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Decentralized Robust Adaptive Control of Nonlinear
Systems With Unmodeled Dynamics

Yusheng Liu and Xing-Yuan Li

Abstract—The authors present a decentralized robust adaptive output
feedback control scheme for a class of large-scale nonlinear systems of the
output feedback canonical form with unmodeled dynamics. A modified dy-
namic signal is introduced for each subsystem to dominate the unmodeled
dynamics and an adaptive nonlinear damping is used to counter the effects
of the interconnections. It is shown that under certain assumptions, the pro-
posed decentralized adaptive control scheme guarantees that all the signals
in the closed-loop system are bounded in the presence of unmodeled dy-
namics, high-order interconnections and bounded disturbances. Further-
more, by choosing the design constants appropriately, the tracking error
can be made arbitrarily small regardless of the interconnections, distur-
bances, and unmodeled dynamics in the system. An illustration example
demonstrates the effectiveness of the proposed scheme.

Index Terms—Adaptive, decentralized control, large-scale systems, non-
linear, robust.

I. INTRODUCTION

Much progress has been made in the field of decentralized adaptive
control, see e.g., [1]–[8], [18], [19], and the references therein. Particu-
larly, a decentralized adaptive output control scheme was presented in
[8] for a class of large-scale nonlinear systems that are transformable
via a global diffeomorphism into the output feedback canonical form.
The scheme guarantees global uniform boundedness of the tracking
error and all the states of the closed-loop system in the presence of para-
metric and dynamic uncertainties in the interconnections and bounded
disturbances. However, the scheme cannot apply to the systems with
unmodeled dynamics. The work in [18] presented a decentralized adap-
tive output feedback control scheme for large-scale systems with non-
linear interconnections. The scheme of [18] has several advantages: 1)
it achieves asymptotic tracking; 2) the considered large-scale systems
may possess an unknown, nonzero equilibrium. But, the scheme cannot
apply to the systems with unmodeled dynamics and disturbances.

On the other hand, the robust adaptive control of nonlinear systems
has emerged as an active research area recently, e.g., [10]–[13]. Es-
pecially, the problem of robust adaptive control of nonlinear systems
with unmodeled dynamics was studied in [13]. Based on the concept
of input-to-state practical stability, a dynamic signal was introduced in
[13] to dominate the unmodeled dynamics. It has been shown that such
a signal is a useful tool for handling unmodeled dynamics. Using a
combined backstepping and small-gain approach, paper [20] presented
an adaptive output feedback control scheme for nonlinear systems with
unmodeled dynamics. As an extension of the centralized case in [20],
a decentralized robust adaptive output feedback regulation scheme was
presented for a class of large-scale nonlinear systems in [19].

It should be pointed out that the class of large-scale nonlinear sys-
tems considered in [19] is broader than the class of nonlinear sys-
tems with polynomial bounds as in [7], [8], [16] and [15], in the sense
that the interconnections are subject to general nonlinear bounds. Al-
though, [17] studies a different problem—decentralizedH1 almost
disturbance decoupling for a class of large-scale nonlinear systems, it
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is also assumed that the uncertain interconnections are bounded by gen-
eral nonlinear functions. Theoretically, to consider a broader class of
nonlinear systems is important, but some other issues such as controller
design and practical problems must be considered. With the general
nonlinear bounds, the design of the controllers depends on a qualita-
tive approach (as in [19] and [20]). For large-scale nonlinear systems
with many decentralized controllers, it is difficult to choose so many
design parameters and functions by qualitative approach. Furthermore,
with the general nonlinear bounds, the design of theith decentralized
controller is related to that of the rest decentralized controllers (see [19,
(25) and (10)]). This implies that redesigns of controllers are needed
when subsystems are appended to original system or taken offline (e.g.,
during faults in a power system), which is neither economical nor fea-
sible for the control of large-scale systems. Besides, many practical
nonlinear interconnected systems do have some uncertainties and in-
terconnections subject to polynomial bounds, e.g., robot manipulators
with the presence of Coriolis and centripetal terms have uncertainties
bounded by second-order polynomials [16] and the electric power de-
viations between subsystems are bounded by first order polynomials
[21]. Therefore, for the practical purpose and the above reasons, we still
consider the case where uncertainties and interconnections are subject
to polynomial bounds in this work. As in [8], with our approach, no
controller redesign is needed if subsystems are added online or taken
offline as long as the order of the interconnections of the appended
system is less or equal to that of the original system.

This work presents a decentralized robust adaptive control scheme
for large-scale nonlinear systems of the output feedback canonical
form with unmodeled dynamics. First, in each subsystem, a modified
dynamic signal is introduced to dominate the unmodeled dynamics
and a nonlinear adaptive damping is used to counter the effects
of the interconnections. Then, we employ the systematic design
procedure to obtain the decentralized robust adaptive output feedback
controllers. It is shown that under certain assumptions, the proposed
decentralized adaptive control scheme guarantees that all the signals
in the closed-loop system are bounded in the presence of unmodeled
dynamics, high order interconnections and bounded disturbances.
Furthermore, the tracking error can be made arbitrarily small by
choosing the design constants appropriately.

