
Decentralized Robust Model Predictive Control for 

Multi-input Linear Systems 
 

Saeed Adelipour 

Advanced Control systems Lab., 

Electrical Enginnering Department 

Sharif University of Technology 

Tehran, Iran 

adelipour@ee.sharif.edu 

Mohammad Haeri 

Advanced Control systems Lab., 

Electrical Enginnering Department 

Sharif University of Technology 

Tehran, Iran 

haeri@sharif.edu 

Gabriele Pannocchia 

Department of Civil and Industrial 

Engineering 

University of Pisa 

Pisa, Italy 

gabriele.pannocchia@unipi.it 

Abstract— In this paper, a decentralized model predictive 

control approach is proposed for discrete linear systems with a 

high number of inputs and states. The system is decomposed into 

several interacting subsystems. The interaction among 

subsystems is modeled as external disturbances. Then, using the 

concept of robust positively invariant ellipsoids, a robust model 

predictive control law is obtained for each subsystem solving 

several linear matrix inequalities. Maintaining the recursive 

feasibility while considering the attenuation of mutual coupling at 

each time step and the stability of the overall system are 

investigated. Moreover, an illustrative simulation example is 

provided to demonstrate the effectiveness of the method. 
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I. INTRODUCTION 

Model Predictive Control (MPC) has paved its way for 
industrial applications due to its ability to cope with constraints 
and multi-input multi-output systems. However, the high 
computational demand of MPC makes it inapplicable for 
systems with a large number of inputs and states unless 
sufficiently large computation time is available. Thus, several 
researches are done to obtain more computationally efficient 
MPC frameworks by introducing fast online methods, 
designing explicit offline control laws, or a mixture of these 
approaches [1-3]. Another traditional solution for reducing the 
computational load of MPC is to decompose the large problem 
into several smaller subproblems [4]. In this regard, several 
methods have been proposed to decompose the system into 
some interacting subsystems with minimum couplings (e.g. 
[5]). Then, many decentralized and distributed MPC schemes 
are designed which are different based on the chosen control 
structure and theoretical tools, the circumstances of exploiting 
mutual information, treating the interaction among subsystems, 
differences in applications and so on [6]. 

Exploiting Linear Matrix Inequalities (LMIs) in the design 
of MPC law has led to a computationally efficient method in 
which the MPC law is a state feedback matched with an 
invariant ellipsoid to ensure the stability properties [7]. 
However, the dimension of LMIs may become very large for 
systems with a high number of inputs and states. Consequently, 
this may result in a large and undesirable computational 
complexity and a very conservative invariant ellipsoid which 
may even prevent finding a feasible solution. To overcome this 

drawback, distributed LMI-based MPC has been studied in 
several works [8-11]. Reference [8] presents a distributed MPC 
for a set of decoupled local systems with a global cost function. 
In [9] and [10] distributed LMI-based MPC has been designed 
for linear systems with polytopic and structured uncertainty, 
respectively. However, in these works, only inputs are designed 
separately using the whole dynamic of the system and doing 
inner iterations. Since no decomposition is done on the states, 
dimensions of the underlying LMIs do no reduce significantly. 
Thus, these methods may not always lead to a lower 
computation complexity. To further reduce the complexity, it 
would be better to decompose both inputs and states of system 
[11]. The main struggle then becomes how to consider the 
effects of other subsystems’ states and inputs in the control 
design for each subsystem as well as maintaining the recursive 
feasibility of LMIs of each subsystem. The interaction between 
subsystems can be considered as additive disturbances [12]. 
Moreover, there are LMI conditions to obtain Robust Positively 
Invariant (RPI) ellipsoids for linear systems with additive 
disturbances [13]. These RPI sets have also been used to design 
robust LMI-based MPC for such systems [14, 15]. 

Motivated by the above discussion, in this paper a 
decentralized LMI-based MPC is proposed for linear multi-
input systems. Inputs and states of the system are assumed to 
be clustered into several subsystems. The effects of other 
subsystems are modeled as external disturbances. For each 
subsystem, an LMI-Based MPC is designed using local cost 
function and local system dynamic to compute a local state 
feedback. Besides, to incorporate the effects of other 
subsystems, an RPI ellipsoid is constructed based on the 
information on the states of neighboring subsystems and their 
previous control actions. It is known that the disturbances on 
each subsystem are originated from the inputs and states of 
other subsystems. Therefore, while system’s states converge to 
the origin, the amount of coupling will reduce. This disturbance 
attenuation, in turn, reduces the conservatism of the control 
performance [16, 17]. In the distributed and decentralized MPC 
frameworks which have considered input-decoupled local 
subsystems [12, 18, 19], the changes in the input of each 
subsystem do not directly affect the amount of disturbance 
imposed on other subsystems. However, if the system is 
decomposed into subsystems which have interaction with the 
input of other subsystems, the coupling effects of the inputs 
need to be considered carefully to ensure the mutual 
disturbance attenuation. This fact has also addressed in some 



works (e.g. [20]). In LMI-based MPC, input couplings will 
cause some LMIs corresponding to the MPC of each subsystem 
to be dependent on the feedback gains of other subsystems. 
Thus, obtaining a large feedback gain for a subsystem at a 
sample time may cause such large mutual disturbances that lead 
to the infeasibility of LMIs of other local subsystems at the 
next sample time. To overcome this, some new LMIs are 
proposed to be added in the MPC design of each subsystem to 
ensure that in the next sampling time, the design of control 
signal for each subsystem will not alter the feasibility 
properties of LMIs corresponding to other subsystems. 

The rest of the paper is organized as follows. Section II 
contains the preliminary material needed to develop the results 
of this paper. In Section III the main results on decentralized 
LMI-based MPC with RPI sets are developed. The discussion 
on the recursive feasibility of the LMIs and stability of the 
overall system is also presented in this section. Simulation 
example and final conclusion are drawn in Section IV and V, 
respectively. 

