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Decentralized Robust Adaptive Control of Nonlinear is also assumed that the uncertain interconnections are bounded by gen-
Systems With Unmodeled Dynamics eral nonlinear functions. Theoretically, to consider a broader class of
nonlinear systems is important, but some other issues such as controller
Yusheng Liu and Xing-Yuan Li design and practical problems must be considered. With the general

nonlinear bounds, the design of the controllers depends on a qualita-
Abstract—The authors present a decentralized robust adaptive output tl\{e approach (as in _[19] and [20]). Fc.Jr.Iarge.-scaIe nonlinear systems
feedback control scheme for a class of large-scale nonlinear systems of theW'th many decentralized Controllers, it IS dlfflcult to choose so many
output feedback canonical form with unmodeled dynamics. A modified dy- design parameters and functions by qualitative approach. Furthermore,
namic signal is introduced for each subsystem to dominate the unmodeled with the general nonlinear bounds, the design ofithedecentralized
dynamics and an adaptive nonlinear damping is used to counter the effects controller is related to that of the rest decentralized controllers (see [19,

of the interconnections. Itis shown that under certain assumptions, the pro- . . .
posed decentralized adaptive control scheme guarantees that all the signals(25) and (10)]). This implies that redesigns of controllers are needed

in the closed-loop system are bounded in the presence of unmodeled dy-When subsystems are appended to original system or taken offline (e.g.,
namics, high-order interconnections and bounded disturbances. Further- during faults in a power system), which is neither economical nor fea-
more, by choosing the design constants appropriately, the tracking error sjble for the control of large-scale systems. Besides, many practical
can be made arbitrarily small regardless of the interconnections, distur- —,qjinear interconnected systems do have some uncertainties and in-
bances, and unmodeled dynamics in the system. An illustration example . : . .
demonstrates the effectiveness of the proposed scheme. terconnections subject to polynomial bounds, e.g., robot manipulators
with the presence of Coriolis and centripetal terms have uncertainties
bounded by second-order polynomials [16] and the electric power de-
viations between subsystems are bounded by first order polynomials
[21]. Therefore, for the practical purpose and the above reasons, we still
|. INTRODUCTION consider the case where uncertainties and interconnections are subject

Much progress has been made in the field of decentralized adapffié®°lynomial bounds in this work. As in [8], with our approach, no
control, see e.g., [1]-[8], [18], [19], and the references therein. Parti&?ntm“er redesign is needed if subsystems are added online or taken

larly, a decentralized adaptive output control scheme was presenteafmne a_s long as the order of the mte_rc_onnectlons of the appended
pystem is less or equal to that of the original system.

[8] for a class of large-scale nonlinear systems that are transformal i . .
via a global diffeomorphism into the output feedback canonical form. 1 NiS Work presents a decentralized robust adaptive control scheme
large-scale nonlinear systems of the output feedback canonical

The scheme guarantees global uniform boundedness of the traclzf?{g ) - > : -
error and all the states of the closed-loop system in the presence of p§t4D With unmodeled dynamics. First, in each subsystem, a modified
metric and dynamic uncertainties in the interconnections and bounddgiamic signal is introduced to dominate the unmodeled dynamics
disturbances. However, the scheme cannot apply to the systems Wi @ nonlinear adaptive damping is used to counter the effects
unmodeled dynamics. The work in [18] presented a decentralized addp-N€ intérconnections. Then, we employ the systematic design
tive output feedback control scheme for large-scale systems with néhocedure to obtain the decentralized robust adaptive output feedback
linear interconnections. The scheme of [18] has several advantagesc.%tm"er_s' Itis shoyvn that under certain assumptions, the prop_osed
it achieves asymptotic tracking; 2) the considered large-scale Systé?ﬁgentrallzed adaptive control scheme guarantees that all the signals
may possess an unknown, nonzero equilibrium. But, the scheme carlidhe closed-loop system are bounded in the presence of unmodeled
apply to the systems with unmodeled dynamics and disturbances. dynamics, high order !nterconnectlons and bound_ed @sturbances.
On the other hand, the robust adaptive control of nonlinear systeffgthermore, the tracking error can be made arbitrarily small by
has emerged as an active research area recently, e.g., [L0]-[13]. 890Sing the design constants appropriately.
pecially, the problem of robust adaptive control of nonlinear systems
with unmodeled dynamics was studied in [13]. Based on the concept Il. PROBLEM STATEMENT

of input-to-state practical stability, a dynamic signal was introduced in Consider a large-scale nonlinear system of the output feedback