II. PROBLEM STATEMENT

Consider a large-scale nonlinear system of the output feedback
canonical form with unmodeled dynamics given by the following
equations:

_�i =qi (�i; yi)

_zi1 =zi2 + �i1 (y1; . . . ; yN)

+ �i1 (y1; . . . ; yN )!(t) + �i1 (�i; yi)

...

_zi;� �1 =zi;� + �i;� �1 (y1; . . . ; yN )

+ �i;� �1 (y1; . . . ; yN )!(t) + �i;� �1 (�i; yi)

_zi;� =zi;� +1 + �i;� (y1; . . . ; yN )

+ �i;� (y1; . . . ; yN )!(t)

+ bi;k �� �i (yi)ui +�i;� (�i; yi)

...

_zi;k =�i;k (y1; . . . ; yN ) + �i;k (y1; . . . ; yN )!(t)

+ bi0�i (yi)ui +�i;k (�i; yi)

yi =zi1 1 � i � N (1)
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wherezi = [ zi1; . . . ; zi;k ]T , yi 2 R andui 2 R are the state,
the output and the control input of theith subsystem, respectively;
!(t) is a bounded unmeasurable disturbance;�ij(y1; . . . ; yN) and
�ij(y1; . . . ; yN ) are the dynamic and parameter uncertainties related
to the interconnections between subsystems;�i is the unmeasurable
unmodeled dynamics and�ij(�i; yi) represents the unmeasurable
uncertainties related to the unmodeled dynamics. We assume that�ij ,
�ij and�ij are unknown, but satisfy

k�ij (y1; . . . ; yN )k �

p

k=1

N

l=1

&
k
ijl kylk

k

k�ij (y1; . . . ; yN )k �

p

k=1

N

l=1

#
k
ijl kylk

k

k�ij (�i; yi)k �

p

k=1

�ijk k�ik
k + 'ijk kyik

k (2)

where &kijl, #kijl, �ijk and 'ijk are unknown constants,p =
maxfpij ; 1 � i � N; 1 � j � kig is known. To highlight the main
idea of this work, it is assumed that the parametersbij , 1 � i � N ,
0 � j � ki � �i, are also known. As indicated in [8], the case of
unknownbij can be treated identically.

The objective here is to design a decentralized robust adaptive output
controller for each subsystem such that the outputyi(t) tracks a given
reference signalyi;r(t) and all the signals of the closed-loop system
are bounded in the presence of unmodeled dynamics, high order inter-
connections and bounded disturbances. We need the following assump-
tions.

Assumption 1:The zero dynamics of system (1) is exponentially
stable, i.e., the polynomialPi(s) = bi;k �� sk �� + � � �+ bi1s+ bi0
is strict Hurwitz.

Assumption 2:�i(yi) 6= 0;8t � 0.
Assumption 3:The reference signalyi;r(t) is bounded with

bounded derivatives up to the�ith order andy(� )
i;r (t) is piecewise

continuous.
Assumption 4:The unmodeled dynamics is exponentially input-to-

state practically stable (exp-ISpS) [13]; i.e., the system_�i = qi(�i; yi)
has an exp-ISpS Lyapunov functionVi(�i) which satisfies

�i1 (k�ik) �Vi (�i) � �i2 (k�ik) (3)
@Vi (�i)

@�i
qi (�i; yi) �� ci0Vi (�i) + i (kyik) + di0 (4)

where�i1; �i2 are known functions of classK1 andci0 > 0, di0 �
0 are known constants. Without loss of generality, we assumei(�)
has the following formi(s) = s2i0(s

2) wherei0 is a nonnegative
smooth function. Otherwise, as indicated in [13], it suffices to replace
i in (4) by kyik2i0(kyik2) + �"i0 with �"i0 > 0 being a sufficiently
small-real number.

III. T HE DESIGN OFDECENTRALIZED ROBUST ADAPTIVE OUTPUT

FEEDBACK CONTROLLERS

First, we rewrite theith subsystem (1) as follows:

_�i =qi (�i; yi)

_zi =Aizi + �kiyi + �i (y1; . . . ; yN )

+ �i (y1; . . . ; yN )!(t)

+ �i (�i; yi) + bi�i (yi)ui (5)

where

Ai =

�ki1
... I

�ki;k 0 � � � 0

�ki =

ki1
...

ki;k

�i =

�i1
...

�i;k

�i =

�i1
...

