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Decentralized Sigma-Point Information Filters for
Target Tracking in Collaborative Sensor Networks
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Abstract—Tracking a target in a cluttered environment is a
representative application of sensor networks and a benchmark
for collaborative signal processing algorithms. This paper presents
a strictly decentralized approach to Bayesian filtering that is well
fit for in-network signal processing. By combining the sigma-point
filter methodology and the information filter framework, a class of
algorithms denoted as sigma-point information filters is developed.
These techniques exhibit the robustness and accuracy of the
sigma-point filters for nonlinear dynamic inference while being
as easily decentralized as the information filters. Furthermore,
the computational cost of this approach is equivalent to a local
Kalman filter running in each active node while the commu-
nication burden can be made linearly growing in the number
of sensors involved. The proposed algorithms are then adapted
to the specific problem of target tracking with data association
ambiguity. Making use of a local probabilistic data association,
we formulate a decentralized tracking scheme that significantly
outperforms the existing schemes with similar computational and
communication complexity.

Index Terms—Decentralized filtering, information filter, sensor
networks, sigma-point Kalman filter, target tracking.

I. INTRODUCTION

DENSELY scattered low-cost sensor nodes provides a rich
and complex information source about the sensed world.

The convergence of recent developments in micro electro-me-
chanical systems (MEMS), microprocessors, and ad hoc net-
working protocols have made such sensor networks a not-so-far
reality [1]. The randomly deployed sensor nodes of the net-
work are able to collect and process data and communicate. The
potential tasks achieved by sensor networks are far reaching
and include event detection, event identification, and location
sensing [2]. In order to make these functions feasible, it is nec-
essary to develop specific collaborative algorithms taking into
account the constraints of the low-cost nodes, such as limited
computational capability and power resources.

We consider the problem of online inference in sensor net-
works. In [2] and [3], this problem is treated by selecting at each
time a single sensor (the leader-node), which is responsible for
the data acquisition and data fusion. Such a scheme seems well
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fit for our concerns because it is power efficient. However, typ-
ical sensor nodes are usually prone to errors, and this algorithm
would suffer dramatically from the loss of a sensor. Moreover,
the issue of multisensor fusion was not really addressed since it
was solved by activating several sensors and let them send their
measurements to the leader node.

The goal of this work is to develop a fully decentralized
scheme for online inference so that at each time, the set of
activated sensors collects a diverse information and efficiently
combines it. A fully decentralized system is defined in [4] as a
structure in which all information is processed locally, and no
central processing site arises. The advantage of such a scheme
is multifold. First, the failure of a sensor does not imply the
failure of the entire system. Second, the use of several sensors
provides a resource of diversity in terms of quality of infor-
mation (due to redundancy) as well as type of information if
different kinds of sensors are used. An erroneous measurement
does not necessarily imply a drastic error on the global estimate.

A framework for decentralized estimation can be found
in [4]. The basis of this framework relies on an algebraic
equivalence of the well-known Kalman filter expressed in
terms of measures of information, namely, the information
filter [4]–[7]. This scheme provides optimal estimation when
applied to linear-Gaussian systems and was extended to the
nonlinear case through a similar procedure as the one used to
derive the extended Kalman filter (EKF) [4], [7]. This scheme
suffers from the same flaws as the EKF sometimes leading to
the divergence of the inference system. Recently, a number of
related approaches that are more accurate and more robust have
emerged. This includes the unscented Kalman filter (UKF) [8],
[9] and the central difference Kalman filter (CDKF) [10]. These
algorithms are based on derivativeless statistical linearization
from a choice of sigma-points and were unified in [11] and
[12]. In our work, this methodology is used to derive a class of
fully decentralized filters called sigma-point information filters
(SPIFs) that inherits from the advantages of these algorithms.