[13] to dominate the unmodeled dynamics. It has been shown that sé@ionical form with unmodeled dynamics given by the following
a signal is a useful tool for handling unmodeled dynamics. Usingegyuations:

combined backstepping and small-gain approach, paper [20] presented

Index Terms—Adaptive, decentralized control, large-scale systems, non-
linear, robust.

an adaptive output feedback control scheme for nonlinear systems with G =ai (Gin i)
unmodeled dynamics. As an extension of the centralized case in [20], 21 =ziz + dir (Y1,...,UN)
a decentralized robust adaptive output feedback regulation scheme was T & (Y yn) w(t) + A (Glyi)

presented for a class of large-scale nonlinear systems in [19].
It should be pointed out that the class of large-scale nonlinear sys-
tems considered in [19] is broader than the class of nonlinear sys-

) . . : Zipi—1 =Zip; t Gispi—1 (Y1, -, Yl
tems with polynomial bounds as in [7], [8], [16] and [15], in the sense oL TP it (31, ) ’ ;
that the interconnections are subject to general nonlinear bounds. Al- F &1 (Yo yn) w(O) + i1 (Gl i)
though, [17] studies a different problem—decentraliZzéd, almost Zips =Zipir1 + Gip; (Y1, YN)
disturbance decoupling for a class of large-scale nonlinear systems, it + & (Y1a o yn) w(t)
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wherez; = [zi1,..., Zik, ]T, y; € R andu; € R are the state, where
the output and the control input of thth subsystem, respectively; )
w(t) is a bounded unmeasurable disturbansgfy:,....y~) and —kis ki
&j(y1,...,yn) are the dynamic and parameter uncertainties related 4, = : T ki = :
to the interconnections between subsystegnds the unmeasurable ki 040 .
unmodeled dynamics and.;;(¢;,y:) represents the unmeasurable N v E
uncertainties related to the unmodeled dynamics. We assumg;hat it Sit
& andA;; are unknown, but satisfy ¢ = &= :
L Dik; ik
Pi; N AN
g (yise o syn)ll S;;%Hylﬂk A= 0 | bi=[0 <o 0 bigi_p - bio]”
Pi; N _Ai.kz-
1665 ey DD 0k ol )
k=1 I=1 andk; is chosen such that; is a strict Hurwitz matrix. Thus, given a
Dij Q; > 0, there exists &; > 0 satisfyin
145 Gyl <7 (ﬂuk IGI" + @i ||yi||k) 2 wing
k=t AP+ PA; = —Q.. (6)
where <y, 9f;;, niji and @;;x are unknown constanty; = To estimate the states of the system, we use the following observer
max{p;;,1 <7 < N,1 < j < k;}is known. To highlight the main ¢4 theith subsystem:
idea of this work, it is assumed that the parametgrsl < i < N,
0 < j <k — p;, are also known. As indicated in [8], the case of S s T e N
unknownb;,; can be treated identically. fi= Akt kays 4 idi (y) wi ™
The objective here is to design a decentralized robust adaptive output .
controller for each subsystem such that the ougp(ff) tracks a given -St€ = i = =i Then
reference signaj;,.-(¢) and all the signals of the closed-loop system
are bounded in the presence of unmodeled dynamics, high order infer= Aiei + i (y1,....yn)
connections and bounded disturbances. We need the following assump- +& (Y1, yn) w(t) + A (Guyi). (8)

tions.
Assumption 1:The zero dynamics of system (1) is exponentially pefine a dynamic signal
stable, i.e., the polynomid®; (s) = b; . ,, 55 77 4+« + bi15 + bio
is strict Hurwitz. - _ - 2 2 - -0
. ] 7, = —CoTi + zi1vio (251) + di Fi(to)=7; >0 9
Assumption 2:6;(y;) # 0,Vt > 0. 0 Lo ( 1) 0 (to) ©)
Assumption 3:The reference signal;,.(t) i;s bounded with
ati (P (4 is i :
(t:)ggtrilgjgugenvatlves up to theth order andy,’’’(t) is piecewise the following lemma. .
Assumption 4: The unmodeled dynamics is exponentially input-toé1 nLe(r:r;r:;aln[EB]ZElf t(ge:y)s tzr;fi ,;t%(,crl{sz;)n;f ex>p-IOSpaSn, ﬂ;ﬁirt]i;?r
state practically stable (exp-1SpS) [13]; i.e., the syster ¢;(Ci.y:) Y ° cio), any o = U, any

