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Abstract

We propose in this paper a decentralized traffic signal control policy for
urban road networks. Our policy is an adaptation of a so-called BackPres-
sure scheme which has been widely recognized in data network as an opti-
mal throughput control policy. We have formally proved that our proposed
BackPressure scheme, with fixed cycle time and cyclic phases, stabilizes the
network for any feasible traffic demands. Simulation has been conducted to
compare our BackPressure policy against other existing distributed control
policies in various traffic and network scenarios. Numerical results suggest
that the proposed policy can surpass other policies both in terms of network
throughput and congestion.

Keywords: BackPressure, Traffic light control, Capacity region, Stability

1. Introduction

Traffic congestion is a major problem in modern societies due to increasing
population and economic activity. This motivates the need for better utilizing
the existing infrastructures and for efficiently controlling the traffic flow in
order to minimize the impact of congestion.
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One of the key tools for influencing the efficiency of traffic flow in ur-
ban networks is traffic signal control that enables conflicting traffic to flow
through intersections via the timing of green/red light cycles. It has long been
recognized that the challenge is to find optimal cycle timing over many inter-
sections so as to reduce the overall congestion and to increase the throughput
through the network.

There has been much work in the past both on designing and optimizing
isolated or coordinated signals that reactively resolve congestion in the urban
networks. Broadly, there are two types of control that have been used for
signal control: static and vehicle-actuated controls; see [10]. Static control
(sometimes called “fixed time plan”) involves the optimization of the cycle
time, the offset between nearby intersections, and the split of green times
in different directions within a cycle. This can be optimized in isolation
or in a coordinated manner, for instance to create a so-called green wave
where vehicles always arrive at intersections during the green cycle time,
e.g. [34, 8, 9, 14]. In contrast, vehicle-actuated controls use online mea-
surements from on-road detectors (e.g., inductive loops) to optimize signal
timings on a cycle-to-cycle basis in real time. Some examples of commonly
used implementations are: SCOOT [12]; UTOPIA [20]; and the hierarchi-
cal scheme RHODES [23]. Combinations of both the fixed time plan and
vehicle-actuated control also exist; one widely used example is SCATS [18].

Given a choice of the control scheme, various approaches to optimize the
signal plans have been proposed. Examples include Mixed-Integer Linear
Programming problems, see [8, 9, 6]; Linear Complementary Problem, see
[5]; rolling horizon optimization using dynamic programming, see [7, 11, 23],
or its combination with online learning algorithms , see [3]; store-and-forward
models based on Model Predictive Control (MPC) optimization [13, 1, 31,
32, 30, 17], or MPC optimization with non-linear prediction [24]. Many of
these approaches formulate the problem in a way that is centralized and thus
are inherently not scalable. While the state of the art is the use of central-
ized techniques, improved scalability may be obtained using decentralized
approaches. In this paper, we focus exclusively on decentralized schemes.
Although such schemes are in their infancy, this research is one step along
the path of improving such schemes to offer performance comparable with
centralized schemes while retaining their scalability.

A scalable distributed approach is to solve a set of loosely coupled opti-
mizations, one for each intersection, with coupling provided by traffic con-
ditions. Two natural approaches are to control the traffic lights based on
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either (a) the expected number of vehicles to enter the intersection during
the next cycle, or (b) the difference in traffic load on the road leading into
the intersection and those leading out. These approaches are now deployable
in practice thanks to emerging technologies, such as cameras and wireless
communication enabling better access to real-time traffic data.

Notable among the first class is the work of [26], a so-called P0 policy and
its variants [4, 27], followed by the work of Lämmer and Helbing [15] where
the switching cost between phases is taken into account. In this approach,
each intersection estimates the amount of traffic that will arrive during the
next complete cycle, and sets the split time such that each phase gets a time
proportional to the number of cars expected to arrive on roads which have a
green light during that phase. The lack of central control raises the possibil-
ity that intersections may interact in unexpected ways to cause instability.
To limit this, a stabilization mechanism was proposed in [16]. However, be-
yond heuristic arguments, there remains no formal proof of stability of this
approach.

