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Electric power grids are highly nonlinear complex systems. This manuscript presents a novel approach to the stabilization of large
power systems. The proposed control satisfied three constraints: decentralization, input saturation imposed in practice, and
robustness against load changes. The large power system is decomposed into subsystems, for each a decentralized controller is
designed. The effect of the rest of the system on each subsystem is considered as an external disturbance and represented in
norm-bounded form. A new approach to solve this problem is proposed in the present paper. The approach is based on the
method of invariant ellipsoids, and the tool of linear matrix inequalities (LMI) is utilized to solve the resulting optimization
problem. Control of multimachine power system is studied using the proposed control. Comparison with other techniques is
also given.

1. Introduction

Power system stability studies are important to insure reliable
and continuous service to the consumers. There are three
types of stability studies: voltage stability, frequency stability,
and angle stability (transient and small disturbance).

Small disturbance stability studies low frequency electro-
mechanical oscillations that arise at synchronous generators
after perturbations (load and topology variations). Auto-
matic voltage regulators (AVR) are used to adjust the termi-
nal voltage of generators. A large value in the AVR gain may
result in negative damping leading to an oscillatory behavior
and loss of stability. These oscillations can cause blackouts
and great loss of national economy if they are not suitably
damped [1]. The oscillations can be classified as follows: (i)
local (when a generator swings against the rest of the system
at 1.0 to 2.0Hz) and (ii) inter-rea (when two coherent groups
of generators swing against each other at 1Hz or less) [1, 2].

Power system stabilizers (PSS) are controllers installed
on synchronous generators to damp power oscillations
through the excitation channel. The main function of PSS

is to modulate the field voltage of generators to provide an
additional damping torque (in phase with rotor speed devi-
ations) [1]. The types of PSS can be an output feedback or
state feedback.

The classical output feedback structure of PSS is com-
posed of single- or double-lead blocks to provide the required
oscillation damping. The most common input signals to the
PSS are speed deviation and electrical power [2].

Conventional power system stabilizers (CPSS) are output
feedback controllers allocated to damp local oscillations, and
through proper tuning, they can provide a suitable damping
for interarea modes associated to generators on which they
are fitted. The tuning process of CPSS is a difficult task due
to load variation. In other words, if the CPSS is tuned at
one operating point, there is no guarantee that it works well
at another.

There are several techniques to handle the PSS tuning
problem. These techniques can be classified into four groups:
(i) classical control and pole placement, (ii) robust control,
(iii) artificial intelligence, and (iv) optimization approaches
to fine tune most of the abovementioned methods.
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The methodologies based on classical control, for exam-
ple, frequency response methods, are well established, and
they are the most commonly used in the industry. Nonethe-
less, they consist of a sequential design in which one PSS is
designed at a time (using a single-machine infinite bus equiv-
alent system). In addition, the tuning procedure is performed
for a single operating condition, requiring a trial-and-error
approach if robustness is to be considered [3].

There are many design methods based on robust control
theory to provide PSS which is robust against system load
variations [4]. Model uncertainty due to load variations can
be represented in different forms: interval plant, norm-
bounded, and polytopic. The uncertainty modeled as an
interval plant is found in [5]. The Kharitonov theorem is
used to design robust PSS for interval plants as given in [5].
Comparison between the μ-synthesis and the H∞ loop-
shaping approaches is found in [6]. However, such approach
requires many trials and errors to find suitable weighting
transfer functions. Power system uncertainty represented
by a linear parameter varying (LPV) model and gain-
scheduled control is applied as presented in [7]. The PSS
can also be designed using linear quadratic regulator
(LQR). To achieve a good dynamic performance in terms
of desired settling time and damping ratio, the closed-loop
poles must be placed in a desired region for all admissible
load variations. Lyapunov-based matrix inequalities (linear
matrix inequalities (LMI) and bilinear matrix inequalities
(BMI)) are used to achieve a regional pole placement.
Plant and controller uncertainties represented by a norm-
bounded model and a resilient PSS design achieving regional
pole placement are given in [8].

Intelligence techniques such as artificial neural networks
(ANNs) and fuzzy logic (FL) are used to design PSS. These
methods suffer from the long training time of ANNs and
the extensive previous knowledge of the system behavior
required for the FL application [9].

Optimization techniques are another alternative to the
PSS design. The PSS is tuned to optimize performance
indices in terms of the damping ratio and the dominant
poles. One of the great advantages of using these tech-
niques is that the tuning procedure is automatically made.
In addition, once an optimization method fails, it can be
restarted with new initial conditions [10, 11]. There are
two main groups of the optimization techniques: (i) search
direction-based methods (that use derivatives or not) and
(ii) metaheuristics methods.

