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Abstract

This paper addresses the problem of decentralized robust stabilization and control for a class of un-
certain Markov jump parameter systems. Control is via output feedback and knowledge of the discrete
Markov state. It is shown that the existence of a solution to a collection of mode-dependent coupled
algebraic Riccati equations and inequalities, which depend on certain additional parameters, is both
necessary and sufficient for the existence of a robust decentralized switching controller. A guaranteed
upper bound on robust performance is also given. To obtain a controller which satisfies this bound,
an optimization problem involving rank constrained linear matrix inequalities is introduced, and a nu-
merical approach for solving this problem is presented. To demonstrate the efficacy of the proposed
approach, an example stabilization problem for a power system comprising three generators and one
on-load tap changing transformer is considered.

1 Introduction

Over the past three decades, there has been extensive interest in the analysis and design of decentralized
control for large-scale systems made up of spatially interconnected components. Although centralized
controllers for such systems can often be designed using standard control design techniques, in general,
centralized control algorithms require a higher level of connectivity and higher communication costs com-
pared to decentralized schemes. Hence, much effort has been focused on the application of decentralized
control in such distributed systems, see Sandell, Varaya, Athans, & Safonov (1978); Siljak (1991) and the
references therein.

The problem addressed in this paper is that of robust output feedback control design for an intercon-
nected system subject to uncertain disturbances and random changes in its parameters. Random parameter
changes may result from random component failures, repairs or shut down, or abrupt changes of the oper-
ating point. Many such events can be modeled using a continuous time finite-state Markov chain, which
leads to the hybrid description of system dynamics known as a Markov Jump Parameter (MJP) system
(Mariton, 1990); such a description will be utilized in the paper. The state of an MJP system is described
by continuous range variables and also a random discrete event variable representing the regime of system
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operation. In this paper we assume that the latter variable is independent of continuous dynamics and is
available for measurement. There are numerous applications in which such an assumption is valid. For
instance, a number of power systems control problems fall in this category (Willsky & Levy, 1979); be-
low we present two such example problems to illustrate this issue. Mariton (1990) discusses several other
applications in which the state of the underlying jump process can be observed. This perfect observation
assumption is crucial from the analysis viewpoint (Ji & Chizeck, 1992), and allows one to avoid much
more difficult ‘dual control’ problems (Caines & Chen, 1985; Griffiths & Loparo, 1985). In practice the
resulting controller must be implemented together with sensors measuring mode conditions.

Example 1. Power system control under varying load. In power systems, the selection of generator
set-points is based on off-line analysis including load forecasting. Currents and voltages at generator buses
are constantly monitored, and the load level is computed on a routine basis. On-line sensors then identify
a particular set-point for each unit and choose an appropriate controller for that set-point (Qiu, Vittal, &
Khammash, 2004). Following Willsky & Levy (1979), dynamics of load profile switching can be modeled
using a Markov chain; see Ugrinovskii & Pota (2005). On the other hand, dynamics of the generators are
described by differential equations involving generator rotor angles and frequencies. While the frequency
is constantly monitored, being a crucial variable, it is usually difficult to measure generator rotor angles
directly. Practical difficulties of direct state measurement necessitate the use of output feedback control to
regulate transients caused by changing load demands. In Section 7 we give an example to illustrate this
problem.

Example 2. Power system control under transmission line tripping and reclosing. Events such as
faults in power transmission tie-lines are also closely monitored. Power systems usually operate within
safety limits which prevent overloads, however transmission faults may occur as a result of wear, or may
be caused by environmental factors. The event sequence starts with the system operating under normal
conditions (mode 1). A fault occurring at a random time instant in one of the tie-lines causes protective
relays to disconnect the faulty circuit, and the system switches to mode 2. After the fault is cleared,
the circuit is reconnected and the system returns to mode 1. In this example, mode switching is driven
by random tie-line failures and does not directly depend on the underlying continuous variables of the
generators. The mode information is obtained by monitoring the voltage and current at the buses and from
the protective relay settings, and can be used in the switching control design (Ramos, Li, Ugrinovskii, &
Pota, 2006).

Robust control of continuous-time systems with random parameter changes modeled as MJPs has
attracted much attention in the past decade; see de Souza & Fragoso (1993); Pan & Başar (1995); de Farias,
Geromel, do Val, & Costa (2000) and the references therein. Problems of robust decentralized stabilization
of uncertain MJP systems were also studied, e.g., see Pakshin (2003). This paper focuses on the problem
of absolute decentralized stabilization and robust control of large-scale MJP systems via output feedback.
Similar to Ugrinovskii & Pota (2005), we employ time-domain Integral Quadratic Constraints (IQCs,
Yakubovich (1988)) to describe the size of internal perturbations within each subsystem of the large-scale
system. Interactions between subsystems are also treated as uncertain perturbations; these interactions
are also described in terms of IQCs. We refer to Ugrinovskii, Petersen, Savkin, & Ugrinovskaya (2000);
Ugrinovskii & Pota (2005) where the IQC uncertainty description was discussed in the context of large-
scale systems and MJP systems, respectively. Importantly, this uncertainty description allowed to establish
an equivalence between the robust control problem considered in those papers and a parameterized family
of H∞ control problems for individual subsystems of a system. A special lossless extension of the S-
procedure suitable for the analysis of MJP systems was derived in Ugrinovskii & Pota (2005) to establish
that result and will also be used in deriving the results of this paper.

This paper considers uncertain interconnected systems and presents a necessary and sufficient condition
for the existence of a robust decentralized switching output feedback controller, extending the state feed-
back design proposed in Ugrinovskii & Pota (2005). This result involves a collection of mode-dependent
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coupled algebraic Riccati equations and inequalities which depend on certain additional parameters and are
related to those for the corresponding H∞ control problem (Pan & Başar, 1995). An important difference
arising from the output feedback formulation is that, using our method, only a suboptimal upper bound
on the worst-case output feedback performance can be guaranteed while the state feedback control design
proposed in Ugrinovskii & Pota (2005) is minimax optimal given an initial condition. Our result reduces
the design of a suboptimal guaranteed cost controller to solving an optimization problem involving rank
constrained linear matrix inequalities (rank constrained LMIs). This enables the possibility of solving the
problem numerically. In the full state information case, the rank constraints do not arise, and the problem
can be shown to be reducible to a convex optimization problem.

Rank constrained LMIs are an important generalization of standard LMIs. Many control problems
that cannot be formulated in the standard LMI framework can be formulated as problems involving rank
constrained LMIs, see Orsi, Helmke, & Moore (2006) and the references therein. Problems involving rank
constrained LMIs are in general nonconvex and there currently does not exist a polynomial time algorithm
that is able to correctly solve all instances of such problems. Despite this, some of the currently available
algorithms can perform well in practice even though they do not guarantee that a solution can always be
found. For the example problem discussed in Section 7, the recently developed rank constrained LMI
solver LMIRank (Orsi, 2005) is used with good results. Our rank constrained LMI optimization problem
arises from a full order dynamic output feedback control problem, and the rank constraints are imposed
on auxiliary Lagrange multipliers which parameterize the associated family of H∞ control problems. If
the multipliers are held constant, then our problem is convex in the remaining variables. Similar rank
constraints on scaling parameters also arise in the scaled µ-synthesis problem (El Ghaoui & Gahinet, 1993).
In contrast, many rank constrained LMI problems are associated with reduced order control design (e.g.,
see El Ghaoui & Gahinet (1993)), and the rank constraints are imposed on Lyapunov variables.

The organization of this paper is as follows. In Section 2 we describe the system model and introduce
admissible uncertainties. Section 3 shows the equivalence of the robust control problem under considera-
tion and the solvability of the parameterized family of Riccati equations and inequalities. Also in Section 3
we give a performance bound associated with the proposed decentralized control scheme. The proofs of
these results are given in Section 4. Next, the problem of optimizing the performance bound is formulated
as an optimization problem involving rank constrained LMIs, and a numerical approach for solving this
problem is presented in Section 5. In Section 6, the results of Section 3 are extended to guarantee robust
asymptotic stability for every mode. We illustrate the method by an example presented in Section 7.

The following notation will be used throughout this paper. Rm, Rm×n denote the sets of real m× 1
vectors and m× n matrices. The transpose of a real matrix M is denoted as M ′. For y ∈ Rm and M ∈
Rm×m, ‖y‖2 = y′y, and tr(M) is the trace of M. We use diag{Mi}N

i=1 = diag[M1, · · · ,MN ] to denote a
block diagonal matrix with matrices M1, · · · ,MN on its main diagonal, and {τi, θi}N

i=1 to denote the vector
(τ1,θ1, · · · ,τN ,θN)′ ∈ R2N . E , E [·|·] stand for expectation and conditional expectation with respect to the
underlying probability measure. Given a continuous time finite state Markov process η(t), t ≥ 0, and its
natural filtration, we let L2[0,∞) denote the Lebesgue space of square integrable random processes adapted
to this filtration; this space is equipped with the norm ‖y(·)‖2

2 = E
R +∞

0 ‖y(t)‖2dt.
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Figure 1: The large-scale uncertain system S . Only two of the N subsystems are shown.

2 Problem Formulation

2.1 System model

We consider a large-scale system S comprising N subsystems Si of the following form:

Si :























ẋi = Ai(η(t))xi(t)+Bi(η(t))ui(t)
+Ei(η(t))ξi(t)+Li(η(t))ri(t),

zi = Ci(η(t))xi(t)+Di(η(t))ui(t),
ζi = Hi(η(t))xi(t)+Gi(η(t))ui(t),
yi = Σi(η(t))xi(t)+Γi(η(t))ξi(t),

(1)

where xi ∈ Rni is the state, ui ∈ Rmi is the control input, ξi ∈ Rpi is the perturbation, ζi ∈ Rhi is the uncer-
tainty output, zi ∈ Rqi is the controlled output, yi ∈ Rgi is the measured output, the input ri describes the
effect of the other subsystems S1, . . . ,Si−1,Si+1, . . . ,SN on subsystem Si, and η(t) describes the mechanism
of mode switching. The structure of the system S is shown in Figure 1.