Approach (b) including work by [33], [35] and [36] was inspired by research
developed for packet scheduling in wireless networks: a so-called max weight
or back pressure (refer to as BackPressure in this paper) algorithm [29, 21].
Like approach (a), BackPressure does not require any a priori knowledge of
the traffic demand, but it has the added benefit of provable stability. To make
that more precise, define a traffic load to a network as “feasible” if there exist
splits at each intersection such that the queues do not build up indefinitely.
Under certain simplifying assumptions, it can be shown that the queues under
BackPressure do not build up indefinitely for any feasible traffic load. This
will be made more formal in Section 3. In wireless networks, BackPressure
can be computationally prohibitive, but in road networks [35, 33, 36], it
admits a simple distributed implementation, just like approach (a).

It is worth noting that all the above mentioned policies [26, 27, 15, 33,
35, 36] make decisions periodically bases on the evaluations of traffic over
a fixed time interval. These are called fixed cycle policies. For example,
the BackPressure policy [35] determines the phase to be activated at the
beginning of each fixed time slot, while the policy [16] decides whether to
keep serving the current flow or switch to other flow at a regular time interval
which can be arbitrary small.

Given the possibility of a stability guarantee by the BackPressure scheme,
our objective in this work is to fully adapt it to the traffic control scenarios.
To this end, we propose in this paper a new signal control strategy that
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addresses two weaknesses in the prior application of BackPressure to road
networks [35, 33, 36] while retain and prove the important stability property
of the BackPressure-based algorithms.

The first weakness to be addressed is that phases can form an erratic,
unpredictable order in the previously proposed BackPressure policy. This
is acceptable in the context of communications systems but for urban road
traffic this is undesirable since erratic ordering of phases brings frustration
to drivers and potentially causes confusion leading to dangerous actions.
Moveover, if one inbound road is particularly backlogged, then it is possible
that other roads are “starved” by being assigned a red light for an extended
period. To rectify this, we modify BackPressure to a “cyclic phase” policy
where a policy is said to be cyclic phase policy if it allocates strictly positive
service time to all phases in each control decision, and thus, it is possible to
arrange the phases into a fixed ordered sequence.

The second weakness that we address is that prior applications have re-
quired each intersection to know the “turning fractions”, that is, the fraction
of traffic from each inbound road that will turn into each possible outbound
road. We prove that the stability results still apply when these turning frac-
tions are estimated using even very simple measurements; specifically, any
unbiased estimator of the turning fractions suffices. Such stability proofs ap-
ply for a general network model but under idealized assumptions. Nonethe-
less these form an important step towards the application of BackPressure
to real networks.

To test the practicality of the theoretical refinements described above,
we also present the numerical comparison of the proposed BackPressure al-
gorithm with the approach of [26] or [15, 16] without switching cost. The
results suggest that our cyclic phase BackPressure policy tends to outper-
form other distributed polices both in terms of throughput and congestion.
Although the performance of each policy varies widely depending on the pa-
rameter setting such as cycle length or decision frequency, under the optimal
setting, the BackPressure with cyclic phase and without cyclic phase have
better throughput in compare with the other policies.

The rest of this paper is organized as follows. We first present the nota-
tions and queue dynamics model before describing our proposed cyclic phase
BackPressure policy in Section 2. The main results for stability of our policy
are then provided in Section 3. These results in a certain sense mean, that we
can interpret our policy as stabilizing the system for the largest possible set
of arrival rates leading to sufficient throughput even in congested network.
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For readability, however, most of the mathematical details and derivations
are listed in the Appendices of the paper. Section 4 presents the simulation
results and numerical comparison of our scheme with other existing policies
where we demonstrate the benefits of the proposed cyclic phase BackPressure
signal control strategy. Finally, Section 5 concludes the paper and discusses
future work.