The search direction-based methods provide fast conver-
gence. However, it can stick in a local minimum, and also it is
sensitive to the initial solution guess. For nonconvex optimi-
zation problems (such as the PSS design [10]), the global
solution may not be achieved by these methods.

Metaheuristics methods are probabilistic and derivative-
free techniques which seek global solutions at a reasonable
computational burden. Most metaheuristics approaches
are population-based methods that use a set of solutions
(individuals) to solve an optimization problem. The individ-
ual solutions are simple; however, their collective effect
produce a surprising result. These methods are suitable
for global optimization since it explores the whole search

space. So, stucking in a local minimum is very remote. None-
theless, they tend to present a slow convergence. Some appli-
cations of metaheuristics for conventional PSS tuning are:
genetic algorithms, ant colony optimization, bat algorithm
[11], cuckoo search algorithm [12], gravitational search
[13], particle swarm optimization [14], bacteria foraging opti-
mization [15], grey wolf optimization [16], and water cycle
algorithm [17].

The amplifier, as an actuator, in the exciter circuit suffers
from saturation limits. Practically, the imposed saturation
limits are considered as (±0.1 pu) [18]. Violation of these
limits can lead to degradation of system performance and
even instability. The impact of such effects has received little
attention during the last decade [19]. The PSS of [19]
achieves regional pole placement with saturated input for a
certain operating range. For wider range than that in [19],
the LMIs may not converge to a solution. This problem is
solved by dividing the whole range of operation into subre-
gions, for each a saturated robust pole placer can be easily
found. A 2-dimensional fuzzy logic control is then trained
to switch between the subregions to cover the whole region
[20]. On the other hand, there are many saturated control
techniques available in the control literature, for example,
[21, 22] and the references therein. One of these approaches
is the positive invariance which is based on avoiding the con-
trol constraint, that is, to prevent saturation in the closed-
loop [22]. Several other saturated control design techniques
such as L1 optimization, the small and high gain, and model
predictive control have been presented in [23–25].

In addition to the control input constraint, large inter-
connected power systems represent another challenge in
terms of stabilization and control design. Due to the high
dimensionality of large power systems, the above approaches
require the system order reduction to reduce the computa-
tional burden and the controllers’ order. Also, these method-
ologies may fail to converge.

Although the controller presented in [19] achieves
regional pole placement with saturated PSS, it has centralized
structure and relies on the state variables of all other
machines in the system. Decentralized control uses the local
states of its own subsystem. It needs no communication net-
work to transmit the states of the large system to a hub com-
puter, and hence, the delay and packet dropouts are avoided.
Decentralization is also cost-effective. Different decentralized
PSS design techniques are presented [26–29]. In [26], a PSS
design scheme based on robust decentralized output feed-
back sliding mode control technique is presented. Fixed
parameter-decentralized power system stabilizers (PSSs) are
proposed in [27] where the local information available at
each machine in the multimachine environment is used to
tune the parameters of PSS. A multimachine power system
is approximated to a single-machine infinite bus, and then
conventional design technique is used to design decentralized
PSS [28]. Reference [29] represents power system uncertainty
due to load variations as a linear parameter varying (LPV)
system. For the resulting system, the gain scheduling method
is applied to design a decentralized PSS. The designed
controller automatically adjusts its parameters depending
on the scheduling variables to coordinate with change of
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operating conditions. The controller achieves high perfor-
mance but at expense of controller complexity. These tech-
niques did not consider the saturation limits of the control
signal nor the parameter uncertainty involved in the power
system due to different loading.

In this work, robust decentralized power system stabi-
lizer with saturated inputs is proposed. In the proposed
control scheme, the multimachine power system is decom-
posed into several subsystems. With regard to each subsys-
tem, the effect of the rest of the system is considered as an
external bounded disturbance. Rejection of bounded dis-
turbance is considered as a difficult problem and has been
traditionally tackled using the L1-optimization technique
which results in higher order controller [23, 24]. The
method of invariant sets is used for rejecting the bounded
disturbance optimally [30]. In this paper, the invariant
ellipsoids are used as the invariant sets to reject bounded
disturbance by minimizing the size of the invariant ellip-
soids of the dynamic system [31]. Doing that, the problem
of decentralized control is reduced to equivalent condi-
tions in the form of linear matrix inequalities (LMI) with
the advantage of using the L∞-optimization.