sl ; o condition? = (;(to) and7? > 0, for any functionv;o such that
has an exp-ISpS Lyapunov functi®f(¢; ) which satisfies yio(w:) > v (|luill), there exist a finitel? = TP (7o, 7. ¢°) > 0

and a nonnegative functiaB;(to,t) defined for allt > t, such that
air ([[GI) <V (G) < aa ([IG 1D (3)  Di(to.t) =0,Vt > to+ 1T andV;((i(t)) < 7i(t) + Di(to. t) for all
Vi (&) - U N o , t > to where the solutions are defined.
a¢;, & (Giryi) < = cioVi(G) + i ([lyill) + dio ) In this work, we introduce the following modified dynamic signal in
the design of decentralized robust adaptive feedback controllers:

wherez;o € (0, cio) The properties of the dynamic signal are given by

wherea;1, a;o are known functions of clask ., ande¢;o > 0, d;p >

0 are known constants. Without loss of generality, we assufie Po= { —iori + Z1%io (32'21) + dio !f myi >0

has the following formy; (s) = s2+io(s>) where~io is a nonnegative 0, it m.; <0
smooth function. Otherwise, as indicated in [13], it suffices to replace i (to) =r{ >0 (10)
i in (4) by [ly:[|*vio([lyi]|*) + Zio with 2,0 > 0 being a sufficiently

small-real number. wherem,; = —ori + 25170 (24) + dio. It can be seen that > 0

andr;(t) > 7i(t),Vt > ty if r) = 7). Using Lemma 1, we have

lIl. THE DESIGN OF DECENTRALIZED ROBUST ADAPTIVE OUTPUT )
FEEDBACK CONTROLLERS Vi(Gi(t)) < vi(t) + D (to, 1), (11)

First, we rewrite théth subsystem (1) as follows: whereD; = (to,t) = 0,Vt > to + TO.

Next, we employ the systematic design procedure of [9], [14], and
Gio=ai (Giyyi) [8] to obtain the decentralized robust adaptive feedback controllers. To
. , = : reduce notational complexity, as in [8], we assume that all subsystems
Z; :flizi k, i Di\Ytseens 7 . . . . .
+ kgt 0 (g yw) have a uniform relative degree, i.;,= p, 1 < ¢ < N. However, it
& (i) w(t) can be treated similarly without any difficulties when the subsystems
+ A (Ghyi) + bibi (yi) u (5) have different relative degrees.
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Step 0 Define Sincez;» is not the actual control, we define
P —1/2 - — 2 Vo 3. a1
. P Xi2 = %2 —v\’[? (Xt 5,/jlg ’z) — Yir. (17)
Xi1 = Zit — Yir i = {1 +3 2% [agt (27‘,‘)]%} e (12) S
=t Thus
wheren ;! is the inverse function af{; and is again a function of class . , .
K. Then, the dynamics of the tracking error is Xi1 =Xz + Miy (Xu, Bi, T'i) +dia (y1.-- - yn) + Air (G wi)
i (Yreeyn) w(t)
Xit = Ziz = Gir + Gir (Y1, yN) + &1 (Y10 o yn) wit) . 1/2
» 1/2 + {1 + Z 22 [t (2r)] } Ein- (18)
+Ai (Goyi) + {1 +y 2% i 2] } ez (13) =1
k=1

Choose the composite Lyapunov function candidate as follows:
Sincez;2 = Zi2 + e;2, we have
N

2
e _— {g;pigiﬂmr;l b= gt } (19)
& :Ai()z {1+222k 71 ]Zk} ; ( )

i (Yreeeonyn) +E (r, ooy un) w(t) + A; (Goyi)] wherej; is the desired value of;. DifferentiatingVs along the solu-
p Syt tions of (14), (16). and (18) yields (20), as shown at the bottom of the
- {1 +> 2% [t (21',-)]2’“} page, where
k=1

P - N B ks 2
STk g (2r)]) Doy @iy, o (14) di =Y |IPIP D (a’z’}i)
k=1 Iri =1 =1
N k; 2
We propose the following virtual decentralized control law for (13): 4, = Z 12 Z (ﬁfjiwmx>

Zio = —mi it — (N + 1)pxi

p 2 Wmax = sup (Jw(t
- %Xﬂ {ZQA‘ [0'51 (27“,:)]k}

| T = ZIIPII nist)

k=1 N 2
k
1 P ok diik = Z (@ju)
Sl e it ) } 2
k=1 k;
e i?’“y%*l + i Bir = D PN (9ijn)? s Al = wax (e, 1 <k < pir)
M Al L 3
k=1 N )
—f\Ll ( Xil, /3“ ) + Z)i,r' (15) Viik = Z (ﬁﬁliwmax) , ik = (772'1/@)2-, Prik = (Sﬁilk)Q-
wherer;; > 0 is a design constant angl is an adaptive gain used j=1

to counter the effects of the interconnections between subsystems. WS

present the following adaptive law G- ifferentiating (17) gives (21), shown at the bottom of the next page.