2. Cyclic Phase BackPressure Traffic Signal Control

2.1. Notation and Network description

Consider a network of traffic intersections. This road network consists
of a number of junctions, indexed by J . Each junction j ∈ J consists of a
number of in-roads, Ij . Note that the Ij are mutually disjoint, and denote
I = ∪j∈JIj . A road with multiple lanes having different turning options
(such as a left-turn only lane) is modeled as multiple in-roads, thus an in-
road may model one or more lanes of traffic flow. Whether these traffic flows
are conflicting or not is not considered in this setting. We use the inclusion
i ∈ j to indicate that in-road i is part of junction j, and we let j(i) notate
the junction used by in-road i.

Each junction may serve different combinations of in-roads simultane-
ously. We call a combination of in-roads served simultaneously a service

phase. A service phase for junction j is represented by a vector σ = (σi : i ∈
j) where σi denotes the rate at which cars can be served from in-road i at
junction j during phase σ. In particular, σi > 0 if in-road i has a green light
during phase σ, or σi = 0 otherwise.

Let Sj denote the set of phases at junction j. We will let L denote the set
of links of the road traffic network. Each link represents a road connecting
the junctions of the urban road network. Here we write ii′ ∈ L if it is possible
for cars served at in-road i junction j to next join in-road i′ junction j′.

In the rest of this section we impose the additional constraint that all
junctions have a common cycle length T , the time devoted to serving cars
from the different in-roads at the junction. Thus we can model time as
discrete and consider a slotted time model where t = 0, 1, 2, ... denotes the
number of the cycle about to be initiated. Control decisions in our policy
are then made at the beginning of each time slot (so it is a fixed cycle policy
which is similar to the policies in [16, 33, 26]). We also assume that all
junctions have the same loss of service L due to idle times during switches
and setups. Thus at each time step, the system decides at each junction j

5



how much time within the next interval to spend serving each phase σ ∈ Sj

with the constraint that each service phase must be enacted for some non-
zero length of time and that the sum of the allocated times must not be
greater than T −L. We assume that a car served at one junction in one time
interval presents at an in-road of the next junction in its route at the next
time interval.

2.2. Queue Dynamics Model

Let the queue length Qi(t) denote the number of cars at in-road i ∈ I at
the beginning of the tth traffic cycle, and denote the vector of queue lengths
by Q(t) = (Qi(t) : i ∈ I). The decisions in the policy will be based on the
measured queue lengths Q̂(t), which might differ from the actual value of
Q(t) by an error term as described in the following equation.

Q̂i(t) = Qi(t) + δi(t), (1)

where the error term δi(t) is bounded and independent of Qi(t) or the terms
at other in-roads. We denote the vector of the error terms by δ(t) = (δi(t) :
i ∈ I).

Let P j
σ(t) denote the proportion of the traffic cycle at junction j which is

devoted to service phase σ. For any policy and for all j ∈ J , we require

∑

σ∈Sj

P j
σ(t) = 1−

L

T
and P j

σ(t) > 0. (2)

Recall that σi gives the rate at which cars can be served at in-road i if the
entire traffic cycle were devoted to phase σ, and P j

σ(t) gives the proportion of
the traffic cycle devoted to service phase σ. Their product, σiP

j
σ(t) gives the

expected number of cars to leave in-road i under service phase σ, provided
the in-road is not emptied. Accordingly if we let the random variable Si(t)
be the potential number of cars served from in-road i at junction j in traffic
cycle t, the mean of Si(t) must satisfy

E[Si(t)|Q(t), δ(t)] =
∑

σ∈Sj

σiP
j
σ(t), (3)

where we note that the proportions P j
σ(t) are allocated according to the

decision in the policy based on Q̂(t), thus the dependency on δ(t). The
random variable Si(t) only gives the number of cars served if the junction
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does not empty. Thus, it may be possible for Si(t) to be greater than the
queue size Qi(t). In this case, Qi(t) will be the number of cars served. In
other words, the number of cars actually served at junction i is

Si(t) ∧Qi(t) (4)

where x ∧ y = min{x, y}.
Further, when traffic is served it will move to neighbouring junctions. For

ii′ ∈ L, we let pii′(t) denote the proportion of cars served at in-road i that
subsequently join in-road i′ at time t. We assume that cars within an in-road
are homogeneous in the sense that each car at the junction has the same
likelihood of joining each subsequent junction. We denote the expectation of
pii′(t) by p̄ii′. We further assume that this likelihood is constant (i.e. time
independent) and will not be altered by the queue lengths observed by cars
within the network. Thus [Si(t)∧Qi(t)]pii′(t) is the number of cars that leave
inroad i and, next, join inroad i′ provided the in-road does not empty.