Notation. Throughout this paper, the time step 𝑘 is dropped, 
whenever convenient, for the sake of compactness of the 
equations. [𝐴𝑖]𝑖∈𝑀  denotes the horizontal concatenation of 

matrices 𝐴𝑖  where 𝑖 ∈ 𝑀, i.e. [𝐴1, … , 𝐴𝑖, … , 𝐴𝑀]. diag(𝑃𝑗), 𝑗 ∈
1, … , 𝑁  is the block diagonal collection of 𝑃1  to 𝑃𝑁  matrices. 
‖. ‖ means the 2-norm unless otherwise stated. Card(𝑁) is the 
number of elements in set 𝑁 . The sign ∗  in some matrix 
expressions expresses symmetric transpose structure. 

II. PRELIMINARIES 

Consider a discrete time multi-input linear system as 

 𝑥+ = 𝐴𝑥 + 𝐵𝑢, 

where 𝑢 ∈ 𝑅𝑚 , 𝑚 ≥ 2  is the input signal and 𝑥 ∈ 𝑅𝑛  is the 
state vector. There are element-wise state and input constraints 

as 𝑋 = {|𝑥𝑖| ≤ 𝑥𝑖,max}  and 𝑈 = {|𝑢𝑖| ≤ 𝑢𝑖,max}  respectively. 

Let us suppose that system (1) can be decomposed into 𝑁 ∈
{2,… ,𝑚}  interacting subsystems. The dynamic of each 
subsystem can be expressed as 

 𝑥𝑖
+ = 𝐴𝑖𝑖𝑥𝑖 + 𝐵𝑖𝑖𝑢𝑖 + ∑ (𝐴𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖 𝑥𝑗 + 𝐵𝑖𝑗𝑢𝑗), 

where 𝑥𝑖 ∈ 𝑅𝑛𝑖 , ∑ 𝑛𝑖
𝑁
𝑖=1 = 𝑛  and 𝑢𝑖 ∈ 𝑅𝑚𝑖 , ∑ 𝑚𝑖

𝑁
𝑖=1 = 𝑚 . The 

goal is to design a state feedback control law using LMI-based 
MPC for each subsystem. Let 𝑁𝑖 be the index set of neighbors 
of subsystem 𝑖  defined as 𝑁𝑖 = {𝑗 ∈ 𝑁, 𝑗 ≠ 𝑖|[𝐴𝑖𝑗 , 𝐵𝑖𝑗] ≠ 0} . 

Thus, by substituting 𝑢𝑗 = 𝐾𝑗𝑥𝑗 , 𝑗 ∈ 𝑁𝑖, where 𝐾𝑗  are the state 

feedback gains of other neighbor subsystems, (2) can be 
rewritten as 

 𝑥𝑖
+ = 𝐴𝑖𝑖𝑥𝑖 + 𝐵𝑖𝑖𝑢𝑖 + 𝐸𝑖𝑑𝑖, 

where 𝐸𝑖 = 𝐴𝑐,𝑖 + 𝐵𝑐,𝑖𝐾𝑐,𝑖 , 𝐴𝑐,𝑖 = [𝐴𝑖𝑗]𝑗∈𝑁𝑖
, 𝐵𝑐,𝑖 = [𝐵𝑖𝑗]𝑗∈𝑁𝑖

, 

𝐾𝑐,𝑖 = diag([𝐾1, … , 𝐾𝑗 , … , 𝐾𝑁]), and 𝑑𝑖 = [𝑥𝑗]𝑗∈𝑁𝑖

𝑇 . 

Assumption 1. There exists a state feedback 𝐾𝑖 , 𝑖 = 1, … , 𝑁 
which can stabilize the pair (𝐴𝑖𝑖 , 𝐵𝑖𝑖). 

Assumption 2. At the initial point the mutual disturbances 

are bounded inside an ellipsoidal set Ω𝑑,𝑖 = {𝑑𝑖|𝑑𝑖
𝑇𝑃𝑑,𝑖𝑑𝑖 ≤ 1}. 

Definition 1 [13]. Consider a discrete time linear system 

𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑑, with constraints 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈, and 𝑑 ∈
𝐷. A set Ω ∈ 𝑋 is an RPI set for this system, if and only if, 
∀𝑥 ∈ Ω and ∀𝑑 ∈ 𝐷  there exists 𝑢 ∈ 𝑈 such that (𝐴𝑥 + 𝐵𝑢 +
𝐸𝑑) ∈ Ω. 

Lemma 1 [13]. For the linear system described in 
Definition 1, assume that Ω𝑑(𝑃𝑑) = {𝑑|𝑑𝑇𝑃𝑑𝑑 ≤ 1}  is the 
smallest outer ellipsoid that contains 𝐷. Then, an ellipsoidal set 
Ω(𝑃) = {𝑥|𝑥𝑇𝑃𝑥 ≤ 𝜉} corresponding with a state feedback law 
𝑢 = 𝐾𝑥 is an RPI set for this system if and only if there exists 
positive definite matrix 𝑀  such that the following LMI 
condition holds for some scalar 0 < 𝜆 < 1  where 𝑃 = 𝜉𝑀−1 
and 𝐾 = 𝑌𝑀−1. 

 [
(1 − 𝜆)𝑀 0 ∗

0 𝜆𝑃𝑑 ∗
𝐴𝑀 + 𝐵𝑌 𝐸 𝑀

] ≥ 0 

Definition 2 [14]. The linear system 𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑑 
is said to be Input to State Stable (ISS), if there exists a 𝒦ℒ 
function 𝛽(. ) and a 𝒦 function 𝛾(. ) such that for all 𝑘 ≥ 0 

 ‖𝑥‖ ≤ 𝛽(‖𝑥0‖, 𝑘) +  𝛾(‖𝑑‖). 