Step M1 < m < p — 2): Assume that in stepe — 1, we designed a
virtual control M, ,, and defined

@ =T, Zz”"xf{‘—ar Bi Bi(to) >0 (16)
Xi,m+1 = 2, m+1

. . 2 > A (m)
wherel'; > 0, o; > 0 are design constants. ~M; (?/z‘-, Ziseees Zima BT Vi -0 UG ) (22)

xo<z Nuwia (Q1) = 4] [l +222"(,L+u,k+p,k

k=1
P

+ diik + viie + k;uk) (||‘<L1|| + Nlyirl ) Z ik + 74

]zk

p
+ 37 (i + i) 22 [0 (2D (t0, 1))
+ 2xi1 Y2 — 27 X

- 28; Zzz’f oo (B= ) o (20)
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Thus, (23), shown at the bottom of the next page, holds true, whereSincez; .2 is not the actual control, we define

the definitions of2; ,,,+1 andH; ...+ are similar to those d,» and
H;» given by (21), which are obtained by differentiatifid; ... and Nimts =
2 my1 With respect ta. We choose the virtual control (24), shown at*""™*

the bottom of the page.

2i,7n+2 - A’[i,vn-‘,-]

b 5. 2. B e o
'(yzv/‘zla----/~Z,7n+1>r‘ju’uyz,r----: ir

y(7n+1)) ) (25)

. N ~ aﬂf,
Xiz =Zis + kiz (yi — 2i1) — 9 -

Xl

e OM;, /'A _ OM;1 ;e
yl‘y" a/\/}l i 7 OT, z
oMy (|
- K] .I{Qil (yl'/"'ayl\")'i'&il (yl.,...,yN)w(t)
Xi1

P Y
+ A (Ghyi) + {1+Z?2k [a:i_]] (Qri)]Zk} E,;g}

k=1

[Xiz + Ma (xn, i, 7'1')]

2

AN IS ~ 5 . .-
= Zis + Qi (yi, Zity Zi2y Biy Tis Yiyrs Yiors yi,r)

+ H;» (Xil,,{;i-, ri) {(bﬂ (Y1, o yn) + &1 (Y1s - yn) w(t)

k=1

‘}1/2 é,jg}. (21)

14
+ A (Goyi) + {1 +3 2% [ag! (2r)]

Xi,m+1 =% m42 + Qi mt1 (?/i, Zilyeens

+ H; g1 (yi: Zitseees Zimats Bis Tis Uiy - - -

z. B g
i1y Bis Tis Yiry e s Yir

(777,+1))

U(VVL+1)>

s dy,r

{dm (Wi y2, - yn) + &t (Wi, 92. ... yn) w(t)

k=1

P e
+ A (Ghyi) + {1 + 22% [ar' (27‘7‘)]M} 57‘2}

(23)

[S53

i,m—+2

1 SN
+ Tima1 X, ma1 + §Xi,m+1 {;21‘ [a’

2 . . 5
cH (y;, ity ooy Bimatts Bin Py Yirs e

+ (p + 1)X¢JVL+1HIZJ77,+1 (!IL/ 2il, e

1 - 2% [ — 2k
+ §Xi,m+l {1 + l;’_)'”‘ [a“l (27.1.)] }

2 ~ ~ o
: Hi,m-H ('yia Ziloees Bima1, Bi, Tis Yirrs -

A, . . P
=M; g1 (yi, Zity ey Zimats Bis Tis Uiy - - -

=— ¢ Qms1 (?/iaéilv---7/§i,m+la/3iari>?li,r-,--

2
o (27-»]’“}

. 77/5‘77+1)) + Xi,m

y(rrL+l)>

sYir

5 m+41)
y! ))

2. T
,AL,rrL+17,JL77zayl“l'ﬂ"'3 ir

Lyt

(wn-‘,—l))

> de,r

(24)
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Choose the composite Lyapunov function candidate as follows: ~ We choose the composite Lyapunov function candidate as follows

N N

V’m = V’m—l + ZX?,mA»l' (26) "/Yp—l = foz + ZXfp (30)
=1 =1

Then, (27), shown at the bottom of the page, holds.