It is assumed that η(t) is a homogeneous stationary Markov chain defined on a complete probability
space (Ω,F ,P ) and taking values in a finite set K = {1,2, · · · ,k}. Its state transition probability matrix
P(t) = [P{η(t + s) = µ|η(s) = ν}]kν,µ=1 is independent of s ≥ 0 and under mild conditions is known to
have the form P(t) = eQt , where Q , [qνµ]

k
ν,µ=1 is a matrix in which qνµ ≥ 0,ν 6= µ, and qνν =−∑µ6=ν qνµ.

Furthermore, this process will be assumed to have properties that warrant the existence of a semigroup
of measure-preserving one-to-one point or set transformations ϒt : Ω → Ω such that for all t,s ≥ 0,η(t +
s,ω) = η(t,ϒsω) a.s. (Doob, 1953). The stationary initial distribution π = [π1, · · · ,πk] of the process η(t)
will be assumed to be positive, i.e., π j > 0,∀ j ∈ K.

The assumptions which ensure the above mentioned structure of the state-transition matrix P are stan-
dard in the theory of MJP systems; e.g., see Mariton (1990). The additional technical assumption of the
existence of a semigroup of measure-preserving transformations will allow us to employ the stochastic
S-procedure result of Ugrinovskii & Pota (2005). Such a semigroup exists if the process η(t) is strictly sta-
tionary, and π j > 0,∀ j ∈K, as assumed above (Doob, 1953). Note that the assumption about the existence
of such a semigroup is used only in the proof of the necessity part of Theorem 12. For the ‘if’ claim to be
true, weaker properties of η(t) may be sufficient, for instance, π j ≥ 0,∀ j ∈ K.
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In practical applications, systems of the form (1) arise from linearizing a nonlinear plant about several
operating points. The resulting model allows for handling small disturbances caused by perturbations about
operating points via local controllers, while large disturbances caused by the system transitions from one
operating point to another are regarded as mode changes and are handled by controller switching.

The derivation of the proposed robust control algorithm requires a number of standard technical as-
sumptions about the system S . These assumptions will allow us to use the existing results on stochastic
H∞ control of MJP systems in our problem; in fact, some of the assumptions presented below are due to
Pan & Başar (1995). Assumption 3 is a basic assumption stating that the system S is well defined on each
finite time interval [0,T ]. Assumptions 4-6 state basic controllability and observability properties of the
uncertain system S ; they will be used to prove the results involving coupled Riccati equations and inequal-
ities; see Theorem 12. Such assumptions are often used in the Riccati approach to robust control design,
cf. Başar & Bernhard (1995); they allow one to infer from the robust stabilizability of the system that
the corresponding Riccati equations have stabilizing solutions. The assumptions below must hold for each
subsystem Si, i = 1, · · · ,N, and each state j ∈ K of the process η(t).

Assumption 3. Given any locally square integrable triple of signals (u i(·),ri(·),ξi(·)), for any initial
condition xi(0) = xi0, η(0) = η0, the solution to each subsystem equation exists on any finite time interval
[0,T ] and is locally square integrable; i.e. E

[

R T
0 ‖xi(·)‖2dt|xi0,η0

]

< ∞.

Assumption 4. D′
i( j)Di( j)+G′

i( j)Gi( j)>0, Γi( j)Γ′
i( j)>0.

Assumption 5. Each pair (Ai( j),C′
i( j)Ci( j)) is observable.

Assumption 6. Each subsystem Si is stochastically stabilizable via input ui (cf. Ji & Chizeck (1990)). That
is, there exists a linear state-feedback control law u = K̄i(η(t))x and a symmetric positive definite matrix
M̄i such that solutions of the system

ẋi = [Ai(η(t))+Bi(η(t))K̄i(η(t))]xi(t)

with xi(0) = xi0,η(0) = η0 satisfy the condition

lim
T→∞

E
[

Z T

0
‖xi(t)‖2dt|xi0,η0

]

≤ x′i0M̄ixi0. (2)

Remark 7. The notion of stochastic stabilizability is equivalent to that of mean square (MS) stabilizability
which requires that for all xi0 and η0, E

[

‖xi(t)‖2|xi0,η0
]

→ 0 as t → ∞ (Feng, Loparo, Ji, & Chizeck,
1992). Also, since π j > 0 for all j ∈ K, (2) is equivalent to the condition ‖x(·)‖2

2 ≤ x′i0M̄ixi0 ∀xi0. An LMI
condition to check Assumption 6 can be found in Ait Rami & El Ghaoui (1996).

In addition to these assumptions, it will be convenient to assume that C ′
i( j)Di( j) = 0, H ′

i ( j)Gi( j) = 0,
Ei( j)Γ′

i( j) = 0. It is well known that these conditions can be easily met using an appropriate transformation
of variables (Başar & Bernhard, 1995). Also, we will assume that [Ei( j) Li( j)] 6= 0. This means that the
system S does not contain perfectly known subsystems which are disconnected from the rest of the system.
This assumption is not restrictive, since if such a subsystem exists, it can be dealt with independently.

2.2 Feasible uncertainties

We now present mathematical descriptions of the feasible uncertain perturbations for the large-scale system
S . In each subsystem Si, see (1), the signal ξi(·) accounts for the presence of uncertain dynamics which
are driven by the uncertainty output ζi(·) generated within the subsystem; see Figure 1. Hence we refer to
ξi(·) as the local uncertainty for the subsystem Si. Also each subsystem Si is driven by the interconnection
signal ri(·). Since each ri(·) is generated by uncertain subsystems other than Si, the interconnections
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can also be regarded as uncertain perturbations acting on Si whose effect is additional to that of local
disturbances. We refer to the ri(·)’s as interconnection uncertainties. Treating system interconnections
as uncertainties has been quite common (Siljak, 1991). This approach presumes that for the derivation
of a decentralized controller, the unperturbed nominal design system can be partitioned into uncoupled
subsystems, and interconnections present in the true system are accounted for through the requirement that
the controller must provide a sufficient ‘interconnection attenuation’ for the overall closed-loop system
to retain stability and acceptable performance. The introduction of the jump variable provides an extra
‘degree of freedom’ to allow one to consider systems in which unperturbed regimes vary.

As mentioned we assume that both local uncertainties and interconnections of the large-scale system S
are represented by input signals satisfying certain IQCs. The definitions below follow Ugrinovskii & Pota
(2005). They employ two sets of symmetric matrices, Mi > 0,M̂i > 0, i = 1, · · · ,N.

Definition 8. A collection of uncertainty inputs ξi(·), i = 1, · · · ,N, represents an admissible uncertainty
for the large-scale system S if, given any locally square integrable control inputs u i(·) and locally square
integrable interconnection inputs ri(·), i = 1, · · · ,N, there exists a sequence {tl}+∞

l=1, tl → +∞, such that for
all i = 1, · · · ,N,

E
Z tl

0
(‖ζi(t)‖2 −‖ξi(t)‖2)dt ≥−x′i0Mixi0. (3)

The set of all such admissible uncertainties is denoted by Ξ.

Definition 9. The large-scale system S is said to have admissible interconnections if, given any locally
square integrable control inputs ui(·) and locally square integrable uncertainty inputs ξi(·), i = 1, · · · ,N,
there exists a sequence {tl}+∞

l=1, tl → +∞, such that

E
Z tl

0

(

N

∑
n=1,n6=i

‖ζn(t)‖2 −‖ri(t)‖2

)

dt ≥−x′i0M̂ixi0 (4)

for all i = 1, · · · ,N. The corresponding collection of interconnection inputs r i(·), i = 1, · · · ,N, is called an
admissible interconnection, and the set of such admissible interconnections is denoted by Π.

Without loss of generality, we assume the same sequences of {tl}+∞
l=1 in Definitions 8 and 9 whenever

they correspond to the same collection of signals ξi(·),ri(·),ζi(·). These definitions capture a broad class
of uncertainties arising from unknown nonlinearities or unmodeled dynamics (Petersen, Ugrinovskii, &
Savkin, 2000). They also allow to account for effects of non-zero initial conditions of uncertain dynamics
as well as noises and delays in the local uncertainty channels and interconnections. The terms on the right
hand sides of the IQCs (3) and (4) correspond to bounds on these effects. We follow Savkin & Petersen
(1995) and write those bounds as quadratic forms x′i0Mixi0, x′i0M̂ixi0; more generally, these bounds can be
expressed as some constants (Petersen et al., 2000). Allowing for a wider class of uncertainties which
satisfy the IQCs makes it possible to apply the S-procedure for MJP systems (Ugrinovskii & Pota, 2005)
to establish the equivalence between our robust control problem and a set of parameterized H∞ control
problems for each subsystem Si. As illustrated below, the norm bounded uncertainty is a special case of
the IQC uncertainty model.

Example 10. (cf. Petersen & McFarlane (1994); Wang, Xie, & de Souza (1995).) Consider the determin-
istic uncertain system consisting of N subsystems

ẋi = (Ai +∆Ai)xi +(Bi +∆Bi)ui + ∑
j 6=i

(Ai jx j +Bi ju j); (5)

the parametric uncertainties ∆Ai,∆Bi and the interconnections are defined using some known matrices
Ei,Li,Hi,Gi and uncertain parameter matrices ∆i(t), ∆̂i j(t) as follows

[∆Ai ∆Bi] = Ei∆i(t)[Hi Gi], [Ai j Bi j] = Li∆̂i j(t)[H j G j],

∆′
i(t)∆i(t) ≤ I, ∑ j 6=i ∆̂i j(t)∆̂′

i j(t) ≤ I.
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Then, by defining the interconnection inputs and outputs as

ζi = Hixi +Giui, ξi = ∆i(t)ζi, ri = ∑
j 6=i

∆̂i j(t)ζ j,

each subsystem (5) can be written as a single-mode subsystem Si of the form (1) subject to the constraints

‖ξi(t)‖2 ≤ ‖ζi(t)‖2, ‖ri(t)‖2 ≤ ∑
j 6=i

‖ζ j(t)‖2.