The main contributions of the paper are as follows: (1) a
simple new design of state feedback PSS is presented. (2) The
proposed design achieves three constraints: decentralization,
robustness, and no control limit violation. (3) The design is
based on a simple LMI sufficient condition.

The paper is organized as follows. A mathematical model
of a multimachine power system and problem statement is
presented in Section 2. In Section 3, the use of the invariant
ellipsoid technique for disturbance rejection is outlined. This
technique is essential in the design of decentralized PSS.
Section 4 presents the problem solution using the LMI
method and stability of the closed-loop system under the
proposed control scheme. Simulation results for a multima-
chine power system are provided in Section 5 to validate
the effectiveness of the proposed decentralized controller.
Comparison between the proposed controller and the H∞

control as a disturbance rejection approach is presented in
Section 6. The paper is concluded in Section 7.

1.1. Notations. Throughout this paper, the notationℜm is the
set of vectors ofm × 1 dimension,ℜr×q is the set of real matri-

ces of dimension r × q, and ′ denotes the transpose of a
vector or a matrix. For a matrix P, P > 0 (<0) means that P is
a symmetric positive (negative) definite matrix. Also, (∗) in a

matrix means the symmetric part. Similarly, M +N + ∗

means M +N +M′ +N′ . Finally, 0 and I denote the zero
matrix and the identity matrix, respectively.

2. Mathematical Modeling and
Problem Formulation

In matrix form, the system dynamics [1] of a large power
system consist of n generators that can be described by the
overall model.

x =Ax + Bu, 1

where x = x1,… , xn ′ ∈R
4n×1 is the composite state vector.

The components of the element xi of the state vector are

defined as xi = ∆δi ∆ωi ΔEqi
′ ΔE f i

′ ∈R4×1 where ∆δi is the

relative rotor angle changes with respect to the reference gen-

erator, ∆ωi is the rotor speed deviation, ΔEqi
′ is the deviation

in the quadrature axis transient voltage, and ΔE f i is the devi-

ations in the field voltage. Note that the state, ΔEqi
′ is not

measurable. This state can be replaced by a measurable
one, ΔPe (machine output power) using the transformation
given in [32].

To formulate the problem in a way suitable to design a
decentralized control, the overall system (1) is decomposed
into n subsystems. The model for the ith generator takes
the form

xl =Aixi
+ Biui + 〠

n

j=1, j≠i

Aijx j, i = 1,… , n, 2

where xi = ∆δi ∆ωi ΔEq
′ ΔE f i

′ and the terms ∑n
j=1, j≠iAijx j

represent the interconnection with other generators. This
term is considered in the sequel as external disturbance to
the ith subsystem.

The control objective is stated as follows. For each
machine system described in (2), design a decentralized
saturated control law in the form

ui =Kixi,  − μ < ui < +μ, μ > 0 3

The controller must be also robust against load changes.
To this effect, we have to answer two questions. Firstly, how
to deal with the uncertainty associated with the power system
model? And secondly, how to design a decentralized control
in the presence of the interconnection terms? In the next sec-
tion, we give some mathematical preliminaries to deal with
these two concerns.

3. Mathematical Preliminaries and the
State-Invariant Ellipsoid Method

The approach of invariant ellipsoids has been used for distur-
bance rejection in control system theory [31]. A design of
state feedback control while attenuating the effect of an
arbitrarily bounded disturbance can be achieved by minimiz-
ing the size of the invariant ellipsoids defined for a given
dynamic system. As a result, the control design problem is
reduced to equivalent conditions in the form of linear matrix
inequalities (LMI).

Consider the linear time-invariant (LTI) system.

x =Ax + Bu +Dw, 4

where x t , u t , and w are the system state, input, and dis-
turbance vectors, respectively. System (4) is subject to the
constraint that the disturbance w t is bounded as

w t ≤ 1, ∀t ≥ 0 5

Note that no other constraints are imposed on w t ;
that is, they are not assumed to be random or harmonic

3Complexity



and so on. We assume that the matrix pair (A, B) is
controllable.

The proposed approach is based on the reachable sets.
The reachable set is defined as the set that contains the
state trajectories for systems subject to external distur-
bances [30]. Since the reachable set is extremely difficult
to calculate mathematically, it is approximated by a bound-
ing ellipsoid, termed the invariant ellipsoid. The meaning
of invariant is explained later. Approximating the reachable
sets by an ellipsoid facilitates the controller design of a sys-
tem with disturbances. Specifically, a smaller ellipsoidal
bound of a reachable set for linear systems with con-
strained inputs allows a larger control gain, consequently
improving system performance. The invariant ellipsoid
technique is a challenging alternative to L1 approach
because the last one is based on the assumption x 0 = 0,
and nonzero initial conditions can cause serious troubles.
In contrast, invariant ellipsoids automatically cover nonzero
initial conditions.