�i;k

�i =

�i1

...
�i;k

bi = [ 0 � � � 0 bi;k �� � � � bi0 ]
T

and�ki is chosen such thatAi is a strict Hurwitz matrix. Thus, given a
Qi > 0, there exists aPi > 0 satisfying

A
T
i Pi + PiAi = �Qi: (6)

To estimate the states of the system, we use the following observer
for the ith subsystem:

_̂zi = Aiẑi + �kiyi + bi�i (yi)ui: (7)

Let ei = zi � ẑi. Then

_̂ei = Aiei + �i (y1; . . . ; yN )

+�i (y1; . . . ; yN )!(t) + �i (�i; yi) : (8)

Define a dynamic signal

_�ri = ��ci0�ri + z
2
i1i0 z

2
i1 + di0 �ri (t0) = �r0i > 0 (9)

where�ci0 2 (0; ci0) The properties of the dynamic signal are given by
the following lemma.

Lemma 1 [13]: If the system_�i = qi(�i; yi) is exp-ISpS, then for
any constant�ci0 2 (0; ci0), any initial instantt0 � 0, any initial
condition �0i = �i(t0) and �r0i > 0, for any functioni0 such that
i0(yi) � i(kyik), there exist a finiteT 0

i = T 0
i �ci0; �r

0
i ; �

0
i � 0

and a nonnegative functionDi(t0; t) defined for allt � t0 such that
Di(t0; t) = 0, 8t � t0+T 0

i andVi(�i(t)) � �ri(t)+Di(t0; t) for all
t � t0 where the solutions are defined.

In this work, we introduce the following modified dynamic signal in
the design of decentralized robust adaptive feedback controllers:

_ri =
��ci0ri + z2i1i0 z2i1 + di0 if mri > 0

0; if mri � 0

ri (t0) =r
0
i > 0 (10)

wheremri = ��ci0ri + z2i1i0 z2i1 + di0. It can be seen that_ri � 0
andri(t) � �ri(t), 8t � t0 if r0i = �r0i . Using Lemma 1, we have

Vi (�i(t)) � ri(t) +Di (t0; t) ; (11)

whereDi = (t0; t) = 0, 8t � t0 + T 0
i .

Next, we employ the systematic design procedure of [9], [14], and
[8] to obtain the decentralized robust adaptive feedback controllers. To
reduce notational complexity, as in [8], we assume that all subsystems
have a uniform relative degree, i.e.,�i = �, 1 � i � N . However, it
can be treated similarly without any difficulties when the subsystems
have different relative degrees.
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Step 0: Define

�i1 = zi1 � yi;r; �ei = 1 +

p

k=1

22k �
�1
i1 (2ri)

2k

�1=2

ei (12)

where��1i1 is the inverse function of�1i1 and is again a function of class
K1. Then, the dynamics of the tracking error is

_�i1 = ẑi2 � _yi;r + �i1 (y1; . . . ; yN ) + �i1 (y1; . . . ; yN )!(t)

+�i1 (�i; yi) + 1 +

p

k=1

22k �
�1
i1 (2ri)

2k

1=2

�ei2: (13)

Sincezi2 = ẑi2 + ei2, we have

_�ei =Ai�ei + 1+

p

k=1

22k �
�1
i1 (2ri)

2k

�1=2

� [�i (y1; . . . ; yN ) + �i (y1; . . . ; yN )!(t) + �i (�i; yi)]

� 1 +

p

k=1

22k �
�1
i1 (2ri)

2k

�1

�

p

k=1

22kk �
�1
i1 (2ri)

2k�1
:
@��1i1 (2ri)

@ri
2 _ri�ei: (14)

We propose the following virtual decentralized control law for (13):

ẑi2 =� �i1�i1 � (N + 1)p�i1

�
1

2
�i1

p

k=1

2k �
�1
i1 (2ri)

k

2

�
1

2
�i1 1 +

p

k=1

22k �
�1
i1 (2ri)

2k

� �̂i

p

k=1

22k�2k�1i1 + _yi;r

Mi1 �i1; �̂i; ri + _yi;r (15)

where�i1 > 0 is a design constant and̂�i is an adaptive gain used
to counter the effects of the interconnections between subsystems. We
present the following adaptive law for̂�i:

_̂
�i = �i

p

k=1

22k�2ki1 � �i�i�̂i �̂i (t0) > 0 (16)

where�i > 0, �i > 0 are design constants.