The effectiveness of the proposed algorithms for sensor net-
works applications resides in the fully decentralized facet dis-
cussed above and in their communication and computation ef-
ficiency. The computational complexity is equivalent to a local
Kalman filter running at each node, and the number of commu-
nications can be made linear in terms of the number of sensors.
The proposed scheme is thus more power efficient than the de-
centralized particle filter solutions of [13] and [14]. The advan-
tage of the particle filters [15], [16] is that no parametric form
of the posterior is assumed, and this allows for more general
solutions. If the same flexibility cannot be achieved by our al-
gorithm, it can still cope with multimodal densities through a
proposed Gaussian-mixture extension. The loss of information
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induced by the Gaussian assumption of the Kalman-based fil-
ters can be significant. It is, however, known [17] that any prob-
ability density can be approximated with arbitrary precision by
a Gaussian mixture. Therefore, Gaussian mixtures have been
widely used for non-Gaussian filtering [10], [12], [17]–[19]. In
those works, the algorithms rely on a bank of parallel Gaussian-
based filters. This idea can be included in the information filter
framework to get the decentralized Gaussian mixture sigma-
point information filters (DGMSPIFs).

We further illustrate the usefulness of the sigma-point infor-
mation filters for in-network processing by applying these tech-
niques to the problem of collaborative target tracking in sensor
networks. The tracking problem differs from the usual nonlinear
dynamic state-space because at each time step, each sensor ac-
quires a set of measurements with at most one observation cor-
responding to the target of interest. This ambiguity is known as
the data association problem and is usually solved by using the
most probable measurements of the set, which is known as the
nearest neighbor (NN) rule, or by a probabilistic data associa-
tion (PDA) rule [20]. The NN scheme is known to diverge easily
and the extension of the PDA to the multisensor scenario [21]
has a prohibitive complexity. Consequently, we develop a local
probabilistic data association (LPDA) scheme in order to keep
the same complexity as the NN method while avoiding the di-
vergence of the estimates.

The remainder of this paper is organized as follows. Section II
presents the proposed sigma-point information filters for decen-
tralized inference. In Section III, we adapt the proposed algo-
rithms to the problem of target tracking in collaborative sensor
networks. Simulation results are presented in Sections IV, and
Section V concludes the paper.

II. DECENTRALIZED INFERENCE IN DYNAMIC SYSTEMS

We consider a generic discrete-time dynamic state-space
model described by

initial state model (1)

state transition model (2)

observation model (3)

where is the state vector, is the observation vector,
represents the process noise, and denotes the observation
noise. It is further assumed that the noise vectors and
are white, zero-mean, and uncorrelated:

and
. The cumulative set of measurements is denoted by

. Suppose an online inference of is of in-
terest. That is, at current time , we wish to make an estimate of a
function of the state variable , say , based on the cur-
rently available observations . In such a Bayesian framework,
the posterior filtering density provides the complete
solution to the probabilistic inference problem under consider-
ation. The filtering density can be recursively updated by the
following sequential algorithm:

PREDICTION

(4)

UPDATE

(5)

A. Decentralized Information Filter

For linear, Gaussian systems, the optimal closed-form solu-
tion to (4) and (5) is known as the Kalman filter [22]. The infor-
mation filter (which is also called inverse covariance form of the
Kalman filter) [4]–[7] is an algebraic equivalence of the Kalman
filter. It is expressed in terms of measures of information about
the state rather than the usual state estimate and covariance. The
motivation for introducing this algorithm lies in its capability of
being easily decentralized.

We consider a linear and Gaussian system

initial state model (6)

state transition model (7)

observation model (8)

where , and Var .
The Kalman filter provides an expression of the prediction and
update steps (4) and (5) in terms of mean and variance of the
variable [22]. The information filter is derived from it by ex-
pressing the recursion in terms of the information matrix and
the information state vector

(9)

(10)

The Kalman filter can be re-expressed as

PREDICTION

(11)

(12)

UPDATE

(13)

(14)

where the information propagation coefficient is given by
, and are

the information contributions. The derivations can be found in
many textbooks such as [4]–[7].