Consider an ellipsoid E centered at the origin and
given by

E = x x′P−1x ≤ 1 , P > 0, 6

where P is a symmetric matrix termed as the matrix of the
ellipsoid. This ellipsoid bounds and approximates the reach-
able sets of the system (4) subject to the constraint (5).

The ellipsoid E is called a state invariant if, for any initial
state x 0 starting inside E, the trajectory x t remains inside
the ellipsoid for the future time t> 0. It is shown in [31] that
an invariant ellipsoid is also attracting for LTI systems. In
other words, if the initial state x 0 starts outside the ellip-
soid, the trajectory x t , t> 0 is attracted to it.

The invariant ellipsoid reflects the effect of external
disturbance on the trajectories of the dynamic system. To
minimize this effect, an objective function in terms of the
ellipsoid matrix f P has to be formulated first. Due to its
linearity, the trace function

f P = tr P 7

that corresponds to the sum of the squares of the semiaxes
of the state-invariant ellipsoid of the original system is
selected as the objective function, where tr(.) means the
trace of (.). Note that there are different measures of size
for ellipsoids: f1(P) = tr P (associated with the sum of
squared semiaxes), f2(P) =Det P, f3=−ln (det P−1) (associ-
ated with the maximization of the volume of E P ),
f4(P) = (spectral matrix norm), or f5=minimal eigenvalue
(associated with the radius of the inscribed ball), and so
on. In this paper, we adopt the trace function because it
retains the semidefinite program (SDP) structure of the
problem (optimization of a linear function subject to LMI
constraints), which is then solvable by means of widely
available MATLAB-based software. Also, standard geomet-
ric properties of the ellipsoids are considered to come up
with a convex programming formulation, easy to solve,
of the constrained stabilization problem.

Suppose the control objective is to design a state
feedback.

u =Kx 8

The following theorem gives the necessary and sufficient
conditions for the existence of the matrix P such that the
ellipsoid (6) is state-invariant.

Theorem 1 (see [31]). The ellipsoid E of the form (6) is state-
invariant for the system (4) with bounded disturbance (5) if
and only if for some fixed α > 0, the matrix P satisfies the
following LMI:

PAc
′ +AcP + αP +

1

α
DD′ ≤ 0 9

Or equivalently,

AcP + ∗ D

∗ −αI
≤ 0, 10

where Ac =A + BK is the closed-loop matrix.
Now, if the control signal is constrained by

∥u t ∥≤μ 11

This constraint on the control can be transformed to an
equivalent LMI using the following lemma.

Lemma 1 (see [31]). For the controllable system (4) with
bounded disturbance (5) and state feedback control (8),
constraint (11) is equivalent to satisfying the LMI

P ∗

Y μ2I
≥ 0, P > 0, 12

for the matrices P and Y where Y =KP. The proof of this
lemma is detailed in [31] and will be omitted here.

Now, Theorem 1 and Lemma 1 are combined in the fol-
lowing theorem.

Theorem 2 (see [31]). Consider the controllable system (4)
subject to the bounded external disturbance (5). Then the
problem of designing a state feedback controller (8) with
the constraint (12) that optimally rejects the disturbance is
equivalent to the following constrained optimization prob-
lem for the matrices P and Y. The controller gain matrix
K is calculated as then given by K = YP. Note that con-
straint (14) guarantees the system stability with disturbance,
whereas (15) represents the control constraint. Moreover,
the ellipsoid E defined in (6) bounds the reachable sets of
the system (4) with disturbance and control constraints.
The matrix inequality (14) is nonlinear in the scalar α> 0.
For a fixed α, (14) becomes a linear matrix inequality
(LMI). The problem, thus, reduces to a one-dimensional
minimization. The minimization problem is solved using
linear search optimization. In other words, α is iteratively
updated (using linear search) such that the objective func-
tion (13) is minimized.
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minα,P,Y tr P , 13

subject to the constraints,

AP + BY + ∗ + αP +
1

α
DD′ ≤ 0, α > 0, 14

P ∗

Y μ2I
≥ 0, P > 0 15

4. Stability of the Closed-Loop

The above result is extended to the decentralized control
problem of large power systems as follows. Consider the
ith subsystem defined in (2). The dynamic equation can be
cast as

xi =Aixi + Biui +Dix, i = 1,… , n, 16

where the interaction of the global system on the ith subsys-
tem is considered as a disturbance given by

Di = Ai1,Ai2,… , 0ii,… ,Ain , 17

and the vector x represents the state vector of the composite
global system. The vector x is considered as an input distur-
bance. Note that this paper studies the stability of power
systems, that is, small-disturbance (signal) stability [1].
Therefore, the condition ∥x∥≤1 is assumed. Note that even
for severe disturbances, ∥x∥ can normalize to 1 by using a
new disturbance matrix (e.g., if ∥x∥ = 1 5 pu, it can be
normalized to 1 by selecting Dnew = 1.5Dold).

