” for the other edges in the graph G
are kept. As a result, the local incidence matrix is defined as

El(Gj) ∈ R
|V|×|E| to have zero-columns corresponding to the

edges not in Ej .14

Now, consider the local incidence matrix as the difference

operator,

El(G1)
T





px1 py1
px2 py2
px3 py3



 =





px1 − px2 py1 − py2
px1 − px3 py1 − py3

0 0



 .

Note that this is identical to the the first 2 columns of the

rigidity matrix R(p). In fact, this shows that the rigidity matrix

can be written entirely in terms of local incidence matrices,

as formally stated in Proposition II.13 of the main document.

ACKNOWLEDGMENTS

Part of Heinrich Bülthoff’s research was supported by the

Brain Korea 21 PLUS Program through the National Research

Foundation of Korea funded by the Ministry of Education.

Correspondence should be directed to Heinrich H. Bülthoff.

13Here, we assume that the directed edges (vi, vj) and (vj , vi) are
equivalent to the undirected edge {vi, vj}.

14This representation also assumes that all the edges have been assigned a
label, and this labeling is maintained even for the local graphs (local graphs
do not relabel their edges; for example if edge 2 is not in local graph Gj ,
then the second column of E(Gj) will be zero).

http://www.ijrr.org.
http://www.ijrr.org.

18

REFERENCES

I. F. Akyildiz, Y. Sankarasubramaniam, and E. Cayirci. A survey
on sensor networks. IEEE Communications Magazine, 40(8):102–
114, 2002.

B. D. O. Anderson, B. Fidan, C. Yu, and D. van der Walle. UAV
formation control: Theory and application. In V. D. Blondel, S. P.
Boyd, and H. Kimura, editors, Recent Advances in Learning and
Control, volume 371 of Lecture Notes in Control and Information
Sciences, pages 15–34. Springer, 2008a.

B. D. O. Anderson, C. Yu, B. Fidan, and J. M. Hendrickx. Rigid graph
control architectures for autonomous formations. IEEE Control
Systems Magazine, 28(6):48–63, 2008b.

J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley,
Y. R. Yang, B. D. O. Anderson, and P. N. Belhumeur. A theory of
network localization. IEEE Trans. on Mobile Computing, 5(12):
1663–1678, 2006.

J. Baillieul and L. McCoy. The combinatorial graph theory of
structured formations. In 2007 46th IEEE Conference on Decision
and Control, pages 3609–3615, December 2007.

J. Bristow, D. Folta, and K. Hartman. A Formation Flying Tech-
nology Vision. In AIAA Space 2000 Conference and Exposition,
volume 21, Long Beach, CA, April 2000.

G. C. Calafiore, L. Carlone, and M. Wei. A distributed gradient
method for localization of formations using relative range mea-
surements. In 2010 IEEE Int. Symp. on Computer-Aided Control
System Design, pages 1146–1151, Yokohama, Japan, Sep. 2010a.

G. C. Calafiore, L. Carlone, and Mingzhu Wei. A distributed Gauss-
Newton approach for range-based localization of multi agent
formations. In Computer-Aided Control System Design (CACSD),
2010 IEEE International Symposium on, pages 1152–1157, 2010b.

R. Connelly and W. J. Whiteley. Global Rigidity: The Effect of
Coning. Discrete Computational Geometry, 43(4):717–735, 2009.

T. Eren, O. K. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse,
B. D. O. Anderson, and P. N. Belhumeur. Rigidity, computation,
and randomization in network localization. In IEEE INFOCOM
2004, volume 4, pages 2673–2684. IEEE, 2004.

A. Franchi, C. Masone, V. Grabe, M. Ryll, H. H. Bülthoff, and
P. Robuffo Giordano. Modeling and control of UAV bearing-
formations with bilateral high-level steering. The International
Journal of Robotics Research, Special Issue on 3D Exploration,
Mapping, and Surveillance, 31(12):1504–1525, 2012a.

A. Franchi, C. Secchi, M. Ryll, H. H. Bülthoff, and P. Robuffo Gior-
dano. Shared control: Balancing autonomy and human assistance
with a group of quadrotor UAVs. IEEE Robotics & Automation
Magazine, Special Issue on Aerial Robotics and the Quadrotor
Platform, 19(3):57–68, 2012b.

Randy A. Freeman, Peng Yang, and Kevin M. Lynch. Stability and
Convergence Properties of Dynamic Average Consensus Estima-
tors. In 45th IEEE Conf. on Decision and Control, pages 338–343,
San Diego, CA, 2006.

C. D. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.
ISBN 978-0-387-95241-3.

J. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity.
Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 1993. ISBN 0821838016.