The above information filter is used to provide a decentralized
inference algorithm [4], [7], [21], [23]. The available observa-
tions consist of measurements taken at different sensors. The
observation model is divided into equations

(15)

where the observation noise is uncorrelated and Gaussian, i.e.,

(16)
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The equivalent centralized system is given by the aggregated
matrices

diag (17)

Using the particular form of the observation noise covariance,
the information contributions can be expanded as

(18)

(19)

where the local information contributions and only
require local knowledge and computations at sensor . The
information contributions of the entire set of observations are
simply the sum of the local contributions. At each time step,
the sensors need to communicate so that the sum of the local
information contributions are available to each sensor. This
could be done by using a communication chain, a tree structured
network, or a broadcast medium. If a communication chain
is used, a two-pass communication link spreads the quantity
with a number of communications growing linearly with the
number of sensors. The information filter is thus a natural form
for decentralizing the Kalman filter.

B. Statistical Linear Regression

Most real-world systems are nonlinear and non-Gaussian, and
in this case, the optimal framework above cannot be straightfor-
wardly used. Approximate solutions must then be employed. To
extend the information filtering to nonlinear systems, we will
first make the assumption that the state and the noise terms can
be represented by a Gaussian distribution. The filtering distri-
bution is then simply specified by its mean and covariance and
the inference problem (4) and (5) can be simplified into

PREDICTION

(20)

Var (21)

UPDATE

(22)

(23)

where the predicted measurement mean is given by
, its variance is

Var and Cov is
the so called gain matrix.

In order to approximate the quantities of interest here, the
EKF linearizes (2) and (3) around a single point (
for the prediction and for the observation update).

This solution does not account for the spread of the random vari-
ables and uses only the first-order Taylor expansion of the non-
linear functions. Therefore, it often leads to the divergence of
the filter. To avoid the flaws of the EKF, several recent works
[8]–[12] (referred hereafter to as sigma-point Kalman filters)
have used deterministic sampling techniques and the sigma-
point transform to propagate the mean and variance.

a) Sigma-Point Transform: Let be some nonlinear func-
tion and be some random variable with mean and vari-
ance . We wish to estimate the mean and variance of

. The sigma-point transform uses a set of weighted points
called sigma-points to represent the p.d.f. of .

It is chosen such that the mean and covariance are consistent
with the prior information and , with

, and
. The sigma-points are then propagated through the nonlinear

function to approximate the mean and covariance
of

(24)

Var (25)

Cov (26)

The sigma-point Kalman filters approximate the Gaussian
inference (20)–(23) by using this algorithm to propagate means
and covariances. Within this framework, the different available
algorithms differ in the way they specify the initial set of
weighted sigma-points so as to capture the most important in-
formation about the random variable of interest. Besides of the
consistency with the prior information, it is possible to specify
some additional constraints on the set of sigma-points, the
choice of the constraints make each algorithm specific. See [9],
[10], and [12] for detailed account of the choices. We will only
summarize the unscented Kalman filter (UKF) for illustration
purposes. In this algorithm, the -dimensional random variable

is approximated by sigma-points given by

(27)

where is a scaling parameter usually chosen as 0 or and
denotes the th row of the Cholesky decomposition of .

It is shown in [8] that this procedures produces accurate results
for the predicted mean and covariance up to the third order of the
Taylor series for Gaussian inputs and at least up to the second
order for other types of inputs.

It has been shown in [11] and [12] that the the sigma-point
transform can also be seen as a statistical linearization of .
The statistical linear regression computes and such that
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and therefore seeks to minimize the weighted
sum of squared errors

(28)

The solution to (28) is the usual least square fitting:
and . The mean and covari-

ance matrix of the deviations is then

(29)

(30)

The propagation of the mean and covariances through the lin-
earization

(31)

where is assumed to be zero-mean with covariance matrix
and uncorrelated with , provides the same approximations as
(24)–(26):

Var

Cov Var

b) Linearized State-Space: From the previous linearization
of a function we can now extract a statistical linearization of the
dynamic state-space. The idea is to use augmented vectors com-
posed of the state and noise terms and propagate them through
augmented functions so that the updates correspond to propaga-
tions through nonlinear functions with one vector input.