Sinceẑi2 is not the actual control, we define

�i2 = ẑi2 �Mi1 �i1; �̂i; ri � _yi;r: (17)

Thus

_�i1 =�i2 +Mi1 �i1; �̂i; ri + �i1 (y1; . . . ; yN ) + �i1 (�i; yi)

+ �i1 (y1; . . . ; yN )!(t)

+ 1 +

p

k=1

22k �
�1
i1 (2ri)

2k

1=2

�ei2: (18)

Choose the composite Lyapunov function candidate as follows:

V0 =

N

i=1

�eTi Pi�ei + �
2
i1 + ��1i �̂i � �

�

i

2

(19)

where��i is the desired value of̂�i. DifferentiatingV0 along the solu-
tions of (14), (16). and (18) yields (20), as shown at the bottom of the
page, where

dik =

N

l=1

kPlk
2

k

j=1

&
k
lji

2

vik =

N

l=1

kPlk
2

k

j=1

#
k
lji!max

2

!max =sup (j!(t)j) ; ��ik =

k

j=1

kPik
2 (�ijk)

2

d1ik =

N

j=1

&
k
j1i

2

�'ik =

k

j=1

kPik
2 ('ijk)

2
; ��i1 = max (�i1k; 1 � k � pi1)

v1ik =

N

j=1

#
k
j1i!max

2

; ��1ik = (�i1k)
2
; �'1ik = ('i1k)

2
:

Differentiating (17) gives (21), shown at the bottom of the next page.
Step m(1 � m � � � 2): Assume that in stepm � 1, we designed a
virtual controlMi;m and defined

�i;m+1 = ẑi;m+1

�Mi;m yi; ẑi1; . . . ; ẑi;m; �̂i; ri; yi;r; . . . ; y
(m)
i;r : (22)

_V0 �

N

i=1

� [�min (Qi)� 4] k�eik
2 +

p

k=1

22k dik + vik + �'ik

+ d1ik + v1ik + �'1ik k�i1k
2k + kyi;rk

2k +

p

k=1

��ik + ��2i1

+

p

k=1

(��ik + ��1ik) 2
2k

�
�1
i1 (2Di (t0; t))

2k

+ 2�i1�i2 � 2�i1�
2
i1

� 2��i

p

k=1

22k�2ki1 � �i �̂i � �
�

i

2

+ �i�
�2
i (20)
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Thus, (23), shown at the bottom of the next page, holds true, where
the definitions of
i;m+1 andHi;m+1 are similar to those of
i2 and
Hi2 given by (21), which are obtained by differentiatingMi;m and
ẑi;m+1 with respect tot. We choose the virtual control (24), shown at
the bottom of the page.

Sinceẑi;m+2 is not the actual control, we define

�i;m+2 = ẑi;m+2 �Mi;m+1

� yi; ẑi1; . . . ; ẑi;m+1; �̂i; ri; yi;r; . . . ; y
(m+1)
i;r : (25)

_�i2 =ẑi3 + ki2 (yi � ẑi1)�
@Mi1

@�i1
�i2 +Mi1 �i1; �̂i; ri

� �yi;r �
@Mi1

@�̂i

_̂
�i �

@Mi1

@ri
_ri

�

@Mi1

@�i1
�i1 (y1; . . . ; yN) + �i1 (y1; . . . ; yN )!(t)

+ �i1 (�i; yi) + 1 +

p

k=1

22k �
�1
i1 (2ri)

2k

1=2

�ei2

ẑi3 + 
i2 yi; ẑi1; ẑi2; �̂i; ri; yi;r; _yi;r; �yi;r

+Hi2 �i1; �̂i; ri �i1 (y1; . . . ; yN ) + �i1 (y1; . . . ; yN )!(t)

+ �i1 (�i; yi) + 1 +

p

k=1

22k �
�1
i1 (2ri)

2k

1=2

�ei2 : (21)

_�i;m+1 =ẑi;m+2 +
i;m+1 yi; ẑi1; . . . ; ẑi;m+1; �̂i; ri; yi;r; . . . ; y
(m+1)
i;r

+Hi;m+1 yi; ẑi1; . . . ; ẑi;m+1; �̂i; ri; yi;r; . . . ; y
(m+1)
i;r

�i1 (y1; y2; . . . ; yN ) + �i1 (y1; y2; . . . ; yN )!(t)

+ �i1 (�i; yi) + 1 +

p

k=1

22k �
�1
i1 (2ri)

2k
�ei2 (23)

ẑi;m+2 =� 
i;m+1 yi; ẑi1; . . . ; ẑi;m+1; �̂i; ri; yi;r; . . . ; y
(m+1)
i;r + �i;m

+ �i;m+1�i;m+1 +
1

2
�i;m+1

p

k=1

2k �
�1
i1 (2ri)

k

2

�H
2
i;m+1 yi; ẑi1; . . . ; ẑi;m+1; �̂i; ri; yi;r; . . . ; y

(m+1)
i;r

+ (p+ 1)�i;m+1H
2
i;m+1 yi; ẑi1; . . . ; ẑi;m+1; �̂i; ri; yi;r; . . . ; y

(m+1)
i;r

+
1

2
�i;m+1 1 +

p

k=1

22k �
�1
i1 (2ri)