Lemma 2 [14]. The system 𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑑 is ISS if 
it admits an ISS-Lyapunov function 𝑉(𝑥) defined as 

 𝛼1(‖𝑥‖) ≤ 𝑉(𝑥) ≤ 𝛼2(‖𝑥‖), (6) 

 𝑉(𝑥+) − 𝑉(𝑥) ≤ −𝛼3(‖𝑥‖) + 𝜌(‖𝑑‖), 

where 𝛼1(. ), 𝛼2(. ), and 𝛼3(. ) are 𝒦∞  functions and 𝜌(. ) is a 
𝒦 function. 

Lemma 3 [15]. In constrained finite set 𝑋, for a quadratic 
function 𝑉(𝑥) = 𝑥𝑇𝑃𝑥 , 𝑃 > 0 , there exists a finite constant 
𝐿𝑃 > 0 such that for all 𝑥1, 𝑥2 ∈ 𝑋 the following holds. 

 |𝑉(𝑥1) − 𝑉(𝑥2)| ≤ 𝐿𝑃‖𝑥1 − 𝑥2‖ 

III. DECENTRALIZED MPC DESIGN 

In this section, an LMI-based MPC state feedback law is 
designed for each subsystem. Besides, instead of using a 
conventional invariant set as [7], additional LMI conditions are 
presented to construct an RPI set for each subsystem to 
consider the effect of other subsystems in the design. Note that, 
one can calculate a priori an upper bound for the effects of 
other subsystems and thus solve a complete decentralized MPC 
for each subsystem with a local cost function and local 
dynamic with a fixed amount of disturbance. However, this 
may lead to a poor performance. Moreover, as the states of 
each subsystem go towards the origin, one can expect that they 
impose smaller disturbances on the other subsystems. 
Consequently, the information of shrinking RPI ellipsoids of 
each subsystem can be used to improve performance. 
Moreover, for subsystems with input couplings, the inputs have 
also effect on the amount of mutual disturbances. Thus, some 
constraints need to be imposed to ensure that the coupling 
disturbances decrease at each sample time. 

A. Main Results 

Consider the following local dynamic for each subsystem 
without the effects of the other subsystems 

 𝑥̅𝑖
+ = 𝐴𝑖𝑖𝑥̅𝑖 + 𝐵𝑖𝑖𝑢𝑖 

Let us assume a local objective function for each subsystem 



corresponding with its local dynamic (9) as 

 𝐽𝑖 = ∑ 𝑥̅𝑖,(𝑘+𝑙|𝑘)
𝑇 𝑄𝑖 𝑥̅𝑖,(𝑘+𝑙|𝑘) + 𝑢𝑖,(𝑘+𝑙|𝑘)

𝑇 𝑅𝑖𝑢𝑖,(𝑘+𝑙|𝑘)
∞
𝑙=0 ,

where 𝑄𝑖  and 𝑅𝑖  are positive definite weighting matrices. 

𝑥̅𝑖,(𝑘+𝑙|𝑘) are the predicted states of the nominal 𝑖th subsystem at 

time 𝑘 + 𝑙  from measurements of time 𝑘 . Consider the 

quadratic function 𝑉𝑖(𝑥̅𝑖) = 𝑥̅𝑖
𝑇𝑃𝑖 𝑥̅𝑖 with 𝑃𝑖 > 0 and 𝑉𝑖(0) = 0 

which satisfies the following inequality at time 𝑘: 

 𝑉𝑖(𝑥̅𝑖,(𝑘+𝑙+1|𝑘)) − 𝑉𝑖(𝑥̅𝑖,(𝑘+𝑙|𝑘)) ≤ −𝑥̅𝑖,(𝑘+𝑙|𝑘)
𝑇 𝑄𝑖 𝑥̅𝑖,(𝑘+𝑙|𝑘) 

 −𝑢𝑖,(𝑘+𝑙|𝑘)
𝑇 𝑅𝑖𝑢𝑖,(𝑘+𝑙|𝑘) 

Calculating the summation of both side of (11) from 𝑙 = 0 
to 𝑙 = ∞ gives 

 𝐽𝑖 ≤ 𝑥̅𝑖,(𝑘|𝑘)
𝑇 𝑃𝑖𝑥̅𝑖,(𝑘|𝑘) − 𝑥̅𝑖,(∞|𝑘)

𝑇 𝑃𝑖 𝑥̅𝑖,(∞|𝑘). 

For 𝐽𝑖 defined in (10) to be finite, 𝑥̅𝑖,(∞|𝑘) should go toward 

zero. Therefore, from (12) the upper bound of objective 

function (10) can be obtained as 𝐽𝑖 ≤ 𝑥̅𝑖
𝑇𝑃𝑖 𝑥̅𝑖 ≤ 𝜉𝑖 where 𝜉𝑖 is a 

positive scalar. Then, the MPC law can be designed using 
Theorem 1. 

Remark 1. Note that the predicted states of the nominal 𝑖th 
subsystem at time 𝑘  based on measurements of time 𝑘 , i.e. 

𝑥̅𝑖,(𝑘|𝑘) = 𝑥̅𝑖, equals to 𝑥𝑖 which is the measured state at time 𝑘. 