R. Horn and C. Johnson. Matrix Analysis. Cambridge University
Press, New York, 1985.

R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, New York, NY, 1991.

B. Jackson. Notes on the Rigidity of Graphs. In Levico Conference
Notes, 2007.

D. Jacobs. An Algorithm for Two-Dimensional Rigidity Percolation:
The Pebble Game. Journal of Computational Physics, 137(2):
346–365, November 1997.

M. Ji and M. Egerstedt. Distributed Coordination Control of Multi-
agent Systems While Preserving Connectedness. IEEE Trans. on
Robotics, 23(4):693–703, August 2007.

L. Krick, M. E. Broucke, and B. A. Francis. Stabilisation of infinites-

imally rigid formations of multi-robot networks. International
Journal of Control, 82(3):423–439, 2009.

G. Laman. On graphs and rigidity of plane skeletal structures. Journal
of Engineering Mathematics, 4(4):331–340, 1970.

Q. Lindsey, D. Mellinger, and V. Kumar. Construction of cubic
structures with quadrotor teams. In 2011 Robotics: Science and
Systems, Los Angeles, CA, Jun. 2011.

M. Mesbahi and M. Egerstedt. Graph Theoretic Methods in Mul-
tiagent Networks. Princeton Series in Applied Mathematics.
Princeton University Press, 1 edition, 2010. ISBN 9780691140612.

N. Michael, J. Fink, and V. Kumar. Cooperative manipulation and
transportation with aerial robots. In 2009 Robotics: Science and
Systems, Seattle, WA, Jun. 2009.

R. M. Murray. Recent research in cooperative control of multi-vehicle
systems. ASME Journal on Dynamic Systems, Measurement, and
Control, 129(5):571–583, 2006.

R. Olfati-Saber and R. M. Murray. The combinatorial graph theory
of structured formations. In 41th IEEE Conf. on Decision and
Control, pages 3609–3615, Las Vegas, NV, Dec. 2002.

P. Robuffo Giordano, A. Franchi, C. Secchi, and H. H. Bülthoff.
Bilateral teleoperation of groups of UAVs with decentralized
connectivity maintenance. In 2011 Robotics: Science and Systems,
Los Angeles, CA, Jun. 2011.

P. Robuffo Giordano, A. Franchi, C. Secchi, and H. H. Bülthoff. A
passivity-based decentralized strategy for generalized connectivity
maintenance. The International Journal of Robotics Research, 32
(3):299–323, 2013.

D. Scaramuzza, M. C. Achtelik, L. Doitsidis, F. Fraundorfer, E. B.
Kosmatopoulos, A. Martinelli, M. W. Achtelik, M. Chli, S. A.
Chatzichristofis, L. Kneip, D. Gurdan, L. Heng, G. H. Lee, S. Ly-
nen, L. Meier, M. Pollefeys, A. Renzaglia, Roland Siegwart, J. C.
Stumpf, P. Tanskanen, C. Troiani, and S. Weiss. Vision-controlled
micro flying robots: from system design to autonomous navigation
and mapping in GPS-denied environments. IEEE Robotics &
Automation Magazine, 2014.

I. Shames, B. Fidan, and B. D. O. Anderson. Minimization of
the effect of noisy measurements on localization of multi-agent
autonomous formations. Automatica, 45(4):1058–1065, 2009.

B. Smith, M. Egerstedt, and A. Howard. Automatic generation
of persistent formations for multi-agent networks under range
constraints. In 1st Int. Conf. on Robot communication and
coordination, pages 1–8, 2007.

T. Tay and W. Whiteley. Generating isostatic frameworks. Structural
Topology, 11(1):21–69, 1985.

R. K. Williams, A. Gasparri, A. Priolo, and G. S. Sukhatme.
Evaluating Network Rigidity in Realistic Systems: Decentraliza-
tion, Asynchronicity, and Parallelization. IEEE Transactions on
Robotics, 2014.

C. Wu, Y. Zhang, W. Sheng, and S. Kanchi. Rigidity guided
localisation for mobile robotic sensor networks. International
Journal of Ad Hoc and Ubiquitous Computing, 6(2):114, 2010.

P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa,
and R. Sukthankar. Decentralized estimation and control of graph
connectivity for mobile sensor networks. Automatica, 46(2):390–
396, 2010.

D. Zelazo, A. Franchi, F. Allgöwer, H. H. Bülthoff, and P. Robuffo
Giordano. Rigidity maintenance control for multi-robot systems.
In 2012 Robotics: Science and Systems, Sydney, Australia, Jul.
2012.