We let A(t) = (Ai(t) : i ∈ I) ∈ Z
I
+ denote be the number of external

arrivals at in-road i at time t. The expected number of arrivals or arrival

rate into each in-road at time t is defined as āi(t) := E[Ai(t)]. Notice by
allowing āi(t) to vary as a function of time, we can model varying traffic
demands which undoubtedly can change over the course of a day. In cases
where we choose arrival rates to be static and unchanging with time, then
we will simply denote these arrival rates by ai.

Given a service policy {P (t)}∞t=0, we can define the dynamics of our queue-
ing model. In particular, we define for in-road i of junction j

Qi(t+ 1) = Qi(t)− Si(t) ∧Qi(t) + Ai(t) +
∑

i′:i′i∈L

[Si′(t) ∧Qi′(t)]pi′i(t). (5)

Here we assume that cars first depart within a traffic cycle and then subse-
quently cars arrive from other in-roads.

2.3. Cyclic Phase BackPressure Control Policy

Now we are ready to give our proposed policy as follows

1. At the beginning of each traffic cycle, form an estimate of the actual
turning fractions pii′(t) with the unbiased estimator q̄ii′(t).

1

1Appendix A gives an expanded explanation of the estimation method and proposes
a form of q̄ii′(t).
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2. For each junction j ∈ J , calculate the weight associated with each
service phase at the junction as a function of the measured queue sizes
Q̂(t) and the above defined estimated turning probabilities

wσ(Q̂(t)) =
∑

i∈j

σi

(

Q̂i(t)−
∑

i′:ii′∈L

q̄ii′(t)Q̂i′(t)

)

. (6)

3. Given these weights, assign the following proportion of the common
cycle length to each phase σ in Sj within the next service cycle,

P j
σ(t) =

exp
{

ηwσ(Q̂(t))
}

∑

π∈Sj
exp

{

ηwπ(Q̂(t))
} , (7)

for j ∈ J and where η > 0 is a parameter of the model.2

The weights defined in (6) are used in the BackPressure policy as given
by [29]. They can be viewed as a “pressure” a queue places on downstream
queues, which is given by the weighted mean of the differences of the queue
sizes. The larger the weight associate with a phase, the more important it is
to serve the in-roads with green lights during that phase. Then those weights
are used to calculate the portion of the traffic cycle for each phase according
to (7). The distribution (7) gives each phase positive service, with more
service given to the higher weight phases. As η → 0, the service allocation
tends to uniform, and as η → ∞, the fraction of service given to the highest
weight phase(s) tends to 1.

Notice that in contrast to BackPressure policies which always serve the
phase associated with the highest weight, the proposed policy ensures that
each phase (and subsequently each in-road) receives non-zero service in each
and every cycle. Thus this ensures a cyclic phase policy, while maintaining
the property that higher weights result in higher proportions of allocated
green time. Note the policy can be implemented in a decentralized way, after
each junction has communicated queue sizes with its upstream in-roads, the
phases can be calculated. This decentralization has numerous advantages:
it is computationally inexpensive, it does not require centralized aggregation
of information and thus is easier to implement, and it increases the road
networks robustness to failures.

2Given this definition the weights do not need to be strictly positive.
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The cyclic phase feature which we introduce to the BackPressure polices
is important from the users’ point of view for various reasons. Firstly, the
drivers usually expect an ordered phase sequence and anticipate traffic signal
changes in advance. Secondly, the waiting time to receive service for any
in-road is bounded in our policy while it could be arbitrary large for some in-
roads in previous state-of-the-art distributed policies, such as BackPressure.
It is particularly important when considering that pedestrian phases might
also be initiated in parallel with the service phases for vehicles.