Theorem 1. Consider subsystem (3) with constraints on the 

inputs and states as |𝑢𝑖𝑟
| ≤ 𝑢𝑖𝑟,max

, 𝑟 = 1,… ,𝑚𝑖  and |𝑥𝑖𝑟
| ≤

𝑥𝑖𝑟,max
, 𝑟 = 1,… , 𝑛𝑖. The gain of the state feedback controller 

𝑢𝑖 = 𝐾𝑖𝑥𝑖  which minimizes the upper bound of objective 

function (10) at time 𝑘  is obtained as 𝐾𝑖 = 𝑌𝑖𝐺𝑖
−1 . Matrices 

𝑀𝑖 ∈ 𝑅𝑛𝑖×𝑛𝑖 , 𝐺𝑖 ∈ 𝑅𝑛𝑖×𝑛𝑖 , and 𝑌𝑖 ∈ 𝑅𝑚𝑖×𝑛𝑖  are obtained from 
the following optimization problem with 0 < 𝜆𝑖 < 1. 

 min
𝑀𝑖,𝐺𝑖,𝑌𝑖,𝜉𝑖 

𝜉𝑖 a

 [
𝐼 𝑥̅𝑖

𝑇

𝑥̅𝑖 𝑀𝑖
] ≥ 0 b



[
 
 
 
 
𝐺𝑖 + 𝐺𝑖

𝑇 − 𝑀𝑖 ∗ ∗ ∗
𝐴𝑖𝑖𝐺𝑖 + 𝐵𝑖𝑖𝑌𝑖 𝑀𝑖 ∗ ∗

𝑄𝑖
1 2⁄

𝐺𝑖 0 𝜉𝑖𝐼 ∗

𝑅𝑖
1 2⁄

𝑌𝑖 0 0 𝜉𝑖𝐼]
 
 
 
 

≥ 0 c

 [

(1 − 𝜆𝑖)(𝐺𝑖 + 𝐺𝑖
𝑇 − 𝑀𝑖) ∗ ∗

0 𝜆𝑖𝑃𝑑,𝑖 ∗

𝐴𝑖𝑖𝐺𝑖 + 𝐵𝑖𝑖𝑌𝑖 𝐸𝑖 𝑀𝑖

] ≥ 0 d

 [
𝐺𝑖 + 𝐺𝑖

𝑇 − 𝜅𝑖
2𝐼 ∗

𝐴𝑗𝑖𝐺𝑖 + 𝐵𝑗𝑖𝑌𝑖 𝐼
] ≥ 0𝜅𝑖 = ‖(𝐴

𝑗𝑖
+ 𝐵𝑗𝑖𝐾̅𝑖)‖ e

 𝑋𝑖 − 𝑀𝑖 ≥ 0  with  𝑋𝑖𝑟𝑟
≤ 𝑥𝑖𝑟,max

2 ,     𝑟 = 1,… , 𝑛𝑖 f

[
𝑊𝑖 𝑌𝑖

𝑌𝑖
𝑇 𝐺𝑖 + 𝐺𝑖

𝑇 − 𝑀𝑖
] ≥ 0,   𝑊𝑖𝑟𝑟

≤ 𝑢𝑖𝑟,max
2  , 𝑟 = 1,… ,𝑚𝑖g

Proof. Inequality (13b) is obtained by substituting 𝑃𝑖 =
𝜉𝑖𝑀𝑖

−1  into 𝑉𝑖(𝑥̅𝑖) = 𝑥̅𝑖
𝑇𝑃𝑖𝑥̅𝑖 ≤ 𝜉𝑖  and employing the Schur 

complement. To derive inequality (13c), substitute the 𝑖 th 
subsystem’s local dynamic equation (9) into (11) and apply 
Schur complement to it. Then, multiply diag(𝐺𝑖, 𝐼, 𝐼, 𝐼)  to its 

right hand and diag(𝐺𝑖
𝑇, 𝐼, 𝐼, 𝐼) to its left hand side. Note that 

𝐺𝑖 + 𝐺𝑖
𝑇 − 𝑀𝑖 ≤ 𝐺𝑖

𝑇𝑀𝑖
−1𝐺𝑖. 

Inequality (12d) comes from Lemma 1 and constructs an 
RPI set for the 𝑖th subsystem and guaranties that the states of 
the subsystem 𝑖  will stay inside this RPI set regardless of 
disturbances imposed by other subsystems. It is known from 
the proof of Lemma 1 [13, 14] that the set Ωi(𝑃𝑖) =
{𝑥𝑖 ∈ 𝑅𝑛𝑖|𝑥𝑖

𝑇𝑃𝑖𝑥𝑖 − 𝜉𝑖 ≤ 0} is an RPI set for system (3) if the 
following two conditions hold simultaneously. 

 
1

𝜉𝑖
𝑥𝑖

+𝑇
𝑃𝑖𝑥𝑖

+ −
1

𝜉𝑖
𝑥𝑖

𝑇𝑃𝑖𝑥𝑖 ≤ 0, 


1

𝜉𝑖
𝑥𝑖

𝑇𝑃𝑖𝑥𝑖 ≥ 𝑑𝑖
𝑇𝑃𝑑,𝑖𝑑𝑖 

where 𝑃𝑑,𝑖 = diag(𝑀𝑗
−1) 𝑛𝑐⁄ , 𝑗 ∈ 𝑁𝑖 , 𝑛𝑐 = Card(𝑁𝑖). Applying 

S-procedure, an equivalent inequality can be obtained for (14) 
and (15) as 

(
1

𝜉𝑖
𝑥𝑖

+𝑇
𝑃𝑖𝑥𝑖

+ −
1

𝜉𝑖
𝑥𝑖

𝑇𝑃𝑖𝑥𝑖) − 𝜆𝑖 (𝑑𝑖
𝑇𝑃𝑑,𝑖𝑑𝑖 −

1

𝜉𝑖
𝑥𝑖

𝑇𝑃𝑖𝑥𝑖) ≤ 0

Substituting the subsystem’s dynamic in (3) and considering 

the state feedback controller 𝑢𝑖 = 𝐾𝑖𝑥𝑖 and 𝑃𝑖 = 𝜉𝑖𝑀𝑖
−1 yields 

 ((𝐴𝑖𝑖 + 𝐵𝑖𝑖𝐾𝑖)𝑥𝑖 + 𝐸𝑖𝑑𝑖)
𝑇
𝑀𝑖

−1((𝐴𝑖𝑖 + 𝐵𝑖𝑖𝐾𝑖)𝑥𝑖 + 𝐸𝑖𝑑𝑖) 