The IQCs (3) and (4) are then satisfied with any Mi,M̂i > 0.

2.3 Absolute stabilization via decentralized control

For the uncertain large-scale system S comprising subsystems Si of the form (1) and subject to the con-
straints (3) and (4), we consider the following problem of absolute stabilization by means of decentralized
linear output feedback controllers of the form

ẋc,i(t) = Ac,i(η(t))xc,i(t)+Bc,i(η(t))yi(t),

ui(t) = Kc,i(η(t))xc,i(t), (6)

where xc,i ∈ Rnc,i is the ith controller state vector.

Definition 11. The MJP large-scale system S subject to perturbations and interconnections satisfying the
constraints (3) and (4) is said to be absolutely stabilizable via decentralized output feedback control if there
exists a collection of controllers of the form (6) and a constant c1 > 0 such that for any initial conditions
[x′i(0),x′c,i(0)]′, any admissible local uncertainty inputs ξi(·) and any admissible interconnection inputs
ri(·), the signals xi, xc,i, ui, ξi, ri belong to L2[0,+∞) and are uniformly bounded,

N

∑
i=1

(‖xi(·)‖2
2 +‖xc,i(·)‖2

2 +‖ui(·)‖2
2 +‖ξi(·)‖2

2 +‖ri(·)‖2
2)

≤ c1
N
∑

i=1
(‖xi(0)‖2 +‖xc,i(0)‖2). (7)

The stability property (7) provides a bound on the norm of closed-loop system transients, which is
uniform with respect to admissible uncertainties and interconnections. This justifies referring to it as an
absolute stability property.

One approach to achieve robust stabilization is to seek a controller of the form (6) which achieves a
bounded system performance measured in terms of the ‘worst-case’ quadratic performance cost

Jwc(u) , sup
Ξ,Π

N

∑
i=1

‖zi‖2
2, (8)

where Ξ and Π are the sets defined in Definitions 8 and 9. It is often possible to show that this controller
is also absolutely stabilizing in the sense of Definition 11; we refer to Petersen et al. (2000) for extensive
coverage on this approach to robust stabilization. We note that in some problems, given a set U of allow-
able controllers, it is possible to find a controller which attains an optimal worst-case system performance
infU Jwc(u). For other problems, such as the one considered in this paper, it is only possible to obtain a con-
troller of the form (6) guaranteeing a bound on infU Jwc(u). In the next section, we present a necessary and
sufficient condition for the existence of an absolutely stabilizing controller and discuss robust performance
of such controllers.
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3 Necessary and sufficient conditions for absolute stabilizability and a sub-
optimal control design

Let τi > 0, θi > 0, i = 1, · · · ,N, be given constants, and θ̄i = ∑N
n=1,n6=i θn. We consider a collection of

coupled generalized algebraic Riccati equations (GAREs) and generalized algebraic Riccati inequalities
(GARIs) for j = 1, · · · ,k:

A′
i( j)Xi( j)+Xi( j)Ai( j)+

k

∑
ν=1

q jνXi(ν)+C̄′
i( j)C̄i( j)

−Xi( j)[Bi( j)R−1
i ( j)B′

i( j)− B̄2,i( j)B̄′
2,i( j)]Xi( j) = 0, (9)

A′
i( j)Yi( j)+Yi( j)Ai( j)+Yi( j)B̄2,i( j)B̄′

2,i( j)Yi( j)

−[Σ′
i( j)W−1

i ( j)Σi( j)−C̄′
i( j)C̄i( j)]+

k

∑
ν=1

q jνYi(ν) < 0, (10)

where Ri( j) = D̄′
i( j)D̄i( j), Wi( j) = Γ̄i( j)Γ̄′

i( j) are positive definite matrices, as guaranteed by Assumption
4, and

C̄i( j) =

[

Ci( j)
√

τi + θ̄iHi( j)

]

, D̄i( j) =

[

Di( j)
√

τi + θ̄iGi( j)

]

,

B̄2,i( j) = [τ−
1
2

i Ei( j),θ− 1
2

i Li( j)], Γ̄i( j) = [τ−
1
2

i Γi( j),0]. (11)

Associated with (9) and (10) is a collection of decentralized dynamic output feedback controllers of the
form (6) in which

Kc,i( j) = −R−1
i ( j)B′

i( j)Xi( j),

Bc,i( j) = [Yi( j)−Xi( j)]−1Σ′
i( j)W−1

i ( j), (12)

Ac,i( j) = Ai( j)−Bc,i( j)Σi( j)+Bi( j)Kc,i( j)

+B̄2,i( j)B̄′
2,i( j)Xi( j).

The following set will play an important role in the control design; see Theorems 12 and 13 given below:

T =
{

{τi,θi}N
i=1 ∈ R2N ,τi > 0,θi > 0 : the GAREs (9)

admit minimal positive definite solutions Xi( j), j ∈ K,

and the GARIs (10) admit solutions Yi( j) > 0, j ∈ K,

such that Yi( j) > Xi( j) ∀ j ∈ K
}

.

Note that the matrices Xi( j), Yi( j) defined above depend on the chosen {τi, θi}N
i=1 ∈ T . This dependence

is assumed throughout the paper. It allows us to define, using the solutions of the GAREs (9), the following
function on the set T :

J(τ,θ) ,
N

∑
i=1

x′i0Ψi(Xi,τi,θi)xi0, (13)

Ψi(Zi,τi,θi) ,
k

∑
j=1

π jZi( j)+ τiMi +θiM̂i, Zi( j) ∈ Rni×ni .

Now we are in a position to state the main results of this section. Theorem 12 presents a necessary
and sufficient condition for the uncertain interconnected system S to be absolutely stabilizable by a de-
centralized controller (6). Theorem 13 characterizes guaranteed robust performance achievable by such a
controller. Proofs of these theorems are given in the next section.
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Theorem 12. Consider the large-scale system S in which the uncertainties and interconnections satisfy the
constraints (3) and (4). This system is absolutely stabilizable via a decentralized dynamic output feedback
control of the form (6) if and only if the set T is non-empty.

Theorem 13. Given a vector of initial conditions xi(0) = xi0, consider the set U of decentralized con-
trollers (6). Suppose the set T is not empty and {τ∗i ,θ∗i }N

i=1 ∈ T attains the infimum infT J(τ,θ). Then a
decentralized controller u∗ whose worst-case performance (8) satisfies the upper bound

Jwc(u∗) ≤ J(τ∗,θ∗) = inf
T

J(τ,θ) (14)

is given by (6), (12) in which τi = τ∗i ,θi = θ∗i , i = 1, · · · ,N, with the initial condition xc,i(0) = xi(0). Conse-
quently, the optimal worst-case closed-loop system performance achievable via decentralized controllers
of the class U is upper-bounded as follows,

inf
U

Jwc(u) ≤ inf
T

J(τ,θ). (15)

To achieve the claimed bound on optimal worst-case performance, the optimization problem defined
on the right-hand side of (15) must be solved, which requires knowledge of the plant initial states x i(0).
In practice, however, the initial state of the plant may not be known. It is possible to avoid using x i(0) in
this optimization problem. One possibility is to assume that xi(0) is a zero mean Gaussian random variable
with unity covariance, and to minimize the expectation of J(τ,θ) taken with respect to this random variable,
which is given by ∑N

i=1 tr[Ψi(Xi,τi,θi)]; cf. Petersen & McFarlane (1994). Another idea is to minimize the
sum of the largest eigenvalues of Ψi(Xi,τi,θi), or a scaled sum thereof. These approaches will lead to
suboptimal guaranteed cost controllers independent of the precise values of x i(0).

The controller in Theorem 13 is initialized by setting xc,i(0) = xi(0). This also can be avoided. As will
be seen from the proof of this theorem, when xi(0) are not known we can let xc,i(0) = 0. This will yield a
controller with a higher bound on the system performance given by

inf
T

N

∑
i=1

x′i0Ψi(Yi,τi,θi)xi0.

We conclude the section by noting that in the state feedback case (Ugrinovskii & Pota, 2005), the
corresponding controller u∗ was shown to be minimax optimal, i.e., (14) and (15) were exact identities.
In the output feedback case, Theorem 13 only guarantees a suboptimal upper bound on the worst-case
performance.

4 Proofs of Theorems 12 and 13

The proofs presented in this section use a novel technique based on the results of Li & Ugrinovskii (2006).

4.1 Proof of the ‘only if’ part of Theorem 12: the necessary condition for absolute stabi-
lizability

Suppose the given uncertain MJP large-scale system S is absolutely stabilizable via decentralized output
feedback control. Then we conclude from (7) that there exists a decentralized controller of the form (6)
and a finite constant c > 0 such that

Jwc(u) < c. (16)

We wish to infer from this condition that the set T is not empty. The proof of this statement will proceed as
follows. First, using the S-procedure result of Ugrinovskii & Pota (2005), we will show that the condition
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(16) implies the solvability of a certain family of scaled jump-parameter H∞ control problems. Each
problem is formulated for a subsystem of an uncertain system corresponding to a scaled version of the
system (1), and involves some scaling parameters τi, θi. The next step will be to use the existing results on
the H∞ control of MJP systems to establish that the vector of scaling parameters {τ i,θi}N

i=1 belongs to the
set T .

For an arbitrary pair of elements of Ξ and Π, let us write the corresponding closed loop system in the
form

˙̄xi(t) = Āi(η(t))x̄i(t)+ B̃2,i(η(t))wi(t) (17)

where

Āi( j) =

[

Ai( j) Bi( j)Kc,i( j)
Bc,i( j)Σi( j) Ac,i( j)

]

, B̃2,i( j) =

[

Ei( j) Li( j)
Bc,i( j)Γi( j) 0

]

,

x̄i(t) = [x′i(t) x′c,i(t)]
′, wi(t) = [ξ′i(t) r′i(t)]

′, w = [w′
1, · · · ,w′

N ]′.