We denote
, and as the

augmented states. Note that is indexed by and not
as opposed to and . At time , our prior information is
summarized by

diag (32)

Similarly we have and
diag . Once the predicted

state statistics are given we also assume that

diag

(33)

The state-space model (2)–(3) can be rewritten as a set of two
nonlinear functions of these augmented states

(34)

(35)

From (31), the state-space (2)–(3) can be linearized into

(36)

(37)

where we have separated the components corresponding to the
state and the noise.

To obtain this linearization, a set of augmented sigma-points
is generated by (27) to describe

. The part of those points corresponding to is de-
noted by . Each of those sigma-points is pro-
cessed through the transition equation

. The information about is captured by the com-
ponent of corresponding to and is
used to create a set of augmented sigma-points

which is propagated through (35) to get
the sigma-points corresponding
to the observations. The state transition is linearized from (31)
as

where

(38)

The linearization can thus be rewritten as (36) by defining the
total process noise

(39)

as the sum of the linearized actual process noise and
the linearization noise . The variance of this total process
noise is given by

(40)

The observation model is linearized from (31) as

where

(41)
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The linearization can thus be rewritten as (37) by defining the
total observation noise

(42)

as the sum of the linearized actual observation noise and the
linearization noise. The variance of this total observation noise
is given by

(43)

where is the approximated variance of the
innovation.

If the observation noise is additive then the above equations
can be simplified. It is not necessary to include in the
sigma-points. Furthermore if one of the equation of the state-
space is linear (typically the state equation), then the statistics
corresponding to this part can be explicitly computed to sim-
plify the procedure.

C. Sigma-Point Information Filters

By applying the information filter (11)–(14) to the linearized
state-space (36)–(37), the sigma-point information filters (SPIF)
for robust decentralized inference in nonlinear systems are de-
rived:

PREDICTION

(44)

(45)

UPDATE

(46)

(47)

On one hand, the sigma-point information filter is an informa-
tion filter applied to the linear state-space obtained by statitical
linearization. On the other hand, we have previously shown that
the sigma-point Kalman filter is a usual Kalman filter running
on the very same linarized state space. On this linear state-space,
the information filter and the Kalman filter are strictly equiva-
lent. Therefore, the sigma-point information filter is equivalent
to a sigma-point Kalman filter.

Previously, we have shown how the information filter could
be easily distributed. This conclusion derived from the partic-
ular form of the observation noise covariance, which was block
diagonal. If we apply the statistical linearization concept to the
aggregated observation model (17), we will introduce some
nonzero cross terms in the total linearized observation noise
covariance . Those cross terms appear because the spread of
the state variables (common to all sensors) is taken into account
to linearize the system and reflected in the linearization noise

. This would prevent the decentralization of the informa-
tion filter. Such cross-terms do not appear in the EKF because
there, the effect of the linearization is never compensated.

In order to be able to decentralize the sigma-point information
filter, we will then use a local linearization of the observation
equations. The cross-terms of the global approach are likely to
be small, and therefore, going to the local linearization should
not cause a big discrepancy with the global linearization. In any
case, the local sigma-point approach will outperform the EKF
because the spread of the variable is taken into account. Lin-
earizations of the local observation models are performed based
on the previous algorithm, and we get equations

(48)

where , and are computed as in (36)and
(37). In this approximation, we assume that
diag , and thus

(49)

(50)

where the local information contributions and and
the local total linearized observation noise covariance are
computed as in (36) and (37). It can be seen that neither the
process equation linearization nor the local observation equation
linearization require the knowledge of the observation model of
the other sensors. We also notice that since the linearization is
deterministic, provided that all sensors are initialized with the
same prior, they all compute the same prediction. Therefore, if
they communicate at full rate, at each time step, they share the
same belief.

c) Decentralized Gaussian Mixture Sigma-Point Information
Filters: The system under consideration remains as presented
previously, but we assume that at time , the posterior distri-
bution can be represented by a Gaussian mixture with com-
ponents to use a bank of parallel Gaussian-based filters. We as-
sume that

(51)

where the random variable means that the th mixture was
used. The prediction step becomes

Our Gaussian approximation for provides
and . We see that the prediction step
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for the Gaussian mixture case corresponds to parallel pre-
dictions, and the weights are kept identical. For the observation
update, we find that

where is a normalizing constant, and , and
are provided by the Gaussian approximation applied

to the th mixture. The weights are updated through

(52)

The same weight update formula is also used in [12] and [18].
More sophisticated algorithms (correcting for the approxima-
tions made) can be found in [10].