 −𝑥𝑖
𝑇𝑀𝑖

−1𝑥𝑖 − 𝜆𝑖(𝑑𝑖
𝑇𝑃𝑑,𝑖𝑑𝑖 − 𝑥𝑖

𝑇𝑀𝑖
−1𝑥𝑖) ≤ 0 

which can be rewritten as 

[
𝑥𝑖

𝑑𝑖
]
𝑇

[
Γ𝑖 ∗

𝐸𝑖
𝑇𝑀𝑖

−1(𝐴𝑖𝑖 + 𝐵𝑖𝑖𝐾𝑖) 𝐸𝑖
𝑇𝑀𝑖

−1𝐸𝑖 − 𝜆𝑖𝑃𝑑,𝑖
] [

𝑥𝑖

𝑑𝑖
] ≤ 0

where Γ𝑖 = (𝐴𝑖𝑖 + 𝐵𝑖𝑖𝐾𝑖)
𝑇𝑀𝑖

−1(𝐴𝑖𝑖 + 𝐵𝑖𝑖𝐾𝑖) + (−1 + 𝜆𝑖)𝑀𝑖
−1. 

For (18) to be true, it is sufficient that the following 
inequality holds 

 [
(−1 + 𝜆𝑖)𝑀𝑖

−1 0

0 −𝜆𝑖𝑃𝑑,𝑖
] + 

 [
(𝐴𝑖𝑖 + 𝐵𝑖𝑖𝐾𝑖)

𝑇

𝐸𝑖
𝑇 ]𝑀𝑖

−1[(𝐴𝑖𝑖 + 𝐵𝑖𝑖𝐾𝑖) 𝐸𝑖] ≤ 0 

By applying the Schur complement to (19) one can obtain 

 [

(1 − 𝜆𝑖)𝑀𝑖
−1 0 (𝐴𝑖𝑖 + 𝐵𝑖𝑖𝐾𝑖)

𝑇

0 𝜆𝑖𝑃𝑑,𝑖 𝐸𝑖
𝑇

𝐴𝑖𝑖 + 𝐵𝑖𝑖𝐾𝑖 𝐸𝑖 𝑀𝑖

] ≥ 0. 

Multiplying diag(𝐺𝑖 , 𝐼, 𝐼) and its transpose to the right and 

left hand sides of (20) respectively, and having 𝐺𝑖 + 𝐺𝑖
𝑇 −

𝑀𝑖 ≤ 𝐺𝑖
𝑇𝑀𝑖

−1𝐺𝑖  in mind, will lead to (13d). Moreover, (13f) 
and (13g) ensure the constraint satisfaction on states and inputs, 
respectively [7]. 

Dealing with systems with input couplings, for each 𝑗 the 
effect of subsystem 𝑖 on subsystem 𝑗 at the next sample time is 
proportional to 𝐸𝑗 = (𝐴𝑗𝑖 + 𝐵𝑗𝑖𝐾𝑖). Hence, while designing 𝐾𝑖 

for the 𝑖th subsystem, some constraints should be considered to 
prevent subsystem 𝑖  from altering the feasibility of LMIs of 
subsystem 𝑗 in the next sample time. Therefore, the following 
condition must hold. 

 (𝐴𝑗𝑖 + 𝐵𝑗𝑖𝐾𝑖)
𝑇(𝐴𝑗𝑖 + 𝐵𝑗𝑖𝐾𝑖) ≤ 𝜅𝑖

2𝐼, 



where 𝜅𝑖 = ‖(𝐴
𝑗𝑖

+ 𝐵𝑗𝑖𝐾̅𝑖)‖  and 𝐾𝑖  is the feedback gain 

calculated in the previous sample time. Using the Schur 
complement, (21) turns into condition (13e). ∎ 

Recursive feasibility is very important in MPC design. In 
most LMI-based MPC formulations [7, 9, 10], from the 
assumption of initial feasibility, recursive feasibility is verified 
by the fact that the only LMI containing the state information, 
or in other word, the only LMI which may change in each 
sample time and thus need to be checked for feasibility, is the 
one ensuring the states being in the invariant set, which is 
always satisfied by construction. However, in the framework of 
this paper, this fact is not valid because the feedback gain of 
other subsystems will change the 𝐸𝑖 in (13d). 

Theorem. 2. If the LMIs of Theorem 1 are feasible at the 
initial point, they will be feasible for the rest of the time. 

Proof. Denote the optimal solution obtained from solving 
the LMIs of Theorem 1 at time 𝑘 = 0 as {𝑀𝑖

∗, 𝐺𝑖
∗, 𝑌𝑖

∗, 𝜉𝑖
∗} and 

𝑃𝑖
∗ = 𝜉𝑖

∗𝑀𝑖
∗−1

. When 𝑥𝑖(1)  is obtained, (13d) ensures that 

𝑥𝑖
𝑇(1)𝑃𝑖

∗𝑥𝑖(1) ≤ 𝜉𝑖
∗  which also implies that 𝑥̅𝑖(1)𝑇𝑃𝑖

∗𝑥̅𝑖(1) ≤
𝜉𝑖

∗. Thus, (13b) also holds for time 𝑘 = 1. On the other hand, 
(17) is true if the following inequality holds true where 𝜀𝑖 is a 

positive scalar and 𝜎𝑖 is the largest eigenvalue of 𝑀𝑖
−1. 