From an implementation point of view the policy is desirable since it does
not require knowledge regarding the destination of each car within the road
network, nor does it assume that the proportion of cars moving between links
is known in advance. The policy estimates turning fractions and measures
queue sizes in an on-line manner, and uses this adaptive estimates and the
measurement results to inform the policy decision.

3. Mathematical Results - Stability of Cyclic Phase BackPressure

Control Policy

3.1. Stability Region and Queueing Stability

We define the stability region A of the network to be the set of arrival
rate vectors a = (ai : i ∈ I) ≥ 0, for which there exists a positive vector
ρ = (ρjσ : σ ∈ Sj , j ∈ J ), namely the green time proportion devoted to the
service phases in a cycle, and a positive vector s = (si : i ∈ I), namely the
departure rates, satisfying the constraints

ai +
∑

i′:i′i∈L

si′ p̄i′i < si, for each i ∈ I, (8)

∑

σ∈Sj

ρjσ ≤ 1−
L

T
, for j ∈ J , (9)

si ≤
∑

σ∈Sj

ρjσσi, for j ∈ J , (10)

where equation (8) represents the need for the accumulated arrival rates to
be less than the potential departure rates, equation (9) guarantees the yellow
and all-red periods at each cycle maintains sufficient time for switching and
setup between phases, and equation (10) indicates the departure rates do
not exceed the allocated service rates. We let Ā denote the closure of the
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stability region, that is the set of rates a = (ai : i ∈ I) ≥ 0 where the
above inequalities in (8)–(9) may hold with equality. We also note that the
random variables Ai(T ) and the assigned service time proportions P j

σ(t) are
corresponding to ai and ρjσ and take their respective values from the sets a
and ρ in the stable case.

Given the vector of queue sizes (Qi(t) : i ∈ I), we define the total queue
size of the road network to be

QΣ(t) =
∑

i∈I

Qi(t). (11)

So QΣ(t) gives the total number of cars within the road network. We say
that a policy P j

σ(t) for serving cars at the junctions stabilizes the network for
a vector of arrival rates (ai : i ∈ I) if the long run average number of cars in
the queueing network is finite, in particular,

lim
T→∞

E

[

1

T

T
∑

t=1

QΣ(t)

]

< ∞. (12)

This notion of stability originates from the theory of Markov chains, where
(12) gives a necessary and sufficient condition for positive recurrence, for
instance, see [22]. Our model does not assume that the underlying system is
Markovian, thus recurrence cannot be defined. However by (12) we can have
the same understanding of necessary and sufficient conditions for stability as
in the previous literature, see [29, 2, 25]. So in the long run we expect there
to be a finite number of cars within the road traffic network. If the road
network was unstable then we would expect the number of cars within the
system to grow over time. Thus we say that a policy is unstable for a vector
of arrival rates (ai : i ∈ I) if

lim
T→∞

E

[

1

T

T
∑

t=1

QΣ(t)

]

= ∞. (13)

We note that if the queue size process was a Markov chain then definition
of stable would be equivalent to the the definition of positive recurrence for
that Markov chain. However, the process that we will define need not be a
Markov chain hence we use the above definition.
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3.2. Main Theoretical Results

First of all we state the following known result about the stability region
A defined by eqs. (8)–(10). We now refer to the demand induced by the
arrival rates as the load on the network. In particular, we show that any
set of arrival rates outside the stability region must be unstable no matter
what policy is used. Note that in practice, the traffic load is determined
by an origin-destination (O-D) demand rather than a per-inroad arrival rate
and turning fraction. If the O-D demand is stationary, then these quantities
are also stationary, and the model correctly captures the load on each roach,
and hence the stability of the network. If the O-D demand is non-stationary,
then we capture the first-order effects by allowing Ai(t) to vary, but the
assumption that p̄ii′ is constant is an additional modelling approximation.

Proposition 1. Given that the arrivals at each time, {A(t)}∞t=1, are inde-

pendent identically distributed random variables with expectation a, it follows
that if a /∈ Ā then any policy is unstable under these arrival rates, a.