In order to decentralize this algorithm, we must still decen-
tralize the weight update. The cross terms of are of the
form , whereas the diagonal terms are
given by . takes into ac-
count the observation noise and the linearization noise. It is then
usually big compared to variance due to the estimation spread

. From the Schwartz inequality, it
is then also big compared to . We
can therefore make the approximation that the cross terms of

are negligible, and we use the following approximation
for the weight update:

(53)

With this approximation, the complete algorithm can be sum-
marized as follows.

1) At time , all sensors share the same Gaussian mixture
prior in (51).

2) Each sensor performs the local computations for each
Gaussian component :
a) Linearization of the local state-space using the th

kernel to get (36) and (48).
b) Update step (44) and (45) to get the common predic-

tions and .
c) Local information contributions computation:

from (49), from (50), and the local weight con-
tribution .

3) The sensors share the information so that they all know
the cumulative quantities corresponding to each Gaussian
component

and

4) Each sensor computes the updated quantities for each
Gaussian component

and

5) Each sensor normalizes the weights of the mixture so that
.

If some weights of the mixture become zero or if the param-
eters of two mixtures become almost equal, then this algorithm
would reduce to a simpler one, where the number of components
is smaller. In this version of the algorithm, we have not taken
this fact into account. Several possibilities are offered to gain
some efficiency. The simpler one would be to drop the mixture
components whose weights are smaller than some predefined
threshold. Another possibility would be to recover a Gaussian
mixture by drawing samples from the mixture and then to use
a standard expectation-maximization (EM) algorithm [24] to
compute the parameters of the new mixture. This technique is
used in [12] and pushed a step further; the samples are consid-
ered to be in a particle filter and reweighted by using the mea-
surement equation. The latter step is not really applicable to de-
centralized systems since the weighting process requires infor-
mation from all sensors. One specificity of our decentralized al-
gorithm is that we would like the nodes to share a common pos-
terior density. In order to meet that requirement, the EM step
should give the same results at each node. This could be done
by applying the idea developed in [13]. If the sensor share a
common seed (for example based on one of the prior weights),
then the the samples are all equal, and so is the result of the EM
step. Such a procedure could be applied every steps or simi-
larly to the sequential Monte Carlo resampling stage whenever
a specific criterion is met. Future work will aim at defining a
good measure of quality of the mixture.

III. DECENTRALIZED COLLABORATIVE TARGET TRACKING

In the previous section, we introduced powerful yet compu-
tationally simple decentralized algorithms to make Bayesian
inference in dynamic systems observed by several uncorrelated
sensors. These algorithms can, however, not be straightfor-
wardly used to solve the collaborative target tracking problem
because of the so-called data-association problem. Indeed, in
most cases, the tracking is performed in a cluttered environment
where false detections are present and where the target might
not be detected. The classical ways of dealing with the data
association problem are the nearest-neighbor (NN) solution or
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the probabilistic data association (PDA) [20]. None of those
can readily be applied to the decentralized multisensor case.

The network is assumed to have been initialized so that it is
possible for the sensor to communicate and share some cumu-
lative statistics. We also assume that each sensor knows its po-
sition and that they share a common prior information (prior
density, motion model).

A. Problem Formulation

The target is considered as a point-object moving in a
two-dimensional plane. In this work, we consider a quite
general, nonlinear motion model: the coordinated turn rate
model. See [25] for an up-to-date survey of the available
motion models. is the discrete-time index, and denotes
the length of a time step. This model assumes that the target
moves with a nearly constant speed and a nearly constant
unknown turn rate. We denote as the state of the target
and as the corresponding motion noise. represents
the coordinates , the velocities , and the turn rate

. We have

(54)

where diag .
At each time step, each sensor provides measurements that

can be divided into two distinct sets: The first one consists of
the measurement generated by the target if it is detected, and
the second one is composed of the false detections generated by
the clutter. The set of measurements acquired at time by sensor

is denoted , where is
the number of measurements.