Changes in power system operation and loads result in
system uncertainties which are reflected in the system model
as follows:

xi = Ai + ΔAi xi + Biui + Di + ΔDi x, i = 1,… , n,

18

where the uncertainties ΔAi and ΔDi are represented by a
norm-bounded form as follows:

ΔAi =MiΔi t Ni,  Δi t ≤ 1, 19

ΔDi = FiΔi t Hi,  Δi t ≤ 1 20

Note that casting the uncertainty in the norm-bounded
form can be easily obtained using the singular value decom-
position as given in [33].

The following theorem establishes the main design result
for subsystem i. It tackles the ellipsoidal bound of a reachable
set for the uncertain system (18) with constraints (3), (5),
(19), and (20).

Theorem 3. Consider the family of uncertain controllable
subsystems described by (18) subject to the bounded external
disturbance (17) and (20). Then, this family of subsystems is
asymptotically stabilizable by a decentralized robust controller
ui =Kixi, i = 1,… , n with input constraint (11). The local
controller optimally rejects the disturbances if there exist
matrices Pi αi > 0 and Yi αi solutions of the following
optimization problem

minα,P,Y tr P , 21

subject to the constraints,

AiPi + BiYi + ∗ + αiPi + εMiMi
′ + ρiFiFi′

∗ ∗ ∗

Di
′ −αiI

∗ ∗

HiPi 0 −εiI
∗

0 Hi 0 −ρiFi

< 0,

22

P ∗

Y μ2I
≥ 0, P > 0, 23

where Pi > 0 and Yi are functions of αi. Moreover, the local

gain matrix is given by Ki = YiP
−1
i .

Proof. Extension of Theorem 1 to the ith uncertain subsystem
(18) with external admissible disturbance is stable if and only
if the following LMI is satisfied.

Ai + ΔAi Pi + BiYi + ∗ + αiPi Di + ΔDi

∗ −αiI
< 0,

24

applying the factΨΔ t Φ + ∗ < εΨΨ′ + ε−1ΦΦ′, ε > 0 [34]
to (19) and (20) to eliminate the uncertainty matrices in (24).
The constant matrices Φ and Ψ are of appropriate dimen-
sions. This will result in the following.

AiPi + BiYi + ∗ + αiPi Di

∗ −αiI

+ εi

Mi

0

Mi

0

′

+ ε−1i

NiPi

0

′ NiPi

0

+ ρi

Fi

0

Fi

0

′

+ ρ−1i

0

Hi
′

Fi

Hi
′

< 0, εi, ρi > 0

25

The nonlinear matrix (25) can be linearized (i.e., the form
(22)) using the following Schur complement:

X − YZ−1Y′ < 0
X Y

∗ Z
, Z < 0 26

To prove stability of the global system with decentralized
control, consider the scalar Lyapunov function.

V t = 〠
n

i=1

V i t 27

The stability of each subsystem V i t > 0, V i t < 0 is
satisfied if (22) is satisfied; hence with (27), the global system
is also stable.

Note that the uncertainty in the input matrix Bi can be
considered by putting the uncertainty in the norm-bounded
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form ∆Bi =MB,i∆B,iNB,i,  ∆B,i ≤ 1 The above theorem

can then be easily extended to include this case.

5. Simulation Example

The proposed design is applied to a multimachine power sys-
tem. The benchmark four-machine 11-bus two-area test
power system is shown in Figure 1. The two-area four-
machine test power system shown in Figure 1 proposed in
[1] is utilized in this study because it is accepted in the liter-
ature as a tool to study the interarea mode of oscillations.
Further, this system is available as a MATLAB/SIMULINK
demo program. The test system consists of two symmetrical
areas linked together by two 230 kV lines of 220 km length.
It is specifically designed in [1] to study low-frequency
electromechanical oscillations in large interconnected power
systems. Each area is equipped with two identical round rotor
generators rated 20 KV/900 MVA. The synchronous
machines have identical parameters except for the inertias
which are M1=13 s and M2=12.35 s. Thermal plants have
identical speed regulators equipped with fast static exciter
with a gain of 200. The loads are represented as constant
impedances and spilt between the two areas. The full param-
eters of a single unit are given in [1]. In the example system,
generator number 4 is chosen as the slack bus. Since the
interarea mode is strongly affected by the amount of the tie
line power, three operating conditions are considered for
the test system [19]:

Case 1 (the base case (tie-line power = 415MW)).