(18)

In view of (16), one can choose a sufficiently small constant ε > 0 such that

(1+ ε)E
Z +∞

0

N

∑
i=1

‖zi‖2dt < c− ε.

Define the quadratic functionals

G0(w) = (1+ ε)E
Z +∞

0

N

∑
i=1

‖zi‖2dt − c+ ε,

Gi,1(w) = E
Z +∞

0
(‖ζi(t)‖2 −‖ξi(t)‖2)dt + x′i0Mixi0,

Gi,2(w) = E
Z +∞

0







N

∑
n=1
n6=i

‖ζn(t)‖2 −‖ri(t)‖2






dt + x′i0M̂ixi0.

Now consider a set of inputs w ∈ L2[0,+∞) for which

Gi,1(w) ≥ 0, Gi,2(w) ≥ 0. (19)

Condition (19) implies that each such input satisfies the constraints (3) and (4) with t l = +∞. Therefore,
in view of the assumption that the chosen decentralized controller guarantees the satisfaction of condition
(16), inequality (19) implies that G0(w) < 0. Furthermore, since Mi > 0,M̂i > 0, one can choose an input
w to satisfy condition (ii) of Lemma 2 of Ugrinovskii & Pota (2005). According to the S-procedure result
given by Lemma 2 of Ugrinovskii & Pota (2005), these facts imply that one can find constants τ i ≥ 0,
θi ≥ 0, i = 1, · · · ,N, such that

G0(w)+
N

∑
i=1

(τiGi,1(w)+θiGi,2(w)) ≤ 0

for any input w ∈ L2[0,+∞). Using the notation I(w) = E
R +∞

0 ∑N
i=1 ‖zi‖2dt , this conclusion can be written

as follows:

I(w)+ E
Z +∞

0

[(

N

∑
i=1

(τi + θ̄i)‖ζi‖2

)

−‖w̄‖2

]

dt ≤−εI(w)+ c− ε−
N

∑
i=1

x′i0(τiMi +θiM̂i)xi0, (20)

w̄i =
[

τ1/2
i ξ′i(t) θ1/2

i r′i(t)
]′

, w̄ = [w̄′
1, · · · , w̄′

N ]′.
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Furthermore, it can be shown that condition (20) implies that τi > 0,θi > 0. The proof of this fact follows
the lines proving Proposition 2 and 3 of Section 5.3 of Petersen et al. (2000); also, see the original paper
Savkin & Petersen (1995). We also note that in the case of zero initial conditions, x i(0) = 0,xc,i(0) = 0,
(20) implies

I(w)+ E
Z +∞

0

[(

N

∑
i=1

(τi + θ̄i)‖ζi‖2

)

−‖w̄‖2

]

dt ≤−εI(w) ∀w ∈ L2[0,+∞); (21)

see Proposition 2 of Section 5.3 of Petersen et al. (2000) and Savkin & Petersen (1995). Condition (21)
implies that the closed loop augmented MJP system corresponding to the chosen controller (6),

˙̄x(t) = Ā(η(t))x̄(t)+ B̄2(η(t))w̄(t), (22)

z̄(t) = C̄(η(t))x̄(t),

Ā( j) = diag
{

Āi( j)
}N

i=1 , x̄ = [x̄′1, · · · , x̄′N ]′,

B̄2( j) = diag
{[

B̄2,i( j)
Bc,i( j)Γ̄i( j)

]}N

i=1
,

C̄( j) = diag
{

[C̄i( j) D̄i( j)Kc,i( j)]
}N

i=1 , j ∈ K,

satisfies the following H∞-type condition:

sup
w̄6≡0

w̄∈L2[0,+∞)

E
R +∞

0 ‖z̄‖2dt
E

R +∞
0 ‖w̄‖2dt

< 1. (23)

Here, z̄ is the output of the system (22) corresponding to the initial condition x̄(0) = 0 and a random η(0)
distributed according to the probability distribution π.

Condition (23) implies that for each i = 1, · · · ,N,

‖Tz̄iw̄i‖∞ , sup
x̄i(0)=0,w̄i 6≡0
w̄i∈L2[0,+∞)

‖z̄i(·)‖2
2

‖w̄i(·)‖2
2

< 1, (24)

where w̄i is the disturbance input of the closed loop subsystem consisting of the open loop subsystem

ẋi(t) = Ai(η(t))xi(t)+Bi(η(t))ui(t)+ B̄2,i(η(t))w̄i(t), (25)

z̄i(t) = C̄i(η(t))xi(t)+ D̄i(η(t))ui(t),

yi(t) = Σi(η(t))xi(t)+ Γ̄i(η(t))w̄i(t),

and the i-th entry of the considered controller (6); here T z̄iw̄i is the mapping w̄i → z̄i defined by the cor-
responding closed loop system. To verify this fact, it is sufficient to let w̄ j(·) = 0, j 6= i, in (23) and (22).
Indeed, all entries z̄ j(·), j 6= i, of the corresponding output vector of the system (22) will be equal to zero,
hence (24) follows from (23).

Now we observe that the closed-loop subsystem corresponding to (25) and the local controller u i is
internally stochastically stable. Indeed, note that ξi ≡ 0, ri ≡ 0 are in the sets of admissible uncertainty
inputs and admissible interconnection inputs Ξ,Π. Letting w̄i ≡ 0, by (7), given any x̄i(0),η(0), we have

‖x̄i(·)‖2
2 < +∞.

Since π j > 0 ∀ j ∈ K, this verifies the internal stochastic stability of the closed-loop subsystem for all x̄ i(0)
and η(0); see Remark 7.
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Condition (24) and the internal stochastic stability of the closed-loop subsystem imply that the entry u i
of the given controller of the form (6) solves the H∞ disturbance attenuation problem associated with the
MJP system (25) (Li & Ugrinovskii, 2006; Pan & Başar, 1995). We can now apply Theorem 17 of Li &
Ugrinovskii (2006) to each system (25). This result of Li & Ugrinovskii (2006) states that the satisfaction
of (24) for the internally stable closed loop system consisting of (25) and the controller (6) is equivalent
to the following conditions: The GAREs (9) admit a set of minimal positive definite definite solutions
Xi( j) > 0, j ∈ K, and the GARIs (10) admit a set of positive definite solutions Yi( j) > 0, j ∈ K such that
Yi( j) > Xi( j),∀ j ∈K. That is, the selected collection of the constants τi, θi belongs to the set T , hence this
set is not empty.

4.2 Proof of the ‘if’ statement of Theorem 12: the sufficient condition for absolute stabi-
lizability

Suppose the set T is not empty. We wish to show that this property implies the absolute stabilizability of
the uncertain system (1) subject to the uncertainty constraints (3) and (4). To prove this claim, we select a
collection {τi, θi}N

i=1 ∈ T and show that the corresponding decentralized controller (12) defined using this
collection, solves a centralized H∞ control problem for an aggregated MJP system comprising scaled sub-
systems (25) and driven by arbitrary mean-square integrable interconnection and local uncertainty inputs.
In particular, this will imply that this controller is an internally stabilizing controller. Then we will show
that this fact and the assumption of the theorem that the admissible uncertainty and interconnections of
the system (1) satisfy the IQCs (3) and (4) together imply absolute stability of the corresponding uncertain
closed loop system consisting of the plant S and the decentralized controller (12).

Let {τi, θi}N
i=1 ∈ T and consider the matrices X( j) = diag{Xi( j)}N

i=1 and Y ( j) = diag{Yi( j)}N
i=1 whose

entries Xi( j),Yi( j) solve the corresponding GAREs (9), GARIs (10) and the coupling conditions Yi( j) >
Xi( j). Associated with this collection of constants, consider the system

ẋ(t) = A(η(t))x(t)+ B̄1(η(t))u(t)+ B̂2(η(t))w̄(t),

z̄(t) = C̃(η(t))x(t)+ D̃(η(t))u(t),

y(t) = Σ̃(η(t))x(t)+ Γ̃(η(t))w̄(t),

(26)

where

x = [x′1, · · · ,x′N ]′, u = [u′1, · · · ,u′N ]′, A( j) = diag{Ai( j)}N
i=1 ,

B̄1( j) = diag{Bi( j)}N
i=1 , B̂2( j) = diag{B̄2,i( j)}N

i=1 ,

C̃( j) = diag
{

C̄i( j)
}N

i=1 , D̃( j) = diag{D̄i( j)}N
i=1 ,

Σ̃( j) = diag{Σi( j)}N
i=1 , Γ̃( j) = diag

{

Γ̄i( j)
}N

i=1 , j ∈ K,

in which C̄i( j), D̄i( j), B̄2,i( j) and Γ̄i( j) were defined in (11), and the input w̄ ∈ L2[0,+∞). Then, we
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conclude that X( j) > 0,Y ( j) > 0 satisfy the following conditions:

A′( j)X( j)+X( j)A( j)+
k

∑
ν=1

q jνX(ν)+C̃′( j)C̃( j)

−X( j)[B̄1( j)R−1( j)B̄′
1( j)− B̂2( j)B̂′

2( j)]X( j) = 0, (27)

A′( j)Y ( j)+Y ( j)A( j)+
k

∑
ν=1

q jνY (ν)+Y ( j)B̂2( j)B̂′
2( j)Y ( j)

− [Σ̃′( j)W−1( j)Σ̃( j)−C̃′( j)C̃( j)] < 0, (28)

Y ( j) > X( j), (29)

R( j) = diag{Ri( j)}N
i=1 , W ( j) = diag{Wi( j)}N

i=1 .