The previous proposition shows that the best a policy can do to stabilize
the road traffic network is to be stable for all rates in A. The following result
shows that our policy is indeed stable for all arrival rates within the set A.

Theorem 1. Given that there exists an ǫ > 0 such that for each traffic cycle

t, ā(t)+ ǫ1 ∈ A then, for a constant K > 0, the long run average queue sizes

of in-roads are bounded as

lim
τ→∞

E

[

1

τ

τ−1
∑

t=0

QΣ(t)

]

≤
K

ǫ
(14)

and thus the policy is stable.

We leave the proof of these statements to Appendix B.3. These results
in a certain sense mean, that we can interpret our policy as being stable for
the largest possible set of arrival rates. Thus the policy provides sufficient
throughput in congested traffic as long as it is possible, reaching an efficient
utilization of the existing capacities. Note that Theorem 1 applies to time
varying traffic levels. Although the stability region A is multidimensional,
the intuition behind the traffic model can be understood by considering the
scalar case. In that case, it corresponds to the expected number of arrivals
in each time cycle (T ) being bounded above. If we interpret that bound
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as the traffic level during peak hour, the theorem applies to networks in
which queues would remain stable even if peak hour extended indefinitely.
We acknowledge that this is a stricter requirement than necessary, since the
system can be stable in the long term even if queues build up during the
peak hour, provided they empty sufficiently after the peak.

4. Numerical Results - Performance Evaluation and Design

4.1. Simulation settings

In this section we evaluate via simulation the performance of our proposed
cyclic phase BackPressure traffic signal control and compare its performance
with a number of existing self-control (i.e. decentralized) schemes by [16],
[26] and [35] as detailed below.

First, the self-control scheme in [16] aims at minimizing the waiting times
at each intersection anticipating future arrivals into those intersections in-
stead of just efficiently clearing exiting queues as in a conventional µc priority
rule [26]. However, since future traffic demand is not known, this scheme [16]
more or less greedily attempts to minimize the waiting time. When the setup
time or the amber traffic signal is ignored, this policy (referred to as greedy
policy below) tends to allocate service to the phase that has longer queue
length. In contrast, backpressure (includes the one proposed in this paper)
is non-greedy. Backpressure based policy ensures that an action at this time
is not too suboptimal, regardless of what future traffic is like. Although it
does not explicitly seek to minimize the waiting time, it is likely to result
in lower waiting time and subsequently lower total travel time through a
network than a greedy algorithm that does.

Second, the priority rule of the self-control scheme in [26] is approximately
giving a green time split proportionally to the total number of vehicles on
the in-roads and thus will be referred to as proportional scheme in the rest
of this section.

The third and final policy in [35] allocates green time to the phase that has
the highest queue backlog differences between upstream queues and down-
stream queue, thus it will be referred to as BackPressure policy in this section.
Note that although these benchmarks are in their genesis by the standards of
currently implemented centralized schemes, they are state of the art among
distributed schemes, and thus appropriate for the goal of this paper. In sum-
mary the following policies will be evaluated and compared in this section.
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• Cyclic Phase BackPressure policy proposed in this paper: Refer to
Subsection 2.3 for details.

• BackPressure policy [35]:

1. At the beginning of each time slot, based on recent occurrences,
form an estimate of the turning fractions according to

q̄ii′(t) =
1

k

k
∑

κ=1

pii′(t− κ) (15)

where k is a parameter of the model.

2. For each junction j ∈ J , calculate the weight associated with each
service phase at the junction as

wσ(Q(t)) =
∑

i∈j

σj
i

(

Qi(t)−
∑

i′:ii′∈L

q̄ii′(t)Qi′(t)

)

. (16)

3. Given these weights, assign the whole service time of the next time
slot to phase σ∗ ∈ Sj where wσ∗ > wσ ∀σ ∈ Sj .

• Proportional policy [26]:

1. At the beginning of each traffic cycle, calculate the weight associ-
ated with each service phase at each junction j ∈ J as

wσ(Q(t)) =
∑

i∈σ

Qi(t). (17)

2. Given these weights, within the next service cycle assign an amount
of time to each phase σ ∈ Sj that is proportional to

P j
σ(t) =

wσ(Q(t))
∑

π∈Sj
wπ(Q(t))

.