Case 2 (20% decrease in tie-line power (334MW)).

Case 3 (20% increase in tie-line power (502MW)).
The interarea modes for Cases 1, 2, and 3 are, respectively,

0.0888± j2.2585, 0.1255± j1.8179, and 0.0444± j2.4977; the
damping ratios are −0.0392, −0.0688, and −0.0177.

The system without PSSs achieves negative damping for
the three test points. The three operating points of the system
considered for generator numbers 1, 2, and 3 are given in
[19]. Model (18) and the associated norm-bounded uncer-
tainties (19) and (20) for the system are given in the appen-
dix. All generators are equipped with the same regulator.

Solving the LMI’s given in Theorem 3, the proposed
decentralized controller is given by

K = Block diag K1,K2,K3 , 28

where

K1 = 0 1241 55 6 −0 2928 −0 0003 ,

K2 = 0 0909 40 4149 −0 2571 −0 0005 ,

K3 = −0 0603 55 6431 −0 6302 −0 0043

29

The resulting controller is decentralized or local as it uses
local states only from the generator on which it is installed.
Local PSSs have three basic advantages. First, they are effec-
tive in damping local modes. Second, no communication net-
work is needed to transfer data to a centralized controller;
thus, they are cost-effective. Third, communication time
delays are avoided.

The proposed controller is tested for a large disturbance,
stimulated by a three-phase short-circuit taking place at the
bus of generator number 1, cleared at t = 0. For heavy
(502MW) power transferred from area number 1 to area
number 2, the rotor angle of generator numbers 1, 2, and 3
are shown in Figure 2. The control signals are shown in
Figure 3 for such fault. It is evident that the proposed decen-
tralized controller enhances the system stability at large tie
line. The proposed control signals are indeed do not violate
the limits± 0.1 pu as depicted in Figure 3.

It is worth mentioning that u1 starts near its upper limit
(+0.1), as compared with u2 and u3, because the cleared fault
occurs at the terminal of G1. So, G1 is much disturbed as
compared with G2 and G3.

Low-frequency interarea oscillations (0.1–0.8Hz) are
detrimental to the goals of maximum power transfer and
optimal power flow. Figure 2 shows the effectiveness of the
proposed PSS added to the automatic voltage regulator in
damping the interarea oscillations. This is achieved without
violating the control limit (Figure 3). Other methods to damp
interarea oscillations are found in [35–37].

Note that the power system model is linear time-
invariant but with uncertainty. While it is not intended to
be implemented, it is used to synthesize a linear controller.
The success of the proposed PSS in stabilizing the original
nonlinear system follows from the Lyapunov indirect

1

2

G1

G2

L1 L2

G3

G4

5

Area 1 Area 2

6 7

8

4

311109
Ptie

Figure 1: Two-area four-machine test power system.
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theorem. According to that theorem, the behavior of the orig-
inal nonlinear system is similar to its linearized approxima-
tion provided that none of the eigenvalues lies on the
imaginary axis.

6. Comparison with Decentralized H∞ Control

The H∞ control can be used as a disturbance rejection
approach [34]. Therefore, in this section, the proposed
decentralized controller is compared to theH∞ decentralized
control technique. First, we give a summary of this approach.

Consider the following system without uncertainty.

x =Ax + Bu +Dw,

z =C1x,

y =C2x,

30

wherew, z ∈Rq , and y ∈Rl are the disturbance, output to be
regulated, and measured output, respectively. The H∞ con-
trol problem is to find a state feedback controller in the form
u =Kx such that the closed-loop system is quadratically stable
[34] and the effect of disturbance on the regulated output is
minimized. This means that ∥Twz∥∞ ≤ γ where Twz is the
transfer function from w to z. The solution to this problem
is the solution to the following matrix inequalities:

AX + BY + ∗ ∗ ∗

D′ −I ∗

C1X 0 −γ2I

, X =X′ > 0 31

The H∞ controller is given by K = YX−1.
To design an H∞ decentralized control, the original

global system (4) with A = Aij , i, j = 1,… , n, is

2
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Figure 2: Generators’ dynamics: (a) rotor angle without controller, (b) rotor angle with the proposed controller, and (c) speed deviation with
the proposed controller.
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decomposed into a block diagonal and off-diagonal parts
as follows:

x = Ad +Aof f x + Bu,

z =C1x,

y =C2x,

32

where

Ad = block diag A11,A22,… ,Ann ,

Aof f =

0 A12 … A1n

A21 0 A2n

⋮ ⋱ ⋮

An1 ⋯ An,n−1 0

,

B = block diag B1, B2,… , Bn ,

33

and the matrices C1 and C2 are selected as unity.
Considering the interconnection effect Aof fx as a

disturbance designated by Dw, we get

x =Adx + Bu +Dw 34

The system with uncertainty due to load variation is then
given by

x = A + ΔA x + Bu + D + ΔD w,

z = C1x,

y =C2x,

35

where the uncertainty is represented by the norm-bounded
form

ΔA =MΔ1 t N,

ΔD = FΔ2 t H,

  Δ < 1,

  Δ2 < 1

36

The decentralized H∞ control u =Kx with K = block
diag K1,K2,… ,Kn can be determined using the next
theorem.

Theorem 4. Consider the uncertain controllable system
described by (35) and (36). Then, this system is asymptotically
stabilizable by the decentralized robust controller ui =Kixi if
there is a feasible solution to the following optimization
problem.

min  γ

subject to  X =X′ > 0,

 ε > 0,

 ρ > 0,

AP + BY + ∗εMM′ + ρFF′ ∗ ∗ ∗ ∗

D′ −I ∗ ∗ ∗

C1X 0 −γ2I ∗ ∗

NX 0 0 −εI ∗

0 H 0 0 −ρI

< 0

37

The controller gain matrix is determined from K = YX−1.
Note that in (37), X and Y are block diagonal matrices.

Proof. The proof is straightforward from (35), and using the
Schur’s inequality, so we omit the details. The result stated
in the above theorem is applied to the previous simulation
example. The decentralized H∞ controller gain matrices are
found as

K1 = −0 13587 5 8264 −0 78451 −0 010179 ,

K2 = −0 017814 0 38667 0 52462 − 010037 ,

K3 = 0 059358 0 06913 0 48116 −0 010023

38

The best degree of stability achieved is 0.17715. Simula-
tion results of the rotor angles for the same disturbance and
loading conditions mentioned in Section 5 are depicted in
Figure 4. It is clear that the proposed controller is much faster
in damping the system oscillations than the H∞ controller.
Moreover, the proposed control is obtained by solving
small-dimension LMIs of each subsystem whereas the decen-
tralized H∞ control solves large LMIs having the dimension
of the global system.

Control signal (pu)
0.06

0.05

0.04

0.03

0.02

u

u3

u1

u2

0 0.5 1 1.5

Time (s)

2 2.5 3 3.5

0.01

0

−0.01

−0.02

−0.03

Figure 3: The control signal for each generator.
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7. Summary and Conclusion

(i) The paper presents a novel control technique for the
stabilization of large power systems. The proposed
controller satisfies the following constraints: (1)
decentralized in using only the local states, (2)
robust against system load variation, and (3) no vio-
lation of the control limits imposed in practice.

(ii) Since the proposed controller is in state feedback, it
cannot be compared with the conventional PSS
(CPSS), which is in output feedback. For future
work, the ellipsoidal design for dynamic output feed-
back and comparison with CPSS will be conducted.

(iii) The large system is decomposed into subsystems, for
each the effect on the rest of the whole system is
considered as an external disturbance. The paper pro-
poses a simple approach to rejection of the arbitrary-
bounded external disturbances by means of the linear
state feedback. It relies on the method of invariant
ellipsoids, which reduces design of the optimal control-
ler to the search of the least invariant ellipsoid of the
closed-loop dynamic system. The concept of invariant
ellipsoids allows restating the problem in terms of the
linear matrix inequalities. Therefore, the controller
design is reduced to the problems of semidefinite pro-
gramming and one-dimensional convex minimization
which readily yield to the numerical solution.

(iv) The effectiveness of themethodwas demonstrated by
the stabilization of a typical multimachine system.
Comparison with a commonly used, decentralized
H∞ controller shows the superiority of the proposed
controller in swift damping out the rotor oscillations.

(v) The proposed decentralized saturated robust control
is applied to a large system of 4-machine 11-bus sys-
tem. The application of the proposed algorithm to
larger systems is straight forward.