Consider the augmented controller (Ac(η(t)),Bc(η(t)),Kc(η(t))) with state vector xc = [x′c,1, · · · ,x′c,N ]′,
where Ac( j) = diag{Ac,i( j)}N

i=1, Bc( j) = diag{Bc,i( j)}N
i=1, Kc( j) = diag{Kc,i( j)}N

i=1 and Ac,i( j), Bc,i( j),
Kc,i( j) are given by (12). Write the closed loop system as

˙̃x(t) = A(η(t))x̃(t)+B(η(t))w̄(t),

z̄(t) = C(η(t))x̃(t), (30)

A( j) ,

[

A( j) B̄1( j)Kc( j)
Bc( j)Σ̃( j) Ac( j)

]

, B( j) ,

[

B̂2( j)
Bc( j)Γ̃( j)

]

,

C( j) , [C̃( j), D̃( j)Kc( j)], x̃ = (x′,x′c)
′.

Assumptions 6 and 5 allow us to apply the H∞ control theory of MJP systems to the system (30).
Using Theorem 17 of Li & Ugrinovskii (2006) we conclude that conditions (27), (28) and (29) imply that
the system (30) is internally stable and that the mapping T z̄w̄ : w̄ → z̄ defined by the system (30) satisfies
‖Tz̄w̄‖∞ < 1. This means ‖x̃‖2

2 < ∞ for x̃(0) = 0 and any w̄ ∈ L2[0,+∞). Then, there exists a sufficiently
small ε > 0 such that ‖Tžw̄‖∞ < 1; here ž , [ε1/2x̃′, z̄′]′. By the strict bounded real lemma (e.g., see Li &
Ugrinovskii (2006, Theorem 7)), there exist P̌( j) > 0, j = 1, · · · ,k such that

P̌( j)A( j)+A′( j)P̌( j)+
k

∑
ν=1

q jνP̌(ν)+ P̌( j)B( j)B′( j)P̌( j)

+C′( j)C( j)+ εI < 0.

Let L be the extended generator associated with the jump linear system (30) (Davis, 1992). By defini-
tion,

L [x̃′P̌( j)x̃] = 2x̃′P̌( j)[A( j)x̃ +B( j)w̄]+
k

∑
ν=1

q jνx̃′P̌(ν)x̃. (31)

Let T > 0 be a time instant. Since P̌( j) > 0, it is easy to establish by completing the squares (Pan & Başar,
1995) that for any w̄ ∈ L2[0,+∞) and any initial condition x̃(0), the trajectories of the closed loop system
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(30) satisfy

E
[

Z T

0
‖ž(t)‖2dt

]

≤ E
[

Z T

0
‖ž(t)‖2dt

]

+ E
{

x̃′(0)P̌(η(0))x̃(0)+

Z T

0
L [x̃′(t)P̌(η(t))x̃(t)]dt

}

= E
{

Z T

0
x̃′(t)

([

C̃′( j)C̃( j) 0
0 X( j)B̄1( j)R−1( j)B̄′

1( j)X( j)

]

+ εI
)

x̃(t)dt
}

+ E

{

Z T

0
x̃′(t)[P̌( j)A( j)+A′( j)P̌( j)+

k

∑
ν=1

q jνP̌(ν)]x̃(t)dt

}

+ E
[

Z T

0
2x̃′(t)P̌( j)B( j)w̄(t)dt

]

+ E [x̃′(0)P̌(η(0))x̃(0)]

≤ E [x̃′(0)P̌(η(0))x̃(0)]−E
{

Z T

0
[x̃′(t)P̌( j)B( j)B′( j)P̌( j)x̃(t)−2x̃′(t)P̌( j)B( j)w̄(t)]dt

}

= E [x̃′(0)P̌(η(0))x̃(0)]+ E
[

Z T

0
‖w̄(t)‖2dt

]

−E
[

Z T

0
‖w̄(t)−B′( j)P̌( j)x̃(t)‖2dt

]

≤ ‖w̄‖2
2 + E [x̃′(0)P̌(η(0))x̃(0)]. (32)

Now, let {tl}+∞
l=1 be a sequence of times as in Definitions 8 and 9. For a fixed time tl and an arbitrary

collection of admissible ξi,ri, i = 1, · · · ,N, extend the chosen signals ξi,ri to have a value of zero in the
interval [tl ,+∞) to obtain ξ̃l

i, r̃
l
i , and define the following uncertainty input w̄l for the system (30):

w̄l =
[

τ1/2
1 ξ̃l′

1 , θ1/2
1 r̃l′

1 , · · · ,τ1/2
N ξ̃l′

N , θ1/2
N r̃l′

N

]′
. (33)

Then, w̄l ∈ L2[0,+∞) and satisfies condition (32) for T = tl . From (32), (3) and (4), we have that

E
Z tl

0

N

∑
i=1

(ε‖x̃i‖2 +‖zi‖2)dt ≤
k

∑
j=1

π jx̃′(0)P̌( j)x̃(0)

+
N

∑
i=1

x′i(0)
(

τiMi +θiM̂i
)

xi(0). (34)

Here zi are the outputs of (1) corresponding to the state trajectory of the closed loop system (30) driven
by the input w̄l . By definition, we can choose tl → +∞. Then (34) implies xi,xc,i,ui ∈ L2[0,+∞). Con-
sequently, ξi,ri,ζi ∈ L2[0,+∞). Then, condition (7) follows from (34), (3) and (4). This proves absolute
stability of the closed loop system.

Remark 14. Although in Theorem 12 we focus on the class of controllers which have the decentralized
structure (6), the result of this theorem can be extended to a more general class of LTI centralized con-
trollers. In fact, it is possible to show using an approach similar to the one used in the above proofs that
the system S under consideration can be stabilized by a decentralized controller of the form (6) if and only
if it can be stabilized by a centralized LTI controller. The proof is based on the observation made above
that the decentralized absolutely stabilizing controller under consideration, which solves the decoupled H∞
control problem, also solves the corresponding H∞ control problem for the aggregated system. The proof
of the ‘only if’ part of Theorem 12 can also be modified to show that if the H∞ control problem for the
aggregated system admits a solution, then it can be solved via decentralized control. We refer to Petersen
et al. (2000) for a detailed discussion of this issue.
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4.3 Proof of Theorem 13

Select {τi, θi}N
i=1 ∈ T and, using the solutions to the corresponding GAREs (9) and GARIs (10), de-

fine Φ( j) =

[

Y ( j) X( j)−Y ( j)
X( j)−Y ( j) Y ( j)−X( j)

]

. It is easy to show that the matrices Φ( j), j ∈ K satisfy the

following GARIs (Pan & Başar, 1995) for every j ∈ K:

Φ( j)A( j)+A′( j)Φ( j)+Φ( j)B( j)B′( j)Φ( j)+C′( j)C( j)

+
k
∑

ν=1
q jνΦ(ν) =

[

RY ( j) RX( j)−RY ( j)
RX( j)−RY ( j) RY ( j)−RX( j)

]

≤ 0; (35)

here A( j), B( j) and C( j) are coefficients of the modes of the closed loop system (30) corresponding to
the controller (6), (12), and RX( j), RY ( j) denote the left-hand side of (27) and (28) respectively. Note that
RX( j) = 0.

Now, choose x̃′(t)Φ(η(t))x̃(t) as a candidate Lyapunov function. Then, similar to (31), (32) and (34),
we have

E
[

Z T

0
‖z̄(t)‖2dt

]

≤ ‖w̄‖2
2 + E [x̃′(0)Φ(η(0))x̃(0)],

and

E
Z +∞

0

N

∑
i=1

‖zi‖2dt ≤
k

∑
j=1

π jx̃′(0)Φ( j)x̃(0)+
N

∑
i=1

x′i(0)
(

τiMi +θiM̂i
)

xi(0),

where z̄(t) is the output of the closed loop system (30), and zi(·) are the outputs of (1) corresponding to the
state trajectory of the closed loop system (30) driven by the input w̄l(·) in (33). Therefore,

Jwc(u) ≤
k

∑
j=1

π jx̃′(0)Φ( j)x̃(0)+
N

∑
i=1

x′i(0)
(

τiMi +θiM̂i
)

xi(0)

=
k

∑
j=1

π j[x′(0)X( j)x(0)+(xc(0)− x(0))′(Y ( j)−X( j))

(xc(0)− x(0))]+
N

∑
i=1

x′i(0)
(

τiMi +θiM̂i
)

xi(0). (36)

It is obvious from (36) that letting xc(0) = x(0) provides the smallest bound on the worst-case performance:

Jwc(u) ≤ J(τ,θ). (37)

Now substituting τi = τ∗i ,θi = θ∗i , i = 1, · · · ,N into (37) yields (14). Then (15) follows from (14) trivially.

5 Computational Algorithm

5.1 A rank constrained LMI realization

As shown in Theorem 13, the proposed suboptimal decentralized output feedback controller design in-
volves solving the optimization problem given on the right-hand side of (15), infT J(τ,θ). Generally, it is
difficult to provide a systematic way to perform such optimization. In this section, we discuss one pos-
sible approach to address this difficulty numerically. The idea is to replace the problem infT J(τ,θ) with
an equivalent optimization problem involving rank constrained LMIs. First we introduce a related rank
constrained LMI optimization problem. Next we prove the equivalence between the two problems; see
Theorem 15 given below.
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To introduce the rank constrained LMI optimization problem related to the optimization problem stated
in Theorem 13, similar to Ait Rami & El Ghaoui (1996), consider the following inequalities instead of the
Riccati equations (9),

A′
i( j)Xi( j)+Xi( j)Ai( j)+

k

∑
ν=1

q jνXi(ν)+C̄′
i( j)C̄i( j)

−Xi( j)[Bi( j)R−1
i ( j)B′

i( j)− B̄2,i( j)B̄′
2,i( j)]Xi( j) < 0. (38)

By left and right multiplying (38) with X̃i( j) = X−1
i ( j), we obtain

X̃i( j)A′
i( j)+Ai( j)X̃i( j)+

k

∑
ν=1

q jνX̃i( j)X̃−1
i (ν)X̃i( j)

+ X̃i( j)C̄′
i( j)C̄i( j)X̃i( j)− [Bi( j)R−1

i ( j)B′
i( j)− B̄2,i( j)B̄′

2,i( j)] < 0. (39)