Stepp — 1: Assume that in step — 2, we designed a virtual control We have (31), §hown at the bottom of the page, wheje =

_ A ) Yis Zitenvs Zips Bis Pis Yirrs oo s 4.
M, ,—1 for subsystengé;, xi1,. .., Xi,p—1,3:) and defined (93 Zits oo Zips Bis i Yoo Bl )- _
o ystenei, v Xbo1: 1) We propose the following decentralized robust adaptive control for
Xi,p = Zi,p theith subsystem:

~Mipms (3 Ziseoes e Byl V)L (28) - 1
Thus l bik;—p0i (Y3)

Xi’p :bi’ki_péi (yi) ui + ﬁi’erl ©§ Xi,p—1 + fi,p+1 + Q:}u(') + Ti,pXi,p

+ Qi ('yi, 31‘1,...,ﬁi,p.ﬁi,r'i,yi,,.,...,yfﬁ?)

+ @+ i H ()

1 2 . 2k 1 —1 2k
+§Xi,pHi,p(‘) <1+/;2 [ail (27'1')]

. .4 )
+ H;, (?Ii-, Zila---azi,p«,,{iie'ri-,:'/i,ra----,yl(j)[-)

i1 (Y1, yn) + Ain (Ghyi)

2
1 2 ¢ k. —1 k

+ =~ X4, Hi . 2 i 2”1' . 32

+ & (yh---,yN)uJ(t) 2/\ 14 ,p()(l; [()(1 ( r )] ( )
1
4 2

+ {1 + Z 2% [ar! (2r,;)]2k} €ia p. (29) Theorem 3.1: Under Assumptions 1)—4), the decentralized adaptive
k=1 control (32) guarantees that all the signals in the closed-loop system

N m—+1
Vi €309 = Ponin (Q0) — (m+ D] [lesl* =2 Y i
i=1 =1

b R 2
— 2437 Z 228\ 2k _ g, (,3,' — /5';) + 2Xi 41 X mt2
k=1

P
+ ZQN [dix + vik + @ik + (m + 1) (d1sk + viik + P1ik)]

k=1

P
P Dyl ) 3 1+ o+ 1yl + 0,5
k=1

+ 3022 [+ (m A+ D] - [ai" (2D (10, 1)) 3. @27)

k=1

N p—1
Voet <304 = Pnin (Qi) = (o 3)]Mlell* = 2> mindd;
i=1 J=1

P R 2
—20; 3 2 (/i’,; - /3:)
k=1

P
+ 22% [dir + v + Pix + p (drix + v + Prik)] (me %" + ||yi,7‘||2k>

k=1
P P
_ . _ _ 2k e
+ D i+ 2% (i + pina) [0 (2D (f0. )] + (p = it
k=1 k=1
+0,87 + 2Xi,p {Xip—1 F bisk,—p0i (Yi) wi + Zi o1 + Qi p (1)}
P
I o I 2%
+20p+ DX H () + X HE () <1 + 302" [an! (2r0)] )
k=1

+ 200X Hip () D 28 [aiy! (2] (31)

k=1



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 5, MAY 2002 853

consisting of (1), (7), (10), and (16) are bounded in the presence of un- > 0,V¢ > ¢y, we can see from (10) that whenever > 0,
modeled dynamics, high-order interconnections and bounded distwe haver; < 1/¢0[z47i0(224) + dio]. Sincez? vio (27 ) is bounded,

bances. Furthermore, by choosing the design constants;;(; = it follows thatr; is bounded. The boundednesseffollows from
0,1,...,p) andl'; appropriately, the tracking error can be made athat of &; and »;. From (15), we can see thdﬂil(xz‘l,/;’i,T’i) is
bitrarily small regardless of the interconnections, disturbances and twounded sincev.1, 8;,r: are bounded. Since.. is bounded, the
modeled dynamics in the system. boundedness of;; is established from (17). Thus, by using (22)
Proof: Choose the desired valyg and@; satisfying iteratively, the boundedness &f ,1+1,1 < m < p — 1, is followed
1 from the boundedness ofi, Zi1,..., i m, Zi’,,r,n], T,...,gf'f).
8! Z§[du~+m+¢?ik Consequently,z;i, ..., z;,, are bounded since; is bounded. In
+p (diik + viie + Prin)] (33) addition, sincey; |s_ t_)ounded and,_accordlng to _Assumpﬂon 4), the
. unmodeled dynamics = ¢:({i. ;) is exp-ISpS(; is bounded.
Auin (Qi) 22mio + (p +3) 34) Next, we prove that; ,+1, ...,z », are bounded. Let
where 7=y > 0 is a design constant. From (31)—(34), biki—j )
we get (35), shown at the bottom of the page, where Wis = % = k_ip‘”"%/’ p+1<j< ki (41)
€ = [é1,...,en]t € R, n = ZA ki, B = [Bi..... 05", o