Appendix

The Multimachine Model

Consider generator number 4 as the reference. The multima-
chine model (30) and the norm-bounded matrices (31) and
(32) for the system shown in Figure 1 are determined for each
machine as follows:

(i) Machine number 1

A1 =

0 377 0 0

−0 044064 0 −0 088649 0

−0 14338 0 −0 3213 0 125

16063 0 −1 189 × 105 −1000

,

B1 = 0 0 0 2 × 105 ′,

D1 = 04×4 A12 A13 ,

A 1

where

A12 =

0 0 0 0

0 044675 0 −0 0047308 0

0 11323 0 0 099175 0

1883 6 0 −66332 0

,

A13 =

0 0 0 0

−0 0029944 0 −0 011401 0

0 0071248 0 −0 0075558 0

−8685 0 −13491 0

A 2

The norm-bounded matrices M1,N1, F1, andH1 associ-
ated with the uncertainties ΔA1 andΔD1 are calculated as
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Figure 4: Rotor angle and control signals for decentralized H∞ control: (a) rotor angle and (b) control signal.
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(ii) Machine number 2

A2 =

0 377 0 0

−0 061066 0 −0 11197 0

−0 15449 0 −0 36443 0 125

−2954 0 −1 3221 × 105 −1000

,

B2 = 0 0 0 2 × 105 ′,

D2 = A21 04×4 A23 ,

A 4

where

A21 =

0 0 0 0

0 05652 0 0 023001 0

0 099968 0 0 12977 0

25431 0 −40755 0

,

A23 =

0 0 0 0

−0 0015434 0 −0 011871 0

0 015892 0 −0 001457 0

−10868 0 −17032 0

A 5

The norm-bounded matrices M2,N2, F2, andH2 associ-
ated with the uncertainties ΔA2 andΔD2 are calculated as

(iii) Machine number 3

A3 =

0 377 0 0

−0 092442 0 −0 11741 0

−0 19962 0 −0 40745 0 125

−18589 0 −1 04 × 105 −1000

,

B3 = 0 0 0 2 × 105 ′,

D3 = A31 A32 04×4 ,

A 7

where

A31 =

0 0 0 0

0 010429 0 0 0027143 0

0 017504 0 0 016999 0

4930 1 0 −6169 2 0

,

A32 =

0 0 0 0

0 0104 0 −0 000296 0

0 023312 0 0 021148 0

1500 0 −12862 0

A 8

The norm-bounded matrices M3,N3, F3, andH3 associated
with the uncertainties ∆A3 and∆D3 are calculated as

M1 = 0 −3 0914 × 10−5 −1 2385 × 10−5 −117 12 ′,

N1 = −79 141 0 −24 385 0 ,

F1 = 0 −6 2285 × 10−5 −4 3476 × 10−5 −127 42 ′,

H1 = −72 741 0 −22 412 0 18 252 0 34 106 0 13 147 0 −25 597 0

A 3

M2 = 0 −1 088 × 10−4 −2 0619 × 10−4 −86 77 ′,

N2 = −52 649 0 31 505 0 ,

F2 = 0 −1 0371 × 10−4 −7 3511 × 10−5 −105 53 ′,

H2 = −31 234 0 −20 855 0 −43 289 0 25 904 0 18 106 0 18 106 0

A 6

M3 = 0 −8 8747 × 10−5 −4 3316 × 10−5 −82 779 ′,

N3 = −57 851 0 −8 9137 0 ,

F3 = 0 −9 195 × 10−5 3 4393 × 10−5 83 395 ′,

H3 = −1 0784 0 8 2279 0 −4 0578 0 4 041 0 57 424 0 8 8478 0

A 9
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Abbreviations

ANN: Artificial neural networks
AVR: Automatic voltage regulator
CPSS: Conventional power system stabilizer
LMI: Linear matrix inequality
LTI: Linear time-invariant systems
PSS: Power system stabilizer
(∗): In a matrix means the symmetric part
(M+N+ ∗): Means (M+N+M′ +N′).

Nomenclature

∆δi: Torque angle of machine i, rad
∆ωi: Speed deviation, pu

ΔEq
′,: Deviation in the quadrature axis transient voltage

of machine i, pu
ΔE f i

: Deviations in the field voltage of machine i, pu

x: The vector of the state variables
u: The vector of input variables
A, B, D: State, input, and disturbance matrices, respectively
Ki: The stabilizer gain of machine i
w(t): Constrained disturbance
E: Ellipsoid centered at the origin
P: Symmetric matrix of the ellipsoid
α, μ: Constants
Δwij: Equal to Δwi−Δwj, pu.
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