Introducing matrices Fi( j) of appropriate dimensions, without changing the feasibility of (39), we add a
quadratic term of Fi( j) to the left-hand side of (39) as follows,

X̃i( j)A′
i( j)+Ai( j)X̃i( j)+

k

∑
ν=1

q jνX̃i( j)X̃−1
i (ν)X̃i( j)

+ X̃i( j)C̄′
i( j)C̄i( j)X̃i( j)− [Bi( j)R−1

i ( j)B′
i( j)− B̄2,i( j)B̄′

2,i( j)]

+ [F ′
i ( j)+Bi( j)R−1

i ( j)]Ri( j)[F ′
i ( j)+Bi( j)R−1

i ( j)]′ < 0,

which is

X̃i( j)A′
i( j)+Ai( j)X̃i( j)+

k

∑
ν=1

q jνX̃i( j)X̃−1
i (ν)X̃i( j)+ X̃i( j)C̄′

i( j)C̄i( j)X̃i( j)

+ B̄2,i( j)B̄′
2,i( j)+F ′

i ( j)Ri( j)Fi( j)+Bi( j)Fi( j)+F ′
i ( j)B′

i( j) < 0. (40)

Using (11), the terms of (40) can be represented as follows,

B̄2,i( j)B̄′
2,i( j) = τ−1

i Ei( j)E ′
i ( j)+θ−1

i Li( j)L′
i( j),

X̃i( j)C̄′
i( j)C̄i( j)X̃i( j) = X̃i( j)[C′

i( j)Ci( j)+(τi + θ̄i)H ′
i ( j)Hi( j)]X̃i( j),

F ′
i ( j)Ri( j)Fi( j) = F ′

i ( j)[D′
i( j)Di( j)+(τi + θ̄i)G′

i( j)Gi( j)]Fi( j). (41)

Let τ̃i = τ−1
i , θ̃i = θ−1

i . By combining (40), (41) and applying the Schur complement, we obtain the
following LMIs in the variables X̃i( j),Fi( j), τ̃i, θ̃i:









Ni( j) Vi( j) F ′
i ( j)D′

i( j)+ X̃i( j)C′
i( j) Qi( j)

? −Si( j) 0 0
? ? −I 0
? ? ? −ΘΘΘi









< 0, (42)

where

Ni( j) = X̃i( j)A′
i( j)+Ai( j)X̃i( j)+q j jX̃i( j)+Bi( j)Fi( j)

+F ′
i ( j)B′

i( j)+ τ̃iEi( j)E ′
i ( j)+ θ̃iLi( j)L′

i( j),

Vi( j) = [
√

q j1X̃i( j) · · ·√q j( j−1)X̃i( j),
√

q j( j+1)X̃i( j) · · ·√q jkX̃i( j)],

Si( j) = diag[X̃i(1) · · · X̃i( j−1), X̃i( j +1) · · · X̃i(k)],

Qi( j) = [F ′
i ( j)G′

i( j)+ X̃i( j)H ′
i ( j), · · · ,

F ′
i ( j)G′

i( j)+ X̃i( j)H ′
i ( j)] (N entries),

ΘΘΘi = diag[τ̃iI, θ̃1I, · · · , θ̃i−1I, θ̃i+1I, · · · , θ̃NI].
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In a similar fashion, the GARIs (10) can be transformed into the following equivalent LMIs in the
variables Yi( j),τi,θi:





Mi( j) Yi( j)Ei( j) Yi( j)Li( j)
? −τiI 0
? ? −θiI



< 0, (43)

where

Mi( j) = A′
i( j)Yi( j)+Yi( j)Ai( j)+

k

∑
ν=1

q jνYi(ν)+C′
i( j)Ci( j)

− τiΣ′
i( j)[Γi( j)Γ′

i( j)]−1Σi( j)+(τi + θ̄i)H ′
i ( j)Hi( j).

The coupling condition Yi( j) > Xi( j) > 0 is equivalent to
[

X̃i( j) I
I Yi( j)

]

> 0. (44)

Next, consider the performance upper bound given by the right-hand side of (15). Note that minimizing
J(τ,θ) is equivalent to minimizing λ1 + · · ·+λN subject to

λi > x′i0Ψi(Xi,τi,θi)xi0, i = 1, · · · ,N. (45)

By Schur complement, (45) is equivalent to the LMI









λi ΠΠΠi x′i0M1/2
i x′i0M̂1/2

i
? X̃i 0 0
? ? τ̃iI 0
? ? ? θ̃iI









> 0, i = 1, · · · ,N; (46)

here ΠΠΠi = [π1/2
1 x′i0, · · · ,π

1/2
k x′i0], X̃i = diag{X̃i( j)}k

j=1.
Also, the conditions τ̃i > 0,τi > 0, τ̃iτi = 1, θ̃i > 0,θi > 0, θ̃iθi = 1 are equivalent to the rank constrained

LMIs
[

τ̃i 1
1 τi

]

≥ 0, rank
[

τ̃i 1
1 τi

]

≤ 1,

[

θ̃i 1
1 θi

]

≥ 0, rank
[

θ̃i 1
1 θi

]

≤ 1. (47)

We now consider the following optimization problem in the variables λi, X̃i( j), Fi( j), Yi( j), τ̃i, θ̃i, and
τi, θi: Find

J∗LMI , inf(λ1 + · · ·+λN) (48)

subject to (42), (43), (44), (46) and (47).

Note that this problem consists of minimizing a linear cost subject to rank constrained LMIs. To solve this
problem in our numerical experiments, we use the rank constrained LMI solver LMIRank. We postpone
discussion of this algorithm until Section 5.2. Meanwhile, we show that the optimization problem (48) and
the optimization problem on the right hand side of (15) are equivalent.

Theorem 15. Let J∗Ric , infT J(τ,θ), and J∗LMI be defined as in (48). Then J∗Ric = J∗LMI .
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Proof. Suppose (48) has a feasible solution λi, X̃+
i ( j), Fi( j), Yi( j), τ̃i, θ̃i, τi and θi. Then X+

i ( j) =
[X̃+

i ( j)]−1 satisfies (38) and Yi( j) > X+
i ( j). By Corollary 3.1 of Pan & Başar (1995), there exist Xi( j) > 0

satisfying (9) such that Xi( j) < X+
i ( j). As Xi( j), Yi( j) satisfy the GAREs (9) and GARIs (10), and

Yi( j) > X+
i ( j) > Xi( j), we have {τi, θi}N

i=1 ∈ T . This implies that the set of {τi, θi}N
i=1 for which the

constraints of the problem (48) can be satisfied is a subset of the set T . Also, for those {τ i, θi}N
i=1, the fact

X+
i ( j) > Xi( j) implies

J(τ,θ) ≤
N

∑
i=1

x′i0Ψi(X+
i ,τi,θi)xi0 <

N

∑
i=1

λi; (49)

see (13) and (45). Hence, J∗Ric ≤ J∗LMI .
Conversely, for any ε > 0, there exist {τi, θi}N

i=1 ∈ T , Xi( j) and Yi( j) verifying GAREs (9), GARIs
(10) with Yi( j) > Xi( j), such that

J∗Ric + ε > J(τ,θ) =
N

∑
i=1

x′i0Ψi(Xi,τi,θi)xi0.

By Corollary 3.1 of Pan & Başar (1995), for an arbitrarily small δ > 0, there exist X +
i ( j) > 0 satisfying

(38) such that X+
i ( j) > Xi( j) > X+

i ( j)−δI, j ∈ K, i = 1, · · · ,N. Furthermore, we can select δ sufficiently
small so that Yi( j) > Xi( j)+δI > X+

i ( j). Therefore, since ∑k
j=1 π j = 1, then

J∗Ric + ε >
N

∑
i=1

x′i0Ψi(X+
i ,τi,θi)xi0 −δ

N

∑
i=1

‖xi0‖2.

Let X̃+
i ( j) = [X+

i ( j)]−1, Fi( j) =−R−1
i ( j)B′

i( j), τ̃i = τ−1
i , θ̃i = θ−1

i , and λi = ρ+x′i0Ψi(X+
i ,τi,θi)xi0 where

ρ > 0 is any positive constant. Then X̃+
i ( j), Fi( j), Yi( j), τ̃i, θ̃i, τi, θi and λi satisfy conditions (42), (43),

(44), (46) and (47). Therefore,

J∗LMI ≤
N

∑
i=1

λi < Nρ+ J∗Ric + ε+δ
N

∑
i=1

‖xi0‖2.

Letting ρ,ε,δ → 0, we have J∗LMI ≤ J∗Ric. This completes the proof.

The state feedback control design result of Ugrinovskii & Pota (2005) only uses GAREs (9). GARIs
(10) and the LMIs (43), (44) and conditions (47) do not arise in this case. Therefore, the state feedback
problem reduces to the following convex semidefinite programming problem in the variables X̃i( j), Fi( j),
τ̃i, θ̃i, λi:

inf(λ1 + · · ·+λN) subject to (42) and (46). (50)

A globally optimal controller, if it exists, can be obtained by solving (50). On the other hand, if the
solution to (50) does not exist, then the system has infinitely large minimax optimal performance. This is an
indication that the system can be driven unstable by one of the admissible uncertainties or interconnections.
Hence, the system is not absolutely stabilizable; see Ugrinovskii & Pota (2005) for details.

A control design methodology based on Theorem 15 is as follows.

• Solve the rank constrained LMI problem (48), to a desired accuracy, obtaining a collection θ i, τi,
X̃+

i ( j), Yi( j). It follows from the proof of Theorem 15 that {θi,τi}N
i=1 belongs to the feasibility set

T .

• Substitute the found θi,τi into the GAREs (9) and solve (9) to obtain Xi( j). Note that Yi( j) can be
selected from the found feasible solution to the problem (48); see the proof of Theorem 15.