(1 + 𝜀𝑖)(𝑥𝑖
𝑇(𝐴𝑖𝑖 + 𝐵𝑖𝑖𝐾𝑖)

𝑇𝑀𝑖
−1(𝐴𝑖𝑖 + 𝐵𝑖𝑖𝐾𝑖)𝑥𝑖)

 +(1 + 𝜀𝑖
−1)(𝜎𝑖𝑑𝑖

𝑇𝐸𝑖
𝑇𝐸𝑖𝑑𝑖)−𝑥𝑖

𝑇𝑀𝑖
−1𝑥𝑖 (22)

−𝜆𝑖(𝑑𝑖
𝑇𝑃𝑑,𝑖𝑑𝑖 − 𝑥𝑖

𝑇𝑀𝑖
−1𝑥𝑖) ≤ 0

Furthermore, satisfaction of (13e) ensures that 𝐸𝑖
𝑇𝐸𝑖 

decreases at each sample time. In fact, by implementing 
condition (13e), the local state feedback gain of each subsystem 
will be obtained in a way that it will not ruin the feasibility of 
LMIs of other subsystem at the next sample time. Besides, by 
definition, 𝑃𝑑,𝑖  will be larger at each sample time as the RPI 

ellipsoid for each subsystem shrinks. Thus, it can be concluded 
from (22) that (13d) also remains feasible for each subsystem. ∎ 

Theorem 3. All subsystems (3) will be input to state stable. 
Moreover, the overall system is stable. 

Proof. Based on Lemma 2, it needs to be shown that 

𝑉𝑖
∗(𝑥) = 𝑥𝑖

𝑇𝑃𝑖
∗𝑥𝑖  is an ISS Lyapunov function where 𝑃𝑖

∗ is the 
optimal value of 𝑃𝑖  at time 𝑘. At first, it is obvious that 

 𝜎𝑖min
‖𝑥𝑖‖

2 ≤ 𝑉𝑖(𝑥𝑖) ≤ 𝜎𝑖max
‖𝑥𝑖‖

2, 

where 𝜎𝑖min
= min{𝜎(𝑃𝑖

∗)|𝑘 ≥ 0}  and 𝜎𝑖max
=

max{𝜎(𝑃𝑖
∗)|𝑘 ≥ 0} . 𝜎(. )  and 𝜎(. )  are the minimum and 

maximum singular values. Since (11) is guaranteed when (13c) 
holds, one can write 

 𝑉∗(𝑥̅𝑖
+) − 𝑉∗(𝑥̅𝑖) < −𝑥̅𝑖

𝑇𝑄𝑖𝑥̅𝑖−𝑢𝑖
𝑇𝑅𝑖𝑢𝑖 ≤ −‖𝑥̅𝑖‖𝑄

2 . 

On the other hand, it is known from (9) and (3) that 𝑥𝑖
+ =

𝑥̅𝑖
+ + 𝐸𝑖𝑑𝑖 . Therefore, there exists a 𝒦∞ function 𝜌𝑑(. ) which 

‖𝑥𝑖
+ − 𝑥̅𝑖

+‖ ≤ 𝜌𝑑(‖𝑑𝑖‖) . Besides, Lemma 3 implies that 
‖𝑉𝑖

∗(𝑥𝑖
+) − 𝑉𝑖

∗(𝑥̅𝑖
+)‖ ≤ 𝐿𝑃(𝑘)‖𝑥𝑖

+ − 𝑥̅𝑖
+‖. Therefore, we have 

 |𝑉𝑖
∗(𝑥𝑖

+) − 𝑉𝑖
∗(𝑥̅𝑖

+)| < 𝐿𝑃(𝑘)𝜌𝑑(‖𝑑𝑖‖). 

By considering 𝑥̅𝑖,(𝑘|𝑘) = 𝑥𝑖, the following inequality can be 

derived from (24) and (25). 

 𝑉𝑖
∗(𝑥𝑖

+) − 𝑉𝑖
∗(𝑥𝑖) ≤ −‖𝑥𝑖‖𝑄

2 + 𝐿𝑃𝜌𝑑(‖𝑑𝑖‖), 

where 𝐿𝑃 = max{𝐿𝑃(𝑘)|𝑘 ≥ 0} . Eventually, (23) and (26) 
demonstrate that 𝑉𝑖

∗(𝑥𝑖)  is an ISS Lyapunov function. Thus, 
subsystem (3) will be ISS in the presence of 𝑑𝑖 . 

However, 𝑑𝑖 is imposed by the other subsystems’ states and 
it is known that the states of each subsystem lie in its 

corresponding RPI set Ω𝑥𝑖
= {𝑥𝑖|𝑥𝑖

𝑇𝑃𝑖𝑥𝑖 ≤ 𝜉𝑖} which shrinks at 

each time step by solving (13). Therefore, the disturbance set 

imposed on each subsystem Ω𝑑,𝑖 = {𝑑𝑖|𝑑𝑖
𝑇𝑃𝑑,𝑖𝑑𝑖 ≤ 1}  also 

shrinks at the next time step. Repeating this, finally 𝑑𝑖 will 
vanish and asymptotic stability can be obtained. Consequently, 
the state of the overall system will also go toward origin. ∎ 

Remark 2. Note that, it is possible that the norm of 𝑥𝑗,  𝑗 ∈
𝑁𝑖  and consequently the norm of the mutual disturbances 𝑑𝑖 
does not decrease at each time step. However, as stated in the 
proof of Theorem 3, 𝑥𝑗,  𝑗 ∈ 𝑁𝑖 will always remain in their RPI 

set which is shrinking at each time step and Theorem 1 only 
uses this information. 