2k

�H
2
i;m+1 yi; ẑi1; . . . ; ẑi;m+1; �̂i; ri; yi;r; . . . ; y

(m+1)
i;r

Mi;m+1 yi; ẑi1; . . . ; ẑi;m+1; �̂i; ri; yi;r; . . . ; y
(m+1)
i;r : (24)
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Choose the composite Lyapunov function candidate as follows:

Vm = Vm�1 +

N

i=1

�
2
i;m+1: (26)

Then, (27), shown at the bottom of the page, holds.
Step�� 1: Assume that in step�� 2, we designed a virtual control

Mi;��1 for subsystem(�ei; �i1; . . . ; �i;��1; �̂i) and defined

�i;� = ẑi;�

�Mi;��1 yi; ẑi1; . . . ; ẑi;��1; �̂i; ri; yi;r; . . . ; y
(��1)
i;r : (28)

Thus

_�i;� =bi;k ���i (yi)ui + ẑi;�+1

+ 
i;� yi; ẑi1; . . . ; ẑi;�; �̂i; ri; yi;r; . . . ; y
(�)
i;r

+Hi;� yi; ẑi1; . . . ; ẑi;�; �̂i; ri; yi;r; . . . ; y
(�)
i;r

� �i1 (y1; . . . ; yN ) + �i1 (�i; yi)

+ �i1 (y1; . . . ; yN )!(t)

+ 1 +

p

k=1

22k �
�1
i1 (2ri)

2k
�ei2 : (29)

We choose the composite Lyapunov function candidate as follows

V��1 = V��2 +

N

i=1

�
2
i;�: (30)

We have (31), shown at the bottom of the page, where(�) =

(yi; ẑi1; . . . ; ẑi;�; �̂i; ri; yi;r; . . . ; y
(�)
i;r ):

We propose the following decentralized robust adaptive control for
the ith subsystem:

ui =�
1

bi;k ���i (yi)

� �i;��1 + ẑi;�+1 +
i;�(�) + �i;��i;�

+ (p+ 1)�i;�H
2
i;�(�)

+
1

2
�i;�H

2
i;�(�) 1 +

p

k=1

22k �
�1
i1 (2ri)

2k

+
1

2
�i;�H

2
i;�(�)

p

k=1

2k �
�1
i1 (2ri)

k

2

: (32)

Theorem 3.1:Under Assumptions 1)–4), the decentralized adaptive
control (32) guarantees that all the signals in the closed-loop system

_Vm �

N

i=1

� [�min (Qi)� (m+ 4)] k�eik
2 � 2

m+1

j=1

�ij�
2
ij

� 2��i

p

k=1

22k�2ki1 � �i �̂i � �
�

i

2

+ 2�i;m+1�i;m+2

+

p

k=1

22k [dik + vik + �'ik + (m+ 1) (d1ik + v1ik + �'1ik)]

� k�i1k
2k + kyi;rk

2k +

p

k=1

��ik + (m+ 1)��2i1 + �i�
�2
i

+

p

k=1

22k [��ik + (m+ 1)��1ik] � �
�1
i1 (2Di (t0; t))

2k
: (27)

_V��1 �

N

i=1

� [�min (Qi)� (�+ 3)] k�eik
2 � 2

��1

j=1

�ij�
2
ij

� 2��i

p

k=1

22k�2ki1 � �i �̂i � �
�

i

2

+

p

k=1

22k [dik + vik + �'ik + � (d1ik + v1ik + �'1ik)] k�i1k
2k + kyi;rk

2k

+

p

k=1

��ik +

p

k=1

22k (��ik + ���1ik) �
�1
i1 (2Di (t0; t))

2k
+ (�� 1)��2i1

+ �i�
�2
i + 2�i;� f�i;��1 + bi;k ���i (yi)ui + ẑi;�+1 + 
i;�(�)g

+ 2(p+ 1)�2i;�H
2
i;�(�) + �

2
i;�H

2
i;�(�) 1 +

p

k=1

22k �
�1
i1 (2ri)

2k

+ 2��i1�i;�Hi;�(�)

p

k=1

2k �
�1
i1 (2ri)

k
(31)
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consisting of (1), (7), (10), and (16) are bounded in the presence of un-
modeled dynamics, high-order interconnections and bounded distur-
bances. Furthermore, by choosing the design constants�i, �ij(j =
0; 1; . . . ; �) and�i appropriately, the tracking error can be made ar-
bitrarily small regardless of the interconnections, disturbances and un-
modeled dynamics in the system.