; Then, we have
X = [Xlla s X1,p50--5s XN1- --7/\1\’,{)]

SinceD;(to,t) = 0,Vt > to + T, (see Lemma 1) and;," is a

: v ki—3
Wi; =w; j41 — Wi et

function of classi..,, we have ’ ’ bik,—p
Ly ok ~ bik;—jmt bigy—jbik,—p—1
> 2% (i pinin) [et (2D (ro.0)] ™ I ( bk | W,
k=1 o LR
bl
=0, Vt>to+T). (36) + |:¢),;y,’ (Y100 yN) — b L (/),p(1/1 ..... UV):|
i,k;—p
Denote (37) and (38), shown at the bottom of the page. Notice that bik,—;
sincey, , andaj;' (2D;(ty,t)) are boundeds is bounded. Thus + {fzj (Y1505 yN) = b; kv-—p&’p w1, yN)} w ()
‘}’p_l (E, X3> < —uV,_ (é,)g,ﬁ) + 5. (39) {Au (Civyi) — b Jikioi A, (G yz)}
iki—p
Therefore, V,_i (¢, v, 3) decreases monotonically untile,y,3) 2 +1<j<ki—1, (42)
reaches the compact set Wi = — bio Wi p1 — Zi biobiki—p—1
Ttk bi,ki_p 1,0 7,p iki_p
R. :{(év X«é) € R" x RN” x R™ ‘ bio
+ {%L (Y1, yn) — b—0¢i.p (yi,-- .,yx)}
R i,ki—p
Voo (g,x,,@) < ;rls}. (40) bio
! + fi,ki(’yh---vJ’\)— &p(Jh--wU’V W(t)
bik;—p
This means that, X.ﬂ are bounded, i.ec‘;i,xﬂ,...,xji,p.,,%i,i = bio
1,...,N, are bounded. Thus,z; is bounded. Although + Bk (Gows) = A Aip (Goi) |- (43)
. R N ) P . R 2
Voot (e 8) < 304 =2molledl’” =2 3wt = o (B - )
=1 Jj=1
p 5 -
+ Z 22k [dix + vit + @ir + p (diig + viie + @1in)] ||yi,r||2k
k=1
P L ok
+ me + Z 22k (Tik + p71ik) [a (2D; (to, ))]
k= =1
+ a4 08 (35)
)= min {mm (Z‘r,o/\mm (F), 2@, ..., 25, Fio'i)} , (37)

1<:<N

S = Z Z72k [dir + vir. + @i + p (diir + viie + Grix)] ||L/“||ZlC
=1

p P
op - _ 2% B "
+ Z ik + Z 22k (ik + p1ik) [(12'11 (2D; (to, t))]o + P7)f1 +0:87 %, (38)
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Sinced:; (y1s. -5 YN ), Eij Y1y yN), Aij (&b yi), zip @ndw(t)  0.625,7i(||zi1]]) = 2.5/7?1 and~io(||zal]) = 2.5/7;-21. Takingc,o =
are bounded and, according to Assumption 1), the zero dynamics0df € (0, c;0), we define the modified dynamic signal as follows:
system (1) is exponentially stable, it follows from (42) and (43) that

9 r. 4 = ) X
Wi, pt1s - -+ Wi, are bounded. Thus, from (41,41, ..., zix, are = { —0.6r + 2.5 +0.625 ff mri 2 0
bounded. Hence;,,p“ ,..., 2%k, are bounded since; is bounded. 00 it my; <0
The boundedness af is established by the fact that | is bounded r;(0) =r; >0

andb; «,—,6:(y:) is bounded away from zero. Therefore, all the sig-

erem,; = —0.6r; + 2.5z% + 0.625. Takea,1 (||G|]) = 0.8¢% <
nals in the closed-loop system consisting of (1), (7), (10), and (16) . . =
bounded. %’.V (&), thenay; ' (2r;) = +/2r;/0.8. Define the observer for thih

subsystem as foIIows.