Remark 3. Inequality (13d) is an LMI when 𝜆𝑖  is pre-
specified. Otherwise, it is a Bilinear Matrix Inequality (BMI). 
Hence, to avoid computational complexity, one can choose a 
value for 𝜆𝑖 offline, which leads to larger RPI set and use it at 
each time step. 

The results of this section are summarized in Algorithm 1. 

Algorithm 1 
Offline part: Step 1. Decompose the system to some 

subsystems as (3). 
Step 2. Select the largest disturbance set on each subsystem 

as Ω𝑑,𝑖,max = {𝑑𝑖|𝑑𝑖
𝑇𝑃𝑑,𝑖,max𝑑𝑖 ≤ 1}  where 𝑃𝑑,𝑖,max =

diag((𝑥𝑗𝑟,max

−2 )) 𝑛𝑐⁄ , 𝑗 ∈ 𝑁𝑖 , 𝑟 = 1,… , 𝑛𝑗  𝑛𝑐 = Card(𝑁𝑖). Solve an 

optimization problem with objective function 

max
𝑀𝑖,𝐺𝑖,𝑌𝑖

log det(𝑀𝑖) offline with conditions (13c), (13d), (13f), 

and (13g). Save the obtained solutions as {𝑀𝑖
0, 𝐾𝑖

0, 𝜆𝑖
0}. 

Online part: Step 3. Replace 𝜆𝑖
0 in (13d) to make it an LMI 

condition. Use 𝐾𝑖
0  at time 𝑘 = 0 wherever the previous state 

gains is needed. Solve (13) for each subsystem. 
Step 4. Apply 𝑢𝑖 = 𝐾𝑖𝑥𝑖 to the system. Update the mutual 

disturbance set 𝑃𝑑,𝑖 = diag(𝑀𝑗
−1) 𝑛𝑐⁄ , 𝑗 ∈ 𝑁𝑖 , 𝑛𝑐 = Card(𝑁𝑖) 

and 𝐸𝑖  with obtained state feedback gain for each subsystem. 
Repeat solving (13). 

B. Extension to uncertain systems and other properties 

The results presented in Section III-A can also be easily 
extended to decentralized control of linear uncertain systems. 
The results also satisfy Plug-and-Play (PnP) decentralized 
control properties. 

1) Linear systems with polytopic uncertainty 

Suppose that system (1) is composed of 𝑁 subsystems as 
(3) where each subsystem’s dynamic can be formulated inside 
a polytope as 

[𝐴𝑖𝑖  𝐵𝑖𝑖  𝐸𝑖] = ∑ 𝛽𝑖
𝑙[𝐴𝑖𝑖

𝑙  𝐵𝑖𝑖
𝑙  𝐸𝑖

𝑙]; 𝐿
𝑙=1 ∑ 𝛽𝑖

𝑙 = 1; 𝐿
𝑙=1 𝛽𝑖

𝑙 ≥ 0 



Then, Theorem 1 can be used to compute control signal for 
each subsystem by solving (13) for every local vertices 𝑙 =
1,… , 𝐿. 

2) Linear systems with additive disturbances 

Let system (1) have also additive disturbances as 

 𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝐻𝑤, 

where 𝑤 ∈ 𝑊 , 𝑊 = {𝑤 ∈ 𝑅𝑛𝑤|𝑤𝑇𝑤 ≤ 𝛾2} . Suppose that 
system (28) can be decomposed into 𝑁  subsystem (3) 
represented as 

 𝑥𝑖
+ = 𝐴𝑖𝑖𝑥𝑖 + 𝐵𝑖𝑖𝑢𝑖 + 𝐸𝑖𝑑𝑖 + 𝐻𝑖𝑤𝑖 , 

where 𝐻𝑖 = [𝐻𝑖𝑗]𝑗∈{𝑖,𝑁𝑖}
 , 𝑤𝑖 = [𝑤𝑗]𝑗∈{𝑖,𝑁𝑖}

𝑇 , and  𝑤𝑖
𝑇𝑤𝑖 ≤ 𝛾𝑖

2 ≤ 𝛾2. 

Introducing the extended disturbance notation as 𝐸𝑖,𝑒 = [𝐸𝑖 , 𝐻𝑖] 
and 𝑑𝑖,𝑒 = [𝑑𝑖

𝑇 , 𝑤𝑖
𝑇]𝑇 , a similar subsystem’s as (3) can be 

obtained (𝑥𝑖
+ = 𝐴𝑖𝑖𝑥𝑖 + 𝐵𝑖𝑖𝑢𝑖 + 𝐸𝑖,𝑒𝑑𝑖,𝑒) . The extended 

disturbance 𝑑𝑖,𝑒 is also bounded at each sample time as Ω𝑑,𝑖,𝑒 =

{𝑑𝑖,𝑒|𝑑𝑖,𝑒
𝑇 𝑃𝑑,𝑖,𝑒𝑑𝑖,𝑒 ≤ 1} , where 𝑃𝑑,𝑖,𝑒 = diag([𝑀𝑗

−1, 1 𝛾𝑖
2⁄ ])/

(𝑛𝑐 , 𝑛𝑤), 𝑗 ∈ 𝑁𝑖 ,  𝑛𝑐 = Card(𝑁𝑖) . Thus, Theorem 1 can be 
applied to obtain the state feedback MPC law for each 
subsystem and the ISS property is preserved for each 
subsystem and overall system. Note that in this case, the states 
of the system cannot reach the origin unless 𝑤 be a vanishing 
type of disturbance. 