Proof: Choose the desired value��i andQi satisfying

��i �
1

2
[dik + vik + �'ik

+� (d1ik + v1ik + �'1ik)] (33)

�min (Qi) �2�i0 + (�+ 3) (34)

where �i0 > 0 is a design constant. From (31)–(34),
we get (35), shown at the bottom of the page, where
�e = [�e1; . . . ; �eN ]T 2 Rn, n = N

i=1 ki; �̂ = [�̂1; . . . ; �̂N ]T ,
� = [�11; . . . ; �1;�; . . . ; �N1 . . . ; �N;�]

T :
SinceDi(t0; t) = 0;8t � t0 + T 0

i (see Lemma 1) and��1i1 is a
function of classK1, we have

p

k=1

22k (��ik + ���1ik) ��1i1 (2Di (t0; t))
2k

=0; 8t � t0 + T 0
i : (36)

Denote (37) and (38), shown at the bottom of the page. Notice that
sinceyi;r and��1i1 (2Di(t0; t)) are bounded,S is bounded. Thus

_V��1 �e; �; �̂ � ��V��1 �e; �; �̂ + S: (39)

Therefore, V��1(�e; �; �̂) decreases monotonically until(�e; �; �̂)
reaches the compact set

Rs = �e; �; �̂ 2 Rn �RN� �RN :

V��1 �e; �; �̂ � ��1S : (40)

This means that�e; �; �̂ are bounded, i.e.,�ei; �i1; . . . ; �i;�; �̂i; i =
1; . . . ; N , are bounded. Thus,zi1 is bounded. Although

_ri � 0;8t � t0, we can see from (10) that whenever_ri > 0,
we haveri < 1=�ci0[z

2
i1i0(z

2
i1) + di0]. Sincez2i1i0(z

2
i1) is bounded,

it follows that ri is bounded. The boundedness ofei follows from
that of �ei and ri. From (15), we can see thatMi1(�i1; �̂i; ri) is
bounded since�i1; �̂i; ri are bounded. Since�i2 is bounded, the
boundedness of̂zi2 is established from (17). Thus, by using (22)
iteratively, the boundedness ofẑi;m+1; 1 � m � � � 1, is followed
from the boundedness ofyi; ẑi1; . . . ; ẑi;m; �̂i; ri; yi;r; . . . ; y

(m)
i;r .

Consequently,zi1; . . . ; zi;� are bounded sinceei is bounded. In
addition, sinceyi is bounded and, according to Assumption 4), the
unmodeled dynamics_�i = qi(�i; yi) is exp-ISpS,�i is bounded.

Next, we prove thatzi;�+1; . . . ; zi;k are bounded. Let

wij = zij �
bi;k �j
bi;k ��

zi;� �+ 1 � j � ki: (41)

Then, we have

_wij =wi;j+1 �
bi;k �j
bi;k ��

wi;�+1

+ zi;�
bi;k �j�1
bi;k ��

�
bi;k �jbi;k ���1

b2i;k ��

+ �ij (y1; . . . ; yN )�
bi;k �j
bi;k ��

�i;� (y1; . . . ; yN )

+ �ij (y1; . . . ; yN )�
bi;k �j
bi;k ��

�i;� (y1; . . . ; yN ) !(t)

+ �ij (�i; yi)�
bi;k �j
bi;k ��

�i;� (�i; yi)

� + 1 �j � ki � 1; (42)

_wi;k =�
bi0

bi;k ��
wi;�+1 � zi;�

bi0bi;k ���1
b2i;k ��

+ �i;k (y1; . . . ; yN )�
bi0

bi;k ��
�i;� (y1; . . . ; yN )

+ �i;k (y1; . . . ; yN )�
bi0

bi;k ��
�i;� (y1; . . . ; yN ) !(t)

+ �i;k (�i; yi)�
bi0

bi;k ��
�i;� (�i; yi) : (43)

_V��1 �e; �; �̂ �

N

i=1

�2�i0 k�eik
2 � 2

�

j=1

�ij�
2
ij � �i �̂i � ��i

2

+

p

k=1

22k [dik + vik + �'ik + � (d1ik + v1ik + �'1ik)] kyi;rk
2k

+

p

k=1

��ik +

p

k=1

22k (��ik + ���1ik) ��1i1 (2Di (t0; t))
2k

+ ���2i1 + �i�
�2
i (35)

� = min
1�i�N

min 2�i0�
�1
min (Pi) ; 2�i1; . . . ; 2�i�;�i�i ; (37)

S =

N

i=1

p

k=1

22k [dik + vik + �'ik + � (d1ik + v1ik + �'1ik)] kyi;rk
2k

+

p

k=1

��ik +

p

k=1

22k (��ik + ���1ik) ��1i1 (2Di (t0; t))
2k

+ ���2i1 + �i�
�2
i : (38)
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Since�ij(y1; . . . ; yN ), �ij(y1; . . . ; yN ), �ij(�i; yi), zi;� and!(t)
are bounded and, according to Assumption 1), the zero dynamics of
system (1) is exponentially stable, it follows from (42) and (43) that
wi;�+1; . . . ; wi;k are bounded. Thus, from (41),zi;�+1; . . . ; zi;k are
bounded. Hence,̂zi;�+1; . . . ; ẑi;k are bounded sinceei is bounded.
The boundedness ofui is established by the fact thatẑi;�+1 is bounded
andbi;k ���i(yi) is bounded away from zero. Therefore, all the sig-
nals in the closed-loop system consisting of (1), (7), (10), and (16) are
bounded.