Many types of sensors provide measurements that are a func-
tion of the relative distance between the sensor and the sensed
object (e.g., radar, acoustic sensors, sonar, etc.). Let
be the position of sensor and

be the distance between the sensor and the
target. We consider a common example where sensors measure
the power of a radio signal emitted by the object. The received
power typically exponentially decays with the relative distance.
In a logarithmic scale, the target-originated measurements are
modeled by [26]

(55)

where the measurement noise accounts for the shadowing
effects and other uncertainties; is assumed to be a zero-
mean independent and identically distributed (i.i.d.) Gaussian,
i.e., , as in Section II, the sensor noises are
assumed uncorrelated; is the transmission power, and

is the path loss exponent. These parameters depend on
the radio environment, antenna characteristics, terrain, etc. Note
that corresponds to the free space transmission and serves
as a lower limit. Furthermore, a sensor can typically provide
measurements of a target only within a certain range. Therefore,
a target could be detected only if . In
that case, we will denote by the probability of detection,
which is assumed known. Finally, it is assumed that the target
can only provide a single measurement per sensor. In this model,
the observation noise is additive and Gaussian, and the statistical
linearization can thus be simplified, as mentioned previously.

The final probability of detection is thus given by
. There is no closed-form

equation for ; however, we can
use the sigma-points to approximate it by

The false detections are spurious measurements as-
sumed to be uniformly distributed in the measurement area

, whose volume is denoted as
. The number of false detections

is typically generated by a Poisson distribution with pa-
rameter , where is the number of clutter measurements
per unit volume. Hence, we have

(56)

(57)

where is the probability density function (p.d.f.) of any
clutter measurement. If a gating procedure is used, the statis-
tical properties of the clutter are the same, except that we only
consider the area and volume of the gate instead of

and .

B. Local Probabilistic Data Association

The NN algorithm constructs a validation gate centered
around the predicted measurement and then uses, as the true
one, the measurement closest to the predicted value with respect
to the Mahalanobis distance weighted by . As pointed out
previously, we do not have access to the cross-terms of ,
and the NN algorithm would thus either require a centralized
processing or an approximation to dismiss the cross-terms of

. In this case, the aggregated NN is simply the aggregation
of the local NN. It is, however, well known that the NN algo-
rithm can perform very poorly in dense clutter noise and cause
the filter to diverge. Extending the degree of approximation
here would thus yield even worse results.

On the other hand, the PDA for multiple sensors [21] has a
complexity growing exponentially in the number of sensors. In
[27], the multisensor PDA is performed sequentially among the
sensors at each time step. The advantages of the decentralized
algorithm is then lost because we eventually go back to a sort of
leader-based tracking scheme.
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In this work, we propose to integrate a local probabilistic data
association at each sensor into the decentralized information fil-
ters. All available measurements are then used to update the be-
lief, but we ignore the correlation between the measurements.
The computational need is thus kept low, and more importantly,
the communication burden is similar to the approximate NN
case. The inherent requirement of sensors networks can thus be
met.

The data association indicator designates which mea-
surement (among the validated ones) arises from the target.

means that the target has not been detected. The
local estimate is given by

(58)

For is given by (13), and
for is simply the prediction
from (11); simply represents no information. We therefore
have

(59)

where can be found in [20].
Similarly, we get

(60)

where , and
is the weighted innovation.

In order to find the information form of the local probabilistic
data association above, we would like to find and
such that (59) and (60) have the the same form as the usual
Kalman filter

(61)

(62)

where

The classical derivation of the information filter will then lead
to an easily decentralized algorithm. This is achieved (cf. the
Appendix) by choosing

(63)

(64)

which implies and
. Going to the information

form, we get

(65)

(66)

Based on our simulation results, we make the approximation
that (49) and (50) and (44) and (45) can be used, and therefore,
the extension of the decentralized algorithm becomes trivial.
Because that update technique incorporates the loss of infor-
mation due to the association uncertainty and uses all available
measurements, it performs better than an NN association while
keeping the same complexity.