• Construct the robust stabilizing controller (6), (12) using the found θ i, τi, Xi( j) and Yi( j). Also,
J(τ,θ) can be computed.
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Going from the auxiliary rank constrained optimization problem (48) back to the underlying robust
control problem, we summarize the relation between the costs of the three optimization problems involved
in the control design algorithm,

Jwc(u) ≤ J(τ,θ) <
N

∑
i=1

λi.

The first quantity is the true worst-case performance cost associated with the obtained robust stabilizing
controller; this is the cost of the optimization problem on the left hand side of (15). The second quantity
is the cost of the optimization problem defined on the right hand side of (15). As shown (see (37)), it
provides an upper bound on the worst-case performance associated with this controller and, unlike Jwc(u),
can be computed explicitly. The third quantity is the cost of the auxiliary rank constrained optimization
problem (48). The relation between this quantity and J(τ,θ) follows from (49). Hence the solution of
the optimization problem (48) also provides an upper bound on robust performance of the control system
which, as we see, is more conservative than that given by J(τ,θ).

5.2 LMIRank toolbox for rank constrained LMIs

LMIRank (Orsi, 2005) is a MATLAB toolbox for solving feasibility problems defined in terms of LMIs
such as

F(x) , F0 +
m

∑
i=1

xiFi ≥ 0,

and rank constrained LMIs of the form

G(x) , G0 +
m

∑
i=1

xiGi ≥ 0, rank G(x) ≤ r.

Multiple constraints of either type can be specified. It is an implementation of a Newton-like method
presented in Orsi et al. (2006).

The constraints in problem (48) are exactly of the types mentioned above. As problem (48) is an
optimization problem (with a linear cost) rather than a feasibility problem, LMIRank can be used to solve
the problem via a standard bisection procedure.

As mentioned before, currently available numerical methods for solving rank constrained LMI prob-
lems are not guaranteed to always find a solution. Hence, for an optimization problem involving rank
constrained LMIs it may not always be possible to find a solution whose cost is near the minimum cost
achievable. Despite this, some of the currently available methods, such as LMIRank, perform well in
practice. A demonstration of this fact is given in Section 7.

6 Stable modes

We now show that, by using the same method as that in Mariton & Bertrand (1985) and Ugrinovskii &
Pota (2005), the mode of each subsystem can also be made robustly asymptotically stable while the robust
stochastic stability of the closed loop system is preserved. Recall that q j j ≤ 0. In this section, we will
assume for simplicity1 that q j j < 0,∀ j ∈ K.

1This assumption can be easily removed by noting that if q j j = 0, then q jν = 0 ∀ν∈ K, and hence the state j of the underlying
Markov chain is absorbing; i.e., the system will remain in this mode with probability 1. Furthermore, the GAREs (9) and GARIs
(10) become standard AREs and ARIs arising in the deterministic robust control theory. Hence the stability of the absorbing mode
can be analyzed using the existing theory.



To appear in Automatica, 2007; doi: 10.1016/j.automatica.2007.03.016 20

Consider the following collection of GAREs and GARIs:

A′
i( j)Xi( j)+Xi( j)Ai( j)+ ∑

ν6= j
q jνXi(ν)+C̄′

i( j)C̄i( j)

−Xi( j)[Bi( j)R−1
i ( j)B′

i( j)− B̄2,i( j)B̄′
2,i( j)]Xi( j) = 0, (51)

A′
i( j)Yi( j)+Yi( j)Ai( j)+Yi( j)B̄2,i( j)B̄′

2,i( j)Yi( j)

−[Σ′
i( j)W−1

i ( j)Σi( j)−C̄′
i( j)C̄i( j)]+ ∑

ν6= j
q jνYi(ν) < 0. (52)

Let Ť denote the collection of constants τ̌i, θ̌i such that (51) and (52) admit positive definite solutions X̌i( j),
Y̌i( j), j = 1, · · · ,k satisfying Y̌i( j) > X̌i( j),∀ j ∈ K. If the set Ť is non-empty, let Ǔ be the class of decen-
tralized controllers (6), (12) in which the matrices Xi( j), Yi( j) are replaced by X̌i( j), Y̌i( j), respectively.
Then we have the following result:

Theorem 16. Under conditions of Theorem 12, if the set Ť is not empty, the system S is absolutely
stabilizable using any decentralized dynamic output feedback controller in Ǔ. In addition, any controller
in Ǔ renders deterministic modes of the closed-loop system robustly stable.

Furthermore, given a vector of initial conditions xi(0) = xi0, let {τ̌∗i , θ̌∗i }N
i=1 ∈ Ť attain the infimum

infŤ J̌(τ̌, θ̌), where

J̌(τ̌, θ̌) ,
N

∑
i=1

x′i0Ψi(X̌i, τ̌i, θ̌i)xi0.

Then a decentralized controller ǔ∗ whose worst-case performance satisfies the upper bound

Jwc(ǔ∗) ≤ inf
Ť

J̌(τ̌, θ̌), (53)

is given by (6), (12) in which τ̌i = τ̌∗i , θ̌i = θ̌∗i , i = 1, · · · ,N, Xi( j), Yi( j) are replaced by X̌i( j), Y̌i( j), respec-
tively, with the initial condition xc,i(0) = xi(0).

Proof. Let {τ̌i, θ̌i}N
i=1 ∈ Ť and consider a collection of positive definite symmetric matrices

{

X̌i( j)
}N

i, j=1,
{

Y̌i( j)
}N

i, j=1 which satisfy (51), (52), such that Y̌i( j) > X̌i( j),∀ j ∈ K. Then, it is easy to see that

A′
i( j)X̌i( j)+ X̌i( j)Ai( j)+C̄′

i( j)C̄i( j)

− X̌i( j)[Bi( j)R−1
i ( j)B′

i( j)− B̄2,i( j)B̄′
2,i( j)]X̌i( j)+

k

∑
ν=1

q jνX̌i(ν) < 0, (54)

A′
i( j)Y̌i( j)+ Y̌i( j)Ai( j)+ Y̌i( j)B̄2,i( j)B̄′

2,i( j)Y̌i( j)

− [Σ′
i( j)W−1

i ( j)Σi( j)−C̄′
i( j)C̄i( j)]+

k

∑
ν=1

q jνY̌i(ν) < 0. (55)

It can then be readily shown using the argument of the proof of Theorem 12 that the decentralized controller
ǔ of the form (12) in which matrices Xi( j), Yi( j) are replaced by X̌i( j), Y̌i( j), respectively, solves the robust
decentralized stabilization problem. To established this claim we only need to verify that the GARIs (35)
still hold for the solutions X̌i( j),Y̌i( j) to the GARIs (51), (52) with Y̌i( j) > X̌i( j),∀ j ∈K. Similarly to (27),
(28), let RX̌( j), RX̌( j) denote the left-hand side of the stacked equations (54), (55) respectively, and let
X̌( j), Y̌ ( j) be defined similarly. By (51) and (52), we have RX̌( j) = q j jX̌( j) < 0 and RY̌ ( j)−q j jY̌ ( j) < 0.
Then

RY̌ ( j)−RX̌( j) = RY̌ ( j)−q j jY̌ ( j)+q j j[Y̌ ( j)− X̌( j)] < 0,
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therefore the GARIs (35) follow using the Schur complement, as required. This further implies that the
corresponding closed-loop system is internally stochastically stable and satisfies the H∞ norm condition
(23); see the proof of the implication (ii) ⇒ (i) in Li & Ugrinovskii (2006, Theorem 17).

Also, it follows from the GAREs (51) and GARIs (52) that

A′
i( j)X̌i( j)+ X̌i( j)Ai( j)+C̄′

i( j)C̄i( j)

− X̌i( j)[Bi( j)R−1
i ( j)B′

i( j)− B̄2,i( j)B̄′
2,i( j)]X̌i( j) < 0,

A′
i( j)Y̌i( j)+ Y̌i( j)Ai( j)+ Y̌i( j)B̄2,i( j)B̄′

2,i( j)Y̌i( j)

− [Σ′
i( j)W−1

i ( j)Σi( j)−C̄′
i( j)C̄i( j)] < 0.

Together with the condition Y̌i( j) > X̌i( j),∀ j ∈ K, these inequalities imply that the controller considered
in this section is a robust stabilizing controller for each mode of the uncertain system S corresponding to
one of the states of the Markov chain η(t) (Dullerud & Paganini, 2000).

Furthermore, similarly to (36), the considered controller with xc,i(0) = xi(0) yields the following bound
on the worst case performance cost:

Jwc(ǔ) ≤ J̌(τ̌, θ̌). (56)

Substituting τ̌i = τ̌∗i , θ̌i = θ̌∗i , i = 1, · · · ,N into (56) yields (53). This completes the proof.

Note that to solve (51) and (52) numerically, a rank constrained LMI problem similar to that considered
in the previous section can be introduced. This can be done by removing the terms corresponding to q j j
from Ni( j) and Mi( j); see equations (42) and (43).

7 Example

We consider a 9-bus power system consisting of four subsystems: three generators and one on-load tap
changing transformer (OLTC). The system diagram and numerical parameters for the system are pre-
sented in the Appendix. A complete mathematical description of the system and the derivation of the state
equations are given in Pota, Athanasius, Ugrinovskii, & Li (2006). It is shown in that reference that the
linearized state equation consists of four subsystems of the form of (1). The three 2nd order subsystems
S1, S2, S3 describe generator dynamics and the 1st order subsystem S4 describes those of the OLTC device.
The state variables x1,x2 and x3 describe the change in the generator rotor angles relative the reference
frame and the corresponding changes in the generated frequency relative the reference 50 Hz. The variable
x4 describes the change in the OLTC transformation ratio.