Furthermore, it can be seen from (37)–(40) that reducing�i and in-
creasing�ij(j = 0; 1; . . . ; �) and�i will reduce the residual error
bound��1S. This implies that by choosing the design constants�i,
�ij(j = 0; 1; . . . ; �) and�i appropriately, the tracking error can be
made arbitrarily small. This completes the proof of Theorem 3.1.

From the above design procedure and Theorem 3.1, we can see easily
that the proposed decentralized adaptive control scheme requires adap-
tation of only one scalar parameter for each subsystem and no controller
redesign is needed if subsystems are added online or taken offline as
long as the order of the interconnections of the appended system is less
or equal to that of the original system.

IV. A N ILLUSTRATION EXAMPLE

Consider an interconnected nonlinear system consisting of two sub-
systems

_�1 =� �1 + y21 + 0:5

_z11 =z12 + �11 (y1; y2) + �11 (y1; y2)!(t) + �11 (�1; y1)

_z12 =�12 (y1; y2) + �12 (y1; y2)!(t) + �12 (�1; y1) + u1

y1 =z11
_�2 =� �2 + y22 + 0:5

_z21 =z22 + �21 (y1; y2) + �21 (y1; y2)!(t) + �21 (�2; y2)

_z22 =�22 (y1; y2) + �22 (y1; y2)!(t) + �22 (�2; y2) + u2

y2 =z21 (44)

where�i; i = 1; 2 is the unmeasurable and unmodeled dynamics,
!(t) = sin2(t) is the unmeasurable disturbance and

�11 (y1; y2) =y
2

1 + y1y2; �11 (y1; y2) = y1 + y1y2

�11 (�1; y1) =2�21 ; �12 (y1; y2) = y22 + y1

�12 (y1; y2) =y2 + y1y2;�12 (�1; y1) = 3�21

�21 (y1; y2) =y
2

2 cos(t) + y1; �21 (y1; y2) = y2 + y1y2

�21 (�2; y2) =2�22 cos(t); �22 (y1; y2) = y21 + y2

�22 (y1; y2) =y
2

1 + y1y2;�22 (�2; y2) = 3�22 sin(t):

The objective is to design a decentralized robust adaptive output con-
troller for each subsystem such thaty1 tracksy1;r = sin(2t) andy2
tracksy2;r = cos(2t) and all the signals in the closed-loop system are
bounded.

In the design of the controllers, we assume that�ij(y1; y2),
�ij(y1; y2),�ij(�i; yi)(i; j = 1; 2) are unknown, but the upper bound
of their orders is known, i.e.,p = 2. The relative degrees of the tow
subsystems are�1 = �2 = � = 2.

First, we show that the unmodeled dynamics fulfils the Assumption
4). Let Vi(�i) = �2i . Then _Vi(�i) = �2�2i + 2�iy

2
i + �i. Using

[13, Lemma 3.2], we have2�iy2i + �i � (1=4"1)(2�i)
2 + "1y

4
i +

(1=4"2) + "2�
2
i . Taking"1 = 2:5; "2 = 0:4, we get2�iy2i + �i �

0:8�2i + 2:5 kyik4 + 0:625. Thus,Vi(�i) � �1:2�2i + 2:5 kyik4 +
0:625, i.e., the unmodeled dynamics is exp-ISpS withci0 = 1:2; di0 =

0:625; i(kzi1k) = 2:5z4i1 andi0(kzi1k) = 2:5z2i1. Taking �ci0 =
0:6 2 (0; ci0), we define the modified dynamic signal as follows:

_ri =
�0:6ri + 2:5z4i1 + 0:625 if mri � 0

0 if mri < 0

ri(0) =r
0

i > 0

wheremri = �0:6ri + 2:5z4i1 + 0:625. Take�i1(k�ik) = 0:8�2i �
Vi(�i), then��1i1 (2ri) = 2ri=0:8. Define the observer for theith
subsystem as follows:

_̂zi =
�3 1

�2 0
ẑi +

3

2
yi +

0

1
ui:

Applying the decentralized robust adaptive output control scheme
presented herein, we have

�i1 =zi1 � yi;r

Mi1 =� �i1�i1 � �̂i 4�i1 + 16�2i1

� 1

2
�i1

p
10ri + 10ri

2 � 6�i1

� 1

2
�i1 1 + 10ri + 100r2i

_̂
�i =�i 4�2i1 + 16�4i1 � �i�̂i ; �̂i(0) > 0

�i2 =ẑi2 �Mi1 � _yi;r


i2 =2(yi � ẑi1)� @Mi1

@�i1

(�i2 +Mi1)