The same procedure is used when dealing with the Gaussian
mixture. The only additional change resides in the approximate
weight update (52), which becomes

(67)

where and can be
found in [20].

IV. SIMULATION RESULTS

To illustrate the performance of the proposed sigma-point in-
formation filters, simulations are performed under several dif-
ferent conditions. First, the decentralized sigma-point informa-
tion filters are compared with the decentralized extended infor-
mation filter (DEIF) from [4] without any data association un-
certainty. Then, our local PDA algorithm is compared with a
local NN approach (both using a sigma-point information filter)
under light and heavy clutter noise.

The simulated track is kept identical for each simulation. We
can see in Fig. 1, for example, that the nonlinearity of the state-
transition model is clearly shown. There is a first period where
the target moves almost on a straight line (with sign-changing
curvature) and then it begins to turn. The motion and sensing
model are taken from Section III. The sensor network consists
of 15 sensors randomly scattered over a field of 80 m 60 m.
We assume that there is no communication loss and that the sen-
sors are synchronized. For all simulations, we take the following
parameters. The transmission power for each sensor is
dBm, and the path loss index is . The time step is chosen
to be sec. The process noise covariance is given by

, and the observation noise variance (shadowing
effects and other uncertainties) is . The algorithms are
compared with the same sets of measurements. The criterion for
comparison is the mean-squared error (MSE) on the position of
the target. The 3-sigma ellipsoids are shown every 30 time steps.

The prior information is as follows. The prior esti-
mate is , where is a strong
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Fig. 1. Actual and estimated trajectories with d = 0 and d =1. One
sample run.

bias on the position only, drawn according to a uni-
form distribution on a square of length 30 m centered on

. The Gaussian mixture is composed of five equally
weighted Gaussian distributions with the same covariances

diag and
means and

. The parameters of the Gaussian density for
the other algorithms are chosen to provide the same mean and
same global covariance.

A. Simulations Without Data Association Ambiguity

We compare the proposed algorithms of Section II with the
decentralized extended information filter. The first set of simu-
lations illustrate the performance of the different algorithm in
a usual nonlinear state-space where the observation function is
smooth. All observations are given by (55).

Fig. 1 shows the result of the tracking algorithms for a single
run. The three possible estimates are quite accurate, as expected.
The performance of the three algorithms is shown in Fig. 3(a).
We can see that the sigma-point information filters perform sim-
ilarly. In this case, the use of the DSPIF is thus advocated. Both
proposed filters perform better that the DEIF. All filters seem to
have bounded errors.

The second scenario considered is still a comparison with the
DEIF. The observation function is chosen to be less smooth than
previously in the sense that it mimics the fact that the target can
only be detected if . Therefore, we choose

such that

if
if
if

The values of those parameters are taken as m and
m. The measurement range becomes approxima-

tively [ dBm, 9 dBm].
Fig. 2 shows the result of the tracking algorithms for a single

run. The three estimates for this run show good tracking results.
However, when the performance of the three algorithms is com-
pared on 50 runs, we can see in Fig. 3(b) that the DEIF has very
large errors compared with the other two algorithms; this can be
explained by the fact that the DEIF sometimes diverges, whereas
the sigma-points filters remain accurate. Both sigma-point infor-
mation filters perform well, but the DGMSPIF shows smaller
MSE than the DSPIF during the initiation of the filter.

B. Simulations Including Data Association Ambiguity

The simulation results discussed in this section illustrate
the performance of the proposed algorithms in more realistic
tracking scenarios. The data association ambiguity is now
considered. The previous simulations showed a divergence
tendency for the DEIF, which is even more present in the case
now considered. Hence, the results shown here do not include
the DEIF. We are now concerned about the performance of the
proposed local probabilistic data association (LPDA) of Sec-
tion III. Therefore, we make a comparison of the DSPIF using a
nearest-neighbor rule (NN-DSPIF) and the proposed algorithm
using the LPDA (LPDA-DSPIF and LPDA-DGMSPIF) under
both a lightly and heavily cluttered environment.
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Fig. 2. Actual and estimated trajectories with d = 1 and d = 50. One
sample run.