3L B [0
Tl o T 2| T 1]

Applying the decentralized robust adaptive output control scheme
Wented herein, we have

Furthermore, it can be seen from (37)—(40) that redueingnd in-
creasingrm;;(j = 0,1,...,p) andT; will reduce the residual error
boundx~"S. This |mplles that by choosing the design constants
mi;(j = 0,1,...,p) andl'; appropriately, the tracking error can be
made arbitrarily small. This completes the proof of Theorem 3.1.

From the above design procedure and Theorem 3.1, we can see e&
that the proposed decentralized adaptive control scheme requires adap- Yol =21 — Yir
tation of only one scalar parameter for each subsystem and no controller ) i - s
redesign is needed if subsystems are added online or taken offline as /it =~ TXia = i (430 +16x31)
long as the order of the interconnections of the appended system is less _ ;lXil (\/m + 10”)2 — Bya
or equal to that of the original system. 2

Ly

1 2
— X (L+ 107 + 10077)
IV. AN ILLUSTRATION EXAMPLE ,3 =T, (4X?1 +16x7 — a,;é;) . A(0)>0
Consider an interconnected nonlinear system consisting of two sub- Xiz =Zi2 — Mi1n — 9ir
OM;
systems Qiz =2(yi — 2i1) — ) 1 (xi2 + M;1)
Xi1
G=—C 4y 405 e — alwillfj_ 03’[1'1,.‘_
fu =212+ 61 (Y1, 92) + & (Y1, 92) w(t) + A (G ) a’u o "
212 =12 (y1.y2) + &2 (Y1, y2) w(t) + Ai2 (Cruyr) + wa Hi» = — 0; i
(11
Y1 =z h
g where
Go=—C4ys+05 i .
Z21 =222 + 021 (Y1, y2) + €21 (Y1, y2) w(t) + Az1 ((2, y2) 3;\' T =—m1—6— 3 (4+48xi1) — 5 (\/ 107; + 107'1‘)2
Zog =22 (Y1, y2) + &2 (Y1, y2) w(t) + Azz (2, y2) + usz 1 (1 T+ 10r 4 100 2)
Yz =z21 (44) B) i T
OM; .
_ _ = — (4 + 16x7)
where(;,i = 1,2 is the unmeasurable and unmodeled dynamics, 90:
, — OM; 1
w(t) = sin®(¢) is the unmeasurable disturbance and Oar.l = (10 + 2007, + 30/T077)
$11 (y1.¥2) =Vt + vay2. 11 (W1, 42) = v1 + y19e — %XH (10 + 200r;).
Aur (G1n) =2 b2 (o we) =2 + o The decentralized adaptive control for th subsystem i
£z (u1, yz) :y) ¥y Ars (GLayn) = 38 e decentralized adaptive control for thk subsystem is
o = Y1, €21 (Y1, ¥2) = ¥2 + 11y ‘
{5,y =us cos(t )+ 80 (v1,32) 2 v iy wi =— < Xi1 + miaXiz + Qiz + 3\ H
Az (C2:y2) —242 cos(t), 22 (y1,92) = yi + 92
€22 (Y1, y2) =U5 + y1y2, Aaa (Co, y2) = 3¢ sin(t). n %Xzzﬂfz(l 107+ 100r2)
The objective is to design a decentralized robust adaptive output con- 1 2 \2 . .
« S Ho (V10 4+ 107;)° 5, i =1,2.
troller for each subsystem such thattracksy . = sin(2¢) andy. + g\ 2 i 10T, ’
tracksy:,» = cos(2¢) and all the signals in the closed-loop system are . i . -~ ]
bounded. With the following choice of the initial conditions and design con-
In the design of the controllers, we assume thaf(y:,y,), Stants:
C (U A u)ii=1.2 R
él,(yl_,yz), AU(_C“yL)(z,J_ 1,_)_are unknown, but the upper bound (1 (0) =0, 211 (0) = 1, 215(0) = 0, 511 (0) = 0
of their orders is known, i.ep = 2. The relative degrees of the tow . .
subsystems arg, = p» = p = 2. 212(0) =0,71(0) = 0.1,5:(0) = 1
First, we show that the unmodeled dynamics fulfils the Assumption (2(0) =0,221(0) = 2,222(0) =0
4). LetVi(¢:) = 7. ThenVi(¢:) = —2¢7 + 2Giy7 + . Using 21(0) =0, 222(0) = 0,72(0) = 0.1