� �yi;r � @Mi1

@�̂i

_̂
�i �

@Mi1

@ri
_ri

Hi2 =� @Mi1

@�i1

where

@Mi1

@�i1

=� �i1 � 6� �̂i (4 + 48�i1)� 1

2

p
10ri + 10ri

2

� 1

2
1 + 10ri + 100r2i

@Mi1

@�̂i
=� 4�i1 + 16�3i1

@Mi1

@ri
=� 1

2
�i1 10 + 200ri + 30

p
10ri

� 1

2
�i1(10 + 200ri):

The decentralized adaptive control for theith subsystem is

ui =� �i1 + �i2�i2 + 
i2 + 3�i2H
2

i2

+
1

2
�i2H

2

i2(1 + 10ri + 100r2i )

+
1

2
�i2H

2

i2(
p
10ri + 10ri)

2 ; i = 1; 2:

With the following choice of the initial conditions and design con-
stants:

�1(0) =0; z11(0) = 1; z12(0) = 0; ẑ11(0) = 0

ẑ12(0) =0; r1(0) = 0:1; �̂1(0) = 1

�2(0) =0; z21(0) = 2; z22(0) = 0

ẑ21(0) =0; ẑ22(0) = 0; r2(0) = 0:1

�̂2(0) =1;�1 = 1; �1 = 0:1

�11 =1; �12 = 1;�2 = 1; �2 = 0:1

�21 =1; �22 = 1 (45)
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(a)

(b)

Fig. 1. Simulation results with the control scheme of this work. (a) Tracking
error� . (b) Tracking error� .

we performed the simulation using MATLAB and obtained the
results shown in Fig. 1. It can be seen from Fig. 1 that the
decentralized controllers are robust to the unmodeled dynamics,
bounded disturbances and high order interconnections with good
tracking performance.

With the same initial conditions as in (45), we chose the design con-
stants as follows:

�1 =100; �1 = 0:001; �11 = 100; �12 = 100;�2 = 100

�2 =0:001; �21 = 100; �22 = 100 (46)

and obtained the simulation results shown in Fig. 2. The tracking errors
�11; �21 in Fig. 2(a) and (b) are much smaller than those in Fig. 1(a)
and (b). This demonstrates that by choosing the design constants�i,
�ij and�i appropriately, the tracking errors can be made arbitrarily
small.

Finally, to compare the decentralized robust adaptive output control
scheme presented in this work with that in [8], we applied the decen-
tralized adaptive output control scheme presented in [8] to system (44)
with the following initial conditions and design constants (using the

(a)

(b)

Fig. 2. Simulation results with the control scheme of this work by choosing
the design constants appropriately. (a) Tracking error� . (b) Tracking error
� .

same notations as in [8]):

�1(0) =0; z11(0) = 1; z12(0) = 0; ẑ11(0) = 0; ẑ12(0) = 0

�̂1(0) =1; �2(0) = 0; z21(0) = 2; z22(0) = 0; ẑ21(0) = 0

ẑ22(0) =0; �̂2(0) = 1; `1 = 1;�1 = 1; �1 = 0:1; �11 = 1

�12 =1; `2 = 1;�2 = 1; �2 = 0:1; �21 = 1; �22 = 1: (47)

The simulation results are shown in Fig. 3, from which we can see
that the tracking errors are unbounded and the decentralized adaptive
output control scheme presented in [8] is not robust to unmodeled dy-
namics.

V. CONCLUSION

A new decentralized robust adaptive control scheme is presented for
a class of large-scale nonlinear systems of the output feedback canon-
ical form. The scheme can be used in the systems with unmodeled dy-
namics, high order interconnections and bounded disturbances. Under
certain assumptions, it is shown that the scheme guarantees that all the
signals in the closed-loop system are bounded. By choosing the de-
sign constants appropriately, the tracking error can be made arbitrarily
small regardless of the interconnections, disturbances and unmodeled
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(a)

(b)

Fig. 3. Simulation results with the control scheme in [8]. (a) Tracking error
� . (b) Tracking error� .

dynamics in the system. As an extension of the work in [8] to the case
of unmodeled dynamics, the proposed decentralized adaptive control
scheme of this work retains all the advantages of the scheme in [8].
The effectiveness of the proposed scheme is demonstrated by simula-
tion results.

It should be pointed out that the unmodeled dynamics described in
this work do not depend on the outputs of other subsystems. For the
more general case where the unmodeled dynamics depends on the out-
puts of other subsystems, how to generate decentralized dynamic sig-
nals to dominate the unmodeled dynamics is a subject for further re-
search.
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