3) Plug and Play properties 

The proposed method also enjoys the so called PnP 
properties [12]. It means that it can be used to decentralized 
control of coupled subsystems where subsystem are allowed to 
join or leave the system offline. When a subsystem leaves, the 
disturbance on other subsystems will remain inside the 
previous disturbance set Ω𝑑,𝑖 . Thus, the design will not alter. 
On the other hand, if an additional subsystem is added, it has 
effect only on its neighbor subsystems and the stability can be 
achieved by retuning Ω𝑑,𝑖 in the control design of its neighbors. 

IV. SIMULATION RESULTS 

Consider a system consisted of 𝑁 = 10  mass-spring-
dampers which are coupled by inputs and states. The dynamic 
of the system is as follows 

𝑚𝑥̈1 = 𝑢1 − 𝑘0𝑥1 − ℎ0𝑥̇1 − 𝑘𝑐(𝑥1 − 𝑥2)

𝑚𝑥̈𝑖 = 𝑢i − 𝑖c(𝑢𝑖−1 + 𝑢𝑖+1) − (𝑘0 + 2𝑘𝑐)𝑥𝑖

              −ℎ0𝑥̇𝑖 + 𝑘𝑐(𝑥𝑖−1 + 𝑥𝑖+1), 𝑖 = 2,… , 𝑁 − 1

𝑚𝑥̈𝑁 = 𝑢𝑁 − 𝑘0𝑥𝑁 − ℎ0𝑥̇𝑁 − 𝑘𝑐(𝑥𝑁−1 − 𝑥𝑁)

 

where 𝑚 = 1.5, 𝑘0 = 1.05 , ℎ0 = 0.3, 𝑘𝑐 = 0.1  and 𝑖𝑐 = 0.1 . 
By choosing the position and velocity of each mass as state 
variables, the system has 20 states and 10 inputs which can be 

clustered in 10 subsystems as {𝑥𝑖,1, 𝑥𝑖,2, 𝑢𝑖}, 𝑖 = 1,… ,10. The 

discrete time system’s model can be obtained as (1) with Euler 
forward method with sample time 𝑇𝑠 = 0.1 s. 

The input and state constraints are −2 ≤ 𝑢𝑖 ≤ 2 and −2 ≤
𝑥𝑖 ≤ 2, respectively. To demonstrate the applicability of the 
results of this paper, the state feedback MPC law is obtained 
for each subsystem by solving the LMIs of Theorem 1. The 
control parameters for each subsystem are as 𝑄𝑖 =
diag([1.5,1.5]);  𝑅𝑖 = 0.1; 𝜆𝑖 = 0.01; 𝑖 = 1,… ,10 . The initial 

state for each mass is 𝑥0,𝑖 = [0.6, −0.15]. 

The state trajectory of subsystems 1 , 5  and 10  of the 
controlled system from the initial state and the corresponding 
control inputs have been depicted in Figs. 1 and 2, respectively. 
To compare the results, a centralized MPC with the same 
parameters is also applied to the system. It can be seen that the 
proposed decentralized MPC is able to steer the states of the 
system to the origin. Note that by shrinking the mutual 
disturbance set on each subsystem at each time step, eventually 
all the states can be steered to the origin. 

Moreover, the average CPU time over 𝑁𝑘 = 80  sample 
times for centralized MPC is around 𝑡𝑐 = 4.5 s per step while 
with the proposed decentralized method, each control input can 
be obtained in less than around 𝑡𝑑𝑖,max = 0.02 s per step. 

This demonstrates that the proposed method can be useful 
to apply MPC to multi-input large scale systems with fast 
dynamics. All simulations has been done with Matlab 2014 
LMI toolbox on a Windows 64-bit OS, with 3 GHz Core i5 
CPU and 8 GB of RAM. 

 
Fig. 1. State trajectory of closed loop system. Dashed line: centralized MPC 
and bold line: the proposed decentralized MPC. 

 
Fig. 2. Inputs of closed loop system. Dashed line:centralized MPC and bold 
line: the proposed decentralized MPC. 
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Besides, solving LMI based centralized MPC for systems 
with a high number of states, demand solving a set of LMIs 
with high dimensions and many variables. Therefore, this may 
result into a very conservative invariant set which is much 
smaller than the actual region of attraction of the system. For 
example, if the initial state of the system is 𝑥0,1 = 𝑥0,10 =
[1.6,0]  and 𝑥0,𝑖 = [−1.5,0], 𝑖 = 2,… ,9 , centralized MPC 

cannot be used to steer this initial state to the origin, because 𝑥0 
is outside of the maximum invariant set computed by solving 
the centralized MPC’s set of LMIs. However, the proposed 
method can easily drive the system’s state from this initial 
point to the origin as presented in Fig. 3 for subsystems 1, 5 
and 10 , since the initial state is inside the RPI set of each 
subsystem. 

 
Fig. 3. State trajectory of closed loop system starting from initail point 𝑥0 

using proposed decentralized MPC. 

V. CONCLUSION 

In this paper, a decentralized MPC algorithm based on LMI 
has been presented to reduce the computational time of MPC 
for linear discrete time system with a high number of inputs 
and states. Each subsystem just uses its local objective function 
and local dynamics to compute the state feedback control gain. 
However, in order to account for interactions with other 
subsystems, some information from neighbor subsystems has 
been used to compute an RPI set for each subsystem. The ISS 
stability for each subsystem is proved. Besides, the attenuation 
of state dependent disturbances for each subsystem is also 
considered in the design and recursive feasibility of LMIs of 
each subsystem is ensured despite the coupling between the 
inputs and states of subsystems. Thus, the overall system’s 
states can be steered to the origin with lower required 
computational time. Simulation results show the effectiveness 
of proposed method. Moreover, it has been shown that with 
some minor modifications, the results are applicable to design 
control action for polytopic uncertain systems and also systems 
with external additive disturbances. 
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