[13, Lemma 3.2], we have(iy? + ¢ < (1/420)(2¢)% + =1y +
(1/422) 4 £2¢2. Takinge, = 2.5,2, = 0.4, we get2¢iy? + G
0.8¢2 4+ 2.5 ||ys||* + 0.625. Thus,Vi(&) < —1.2¢2 + 2.5 ||w|*

0.625, i.e., the unmodeled dynamics is exp-ISpS with= 1.2, d;o

'32(0) :17Fl = 1,0’1 =0.1
a1 =1, 72 =1,Ta =102 =0.1
moy =1,mo2 =1 (45)

I+ IA
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0.5 - 0.5 4
0 : . I 0 . .
[ 0.1 02 03 04 0 0.1 0.2 0.3 0.4
time time
(@) (@)
1 P 1t B
051 — 0.5 4
00 0.1 0.2 0.3 04 00 011 0j2 0f3 04
time time
(b) (b)
Fig. 1. Simulation results with the control scheme of this work. (a) Trackingig. 2. Simulation results with the control scheme of this work by choosing
errory1. (b) Tracking errorys; . the design constants appropriately. (a) Tracking exrar. (b) Tracking error
Xz21-

we performed the simulation using MATLAB and obtained thgame notations as in [8]):
results shown in Fig. 1. It can be seen from Fig. 1 that the '
decentralizgd controllers are .robust to .the unmodgled dynamics, ¢1(0) =0,211(0) = 1,212(0) = 0, 211(0) = 0, 212(0) = 0
bounded disturbances and high order interconnections with good 31(0) =1, (2(0) = 0, 221 (0) = 2, 202(0) = 0, 251 (0) = 0

tracking performance.

) o . _ 292(0) =0, 32(0) = 1,6, =1,y = 1,60 = 0.1, m; = 1
With the same initial conditions as in (45), we chose the design con- 22(0) =0, 52(0) Tt ! 71 i

stants as fO”OWS: mT12 :1[2 = ].,I‘_) = 1,0’2 = ().1,7T21 = ].,71'22 =1. (47)
The simulation results are shown in Fig. 3, from which we can see
T\ =100,1 = 0.001, 711 = 100, 715 = 100, T = 100 that the tracking errors are unbou_nded_and the decentralized adaptive
output control scheme presented in [8] is not robust to unmodeled dy-
a2 :0001 21 = 1007’/1'2‘_7 = 100 (46) namiCS.
and obtained the simulation results shown in Fig. 2. The tracking errors V. CONCLUSION

X11.X21 in Fig. 2(a) and (b) are much smaller than those in Fig. 1(a) A new decentralized robust adaptive control scheme is presented for
and (b). This demonstrates that by choosing the design constants; class of large-scale nonlinear systems of the output feedback canon-
mi; andI'; appropriately, the tracking errors can be made arbitrarila| form. The scheme can be used in the systems with unmodeled dy-
small. namics, high order interconnections and bounded disturbances. Under
Finally, to compare the decentralized robust adaptive output contoartain assumptions, it is shown that the scheme guarantees that all the
scheme presented in this work with that in [8], we applied the decesignals in the closed-loop system are bounded. By choosing the de-
tralized adaptive output control scheme presented in [8] to system (44)n constants appropriately, the tracking error can be made arbitrarily
with the following initial conditions and design constants (using themall regardless of the interconnections, disturbances and unmodeled
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(3]

(4]
(5]

(6]

(7]

(8]

(9]

02
time

(@)

03

[10]

[11]

75001 1 [12]

(13]
(14]
5000 B
[15]
[16]

2500 1

[17]

_J

0.3

0 L "
0.2

(18]

time

b
(b) [19]
Fig. 3. Simulation results with the control scheme in [8]. (a) Tracking error

'11. (b) Tracking erroryz; .
X11- (b) g 21 [20]

dynamics in the system. As an extension of the work in [8] to the casgl]
of unmodeled dynamics, the proposed decentralized adaptive control
scheme of this work retains all the advantages of the scheme in [8].
The effectiveness of the proposed scheme is demonstrated by simula-
tion results.

It should be pointed out that the unmodeled dynamics described in
this work do not depend on the outputs of other subsystems. For the
more general case where the unmodeled dynamics depends on the out-
puts of other subsystems, how to generate decentralized dynamic sig-
nals to dominate the unmodeled dynamics is a subject for further re-
search.
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