The probability of detection is when the target
is in the range [1 m, 50 m] of the sensor and 0 otherwise.
The classical gating procedure is also used. Only the mea-
surements lying close enough to the predicted measurement

Fig. 3. Mean-square error on the position for 50 runs without data association
ambiguity. (a) d = 0; d =1. (b) d = 1; d = 50.

are considered. Typically, the gate is a -sigma ellipsoid
based on the innovation

of the measurement vector . is
chosen so that there is a probability (here, we make the
typical choice ) that the true measurement lies in the
validation gate.

The first scenario shown in Fig. 4 is the light clutter case. The
parameter of the Poisson distribution for the entire measurement
volume is , and because , by considering
only the observation noise, we also have when
the gate is included in . The NN as well as the
LPDA-based algorithm show good results in Fig. 4, and this is
confirmed by the MSE plot in Fig. 6(a). As expected in this case,
the difference between the algorithms is minor, even if we can
see in the most difficult tracking part (after s) that the
LPDA-DGMSPIF performs better than the LPDA-DSPIF itself,
which performs better than the NN-DSPIF.

The real advantage of the LPDA is shown in the dense clutter
case. We now choose , which implies
by taking only the observation noise into account. In the single



VERCAUTEREN AND WANG: DECENTRALIZED SIGMA-POINT INFORMATION FILTERS 3007

Fig. 4. Actual and estimated trajectories with �V = 0:5. One sample run.

run estimates shown in Fig. 5, we can see that the estimate of the
NN-DSPIF does not stand up to the comparison with the other
two estimates, even if the error seems bounded. On the other
hand, with the same set of measurements, the LPDA-based algo-
rithm provides accurate results. The MSE plot in Fig. 6(b) con-

Fig. 5. Actual and estimated trajectories with �V = 5. One sample run.

firms this analysis and shows that the NN algorithm diverges,
whereas both LPDA-based algorithms provide bounded errors.
Furthermore, in this difficult case, the LPDA-DGMSPIF shows
its superiority to the LPDA-DSPIF.
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Fig. 6. Mean-square error on the position for 50 runs with (a) �V = 0:5.
(b) �V = 5.

V. CONCLUSION

We have presented a class of strictly decentralized algorithms
for Bayesian filtering in nonlinear dynamic state spaces. Our
approach makes use of the information filter framework and
the statistical linearization methodology to provide accurate and
robust collaborative inference algorithms under Gaussian ap-
proximation. The extension to multimodal density tracking is
made by using a Gaussian-mixture model and a bank of parallel
sigma-point information filters. These schemes are shown to be
effective for in-network signal processing since the complexity
is that of a local Kalman filter running at each activated node.
The number of communications needed can be made linear with
the number of activated sensors. The proposed sigma-point in-
formation filters have then been adapted to the target tracking
problem. A local probabilistic data association rule was devel-
oped to fit the information space inference and keep the com-
plexity equivalent to that of a filter using an NN rule. The per-
formance of this algorithm was assessed by simulations.

One topic of future research is to tackle the problem of sensor
selection. Indeed, the proposed scheme can take advantage of
the leader-based processing techniques where, at each time step,
only a subset of nodes is active. The simplest approach would

be to choose in the active set the expected less informative node,
have it activate the expected most informative node from the idle
nodes, have it hand off its belief to this node, and then let it go to
an idle state. An efficient way of developing this heuristic would
certainly provide advantageous results.

APPENDIX

INFORMATION FORM OF THE LOCAL PDA

In this Appendix, we will derive (63). We first notice that

Therefore

and (61) is satisfied if . This
can be reexpressed as .
Using the matrix inversion lemma, we get

(68)

In order to satisfy (62), we need

This requirement is met by choosing such that

(69)
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