In Pota et al. (2006), linear models are obtained for two different steady-state load conditions on the
power system. System transitions between the above two load conditions are described by the Markov
chain parameter η(t) whose transition probabilities are determined by the parameters q12 = q21 = 0.1, and
the initial distribution is π = [0.5 0.5]′. Parameters of the system model (1) corresponding to the two load
profiles under consideration are given in the Appendix. To design the controllers we let

Ci( j) =

[

0.1I2
02

]

, i = 1,2,3, C4( j) =

[

0.1
0

]

, j = 1,2,

Di( j) =

[

02
0.1I2

]

, i = 1,2,3, D4( j) =

[

0,
0.1

]

, j = 1,2,

Σi( j) =
[

0, 1
]

, i = 1,2,3, Σ4( j) = 1, j = 1,2,

Γi( j) =
[

0, 0.0910
]

, i = 1,2,3,4, j = 1,2,
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Note that in the uncertain system model presented in Pota et al. (2006), the uncertainty is introduced to
account for higher order terms arising due to linearization of the underlying nonlinear system about its
operating points. This type of uncertainty falls into the class of norm bounded uncertainties since the
right-hand sides of the underlying nonlinear differential equations are sufficiently smooth in the vicinity of
operating points. Therefore in the corresponding IQCs, the matrices M i, M̂i can be chosen to be arbitrary
positive definite matrices; see Example 10. In this example, we selected M i = M̂i = I2×2, xi0 = [0.1 0.1]′,
i = 1,2,3, M4 = M̂4 = 1, x40 = 0.1414 in the constraints (3) and (4). This selection provides for additional
robustness against possible noises in the interconnections and mismatches in the operating point settings.

In addition to the rank constrained LMI approach detailed in the paper, we also tried using the Matlab
function fmincon to find the upper bound in (15). This was unsuccessful since, despite numerous trials,
a feasible initial estimate could not be found. (In this example, the system comprises only 4 subsystems.
For a large-scale system, finding a feasible initial point for fmincon would be even harder.) Using the
LMIRank algorithm (Orsi, 2005) applied to the optimization problem (48), the solution found was τ∗

1 =
0.0338, τ∗2 = 0.0447, τ∗3 = 0.0367, τ∗4 = 0.0005, θ∗

1 = 0.0163, θ∗
2 = 0.0215, θ∗

3 = 0.0105, θ∗
4 = 0.0001,

resulting in an upper bound of 0.03155. For the purpose of comparison, we also solved the optimization
problem (50) arising in the corresponding state feedback problem. For that problem, solving (50) gives
the optimal minimax value of the performance cost. In our simulation this optimal minimax value was
computed to be equal to 0.03153, which shows that our results achieved in the output feedback case are
pretty good. The parameters of the corresponding dynamic output feedback controllers (12) are also given
in the Appendix.

8 Conclusion

This paper considers a decentralized robust control design problem for an interconnected system subject
to uncertain disturbances and randomly changing parameters. It extends the state feedback results of Ugri-
novskii & Pota (2005) to the output feedback case. A necessary and sufficient condition for the existence of
an absolutely stabilizing decentralized switching controller is obtained. This condition involves a parame-
terized set of mode-dependent coupled algebraic Riccati equations and inequalities. Unlike Ugrinovskii &
Pota (2005), it is currently not clear whether an optimal LTI controller exists for the corresponding min-
imax optimal robust performance problem. However, a suboptimal controller and a corresponding upper
bound on its robust performance are obtained and it is shown that this bound can be optimized by solving
an equivalent optimization problem involving rank constrained LMIs. Using the LMIRank software, a
numerical approach for solving this problem is presented. This approach performs well in the described
example application, and our experience with other examples has been similar.
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feedback problems. In Proc. 2nd ECC, Gröningen, The Netherlands (pp. 1176–1179).

Feng, X., Loparo, K. A., Ji, Y., & Chizeck, H. J. (1992). Stochastic stability properties of jump linear
systems. IEEE Trans. on Autom. Contr., 37(1):38–53.

Griffiths, B. E., & Loparo, K. A. (1985). Optimal control of jump-linear Gaussian systems. Int. J. Contr.,
42(4):791–820.

Ji, Y., & Chizeck, H. J. (1990). Controllability, stabilizability, and continuous-time Markovian jump linear
quadratic control. IEEE Trans. on Autom. Contr., 35(7):777–788.

Ji, Y., & Chizeck, H. J. (1992). Jump linear quadratic Gaussian control in continuous time. IEEE Trans.
on Autom. Contr., 37(12):1884–1892.

Li, L., & Ugrinovskii, V. A. (2006). On necessary and sufficient conditions for H∞ output feedback control
of Markov jump linear systems. In Proc. 2006 CDC, San Diago, CA (pp. 5525-5530). Also to appear in
IEEE Transactions on Automatic Control, 52(7), 2007, 1287-1292.

Mariton, M. (1990). Jump linear systems in automatic control. Marcel Dekker Inc., New York.

Mariton, M., & Bertrand, P. (1985). Robust jump linear quadratic control: a mode stabilizing solution.
IEEE Trans. on Autom. Contr., 30(11):1145–1147.

Orsi, R. (2005). LMIRank : software for rank constrained LMI problems. Available from
http://rsise.anu.edu.au/∼robert/lmirank/.

Orsi, R., Helmke, U., & Moore, J. B. (2006). A Newton-like method for solving rank constrained linear
matrix inequalities. Automatica, 42(11):1875–1882.

Pakshin, P. V. (2003). Robust decentralized control of systems of random structure. Int. J. Computer and
Systems Sciences, 42:200–204.
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Appendix

The power system discussed in the example is shown in Fig. 2. In Pota et al. (2006), linear models are
obtained for two different load profiles (from Bus 4 to Bus 9) as indicated in the figure. Parameters of
the corresponding linearized subsystems corresponding to the two load profiles under consideration are as
follows:

A1(1) =

[

0 1
−0.614 −0.1235

]

, A1(2) =

[

0 1
−0.4955 −0.1235

]

,

A2(1) =

[

0 1
−0.4540 −0.0962

]

, A2(2) =

[

0 1
−0.3928 −0.0962

]

,

A3(1) =

[

0 1
−0.6096 −0.1164

]

, A3(2) =

[

0 1
−0.5366 −0.1164

]

,

A4(1) = −0.9780, A4(2) = −0.8842,

B1(1) =

[

0 0
0.1235 −0.0701

]

, B1(2) =

[

0 0
0.1235 −0.0983

]

,

B2(1) =

[

0 0
0.0962 −0.0730

]

, B2(2) =

[

0 0
0.0962 −0.0505

]

,

B3(1) =

[

0 0
0.1164 −0.0604

]

, B3(2) =

[

0 0
0.1164 −0.0410

]

,

B4(1) = 10, B4(2) = 10,

Ei( j) =

[

0.1 0
0.1 0

]

, i = 1,2,3, E4( j) =
[

0.1 0
]

, j = 1,2,

Hi( j) =

[

1 0
0 0

]

, i = 1,2,3, H4( j) =

[

1
0

]

, j = 1,2,

Gi( j) =

[

0 0
0 1

]

, i = 1,2,3, G4( j) =

[

0
1

]

, j = 1,2,

L1(1) =

[

0 0 0 0 0 0 0 0 0 0
0.0028 0 0.0067 0 0.0140 0 −0.0635 0 −0.0647 0

]

,

L1(2) =

[

0 0 0 0 0 0 0 0 0 0
0.0026 0 0.0060 0 0.0336 0 −0.0744 0 −0.0803 0

]

,

L2(1) =

[

0 0 0 0 0 0 0 0 0 0
0.0022 0 0.0097 0 0.0146 0 −0.0675 0 −0.0679 0

]

,

L2(2) =

[

0 0 0 0 0 0 0 0 0 0
0.0022 0 0.0094 0 0.0159 0 −0.0256 0 −0.0372 0

]

,

L3(1) =

[

0 0 0 0 0 0 0 0 0 0
0.0063 0 0.0118 0 0.0121 0 −0.0556 0 −0.0548 0

]

,

L3(2) =

[

0 0 0 0 0 0 0 0 0 0
0.0062 0 0.0118 0 0.0133 0 −0.0168 0 −0.0252 0

]

,

L4(1) =
[

0 0 0 0 0 0 −0.1168 0 −0.1166 0 −0.1168 0
]

,

L4(2) =
[

0 0 0 0 0 0 −0.0156 0 −0.0174 0 −0.0179 0
]

.
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Figure 2: 9-Bus power system of Pota et al. (2006).

The corresponding parameters of the controller were obtained as follows:

Ac,1(1) =

[

0.0879 7.2915
−0.6094 −5.3086

]

, Ac,1(2) =

[

0.0988 13.8819
−0.4822 −6.8623

]

,

Ac,2(1) =

[

0.0957 10.4503
−0.4271 −5.5272

]

, Ac,2(2) =

[

0.0798 7.5840
−0.4183 −4.3519

]

,

Ac,3(1) =

[

0.1006 7.2718
−0.5827 −5.2063

]

, Ac,3(2) =

[

0.0834 5.3587
−0.5699 −3.9422

]

,

Ac,4(1) = −433.0048, Ac,4(2) = −11.8305,

Bc,1(1) =

[

−6.1632
4.9336

]

, Bc,1(2) =

[

−12.7109
6.5070

]

,

Bc,2(1) =

[

−9.2638
5.2266

]

, Bc,2(2) =

[

−6.4330
3.9408

]

,

Bc,3(1) =

[

−6.1181
4.8740

]

, Bc,3(2) =

[

−4.2330
3.4904

]

,

Bc,4(1) = 423.9681, Bc,4(2) = 1.8699,

Kc,1(1) =

[

−0.9619 −4.3842
0.0719 0.3277

]

, Kc,1(2) =

[

−1.2471 −5.8821
0.1308 0.6171

]

,

Kc,2(1) =

[

−1.2000 −6.8159
0.1116 0.6338

]

, Kc,2(2) =

[

−1.1967 −5.2938
0.0769 0.3400

]

,

Kc,3(1) =

[

−1.0907 −5.4676
0.0669 0.3354

]

, Kc,3(2) =

[

−1.0837 −4.2799
0.0451 0.1780

]

,

Kc,4(1) = −0.9985, Kc,4(2) = −0.9222.