• Greedy policy [16] with no switching time:

1. At the beginning of each time slot, calculate the weight associ-
ated with each service phase at each junction j ∈ J according to
equation (17).
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Figure 1: Small network topology.
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Figure 2: Large CBD network with demands.

2. Given these weights, assign the whole service time of the next time
slot to phase σ∗ ∈ Sj where wσ∗ > wσ ∀σ ∈ Sj .
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In this section we utilize an open source microscopic simulation package
SUMO (Simulation of Urban MObility) [28] to study the above schemes in a
small network of two intersections(Fig. 1) and in a large network(Fig. 2) that
reassembles the Melbourne CBD (Australia) with about 70 intersections.

The small network has 2 junctions consisting of several in-roads (num-
bered from 1 to 26 on the figure Fig. 1). All the roads have bi-directional
traffic with the North-South road going through the right intersection hav-
ing double lanes. Direction of traffic movements on this network is indicated
on each in-road leading to the junctions. The ingress queues, where vehicles
enter the network, are assumed to be infinite and represented by a set of long
links (i.e. links {1, 18, 9, 19, 13, 23, 5, 14, 10, 26, 6, 22} on Fig. 1). The cars im-
mediately appear on the connecting in-roads inside the network, which are
of finite capacity. Since the ingress queues are infinitely large, vehicles can
enter the network even when there is a heavy congestion on the bottleneck
link. All other links (i.e. links{2, 3, 4, 7, 8, 11, 12, 20, 21, 24, 25} on Fig. 1)
have the same length at 375 meters which can accommodate maximum 50
cars per lane.

The topology of the large CBD Melbourne network is shown in Fig. 2. It
consists of 73 intersections and 266 links. Most of the roads are bi-directional
except for Little Lonsdale Street, Little Bourke Street, Little Collins Street
and Flinder Lane which only have a single lane mono-directional traffic. King
Street and Russell Street are the biggest roads in this scenario, each is mod-
eled as 3 lanes each direction. Collins Street has one lane each direction.
All other roads have two lanes each direction. The link lengths are varied
between 106 meters for the vertical links and 214 meters and 447 meters for
the horizontal links except for the ingress links at the edges.

Results are given in terms of the total number of vehicles in the network
and the congestion level which is the average number of congested links in
large network after long simulation runs using the different control schemes.
In all the studied scenarios, the exact queue lengths and turning fractions are
observed directly from the simulation and used to make control decision in
various policies. These variables are calculated using Matlab [19] based on the
actual control algorithm and then are fed back into the SUMO simulation at
every time step. We ignore switching times (i.e. transition between phases)
in all control schemes in our study. This overhead can be incorporated into
the simulation by extending the phase times. Nevertheless, the qualitative
insights gained in this section would not change by that extension.

15



4.2. Performance Study

Below we evaluate the performance of our cyclic phase BackPressure
scheme and compare it with other policies using fixed setting of routes in
the studied networks using simulation. The cycle time of the cyclic phase
BackPressure policy and the proportional policy were set to 30 seconds, while
the slot time of the BackPressure policy and the greedy policy were set to
10 seconds in our simulation.

4.2.1. Small Network

First, we study a small network scenario, for which the turning informa-
tion and the arrival rates are indicated in Fig. 3. In particular, the arrows
indicate 10 routes with direction and demands (cars/minutes) in the peak
and off-peak (i.e. on/off) time periods as shown in Fig. 3. The η value
introduced in (7) was set to 2.5. The main traffic flows are the ones with
North-South direction of the second junction. The two BackPressure policies
give the majority of service time to the North-South phase of that junction
which leads to heavy congestion on links 1, 2, 3, 14 and 15. On the other
hand, the proportional policy and greedy policy put more balance between
the service times depending on the queue lengths which creates more con-
gestion in the North-South direction at the cost of having less congestion in
East-West direction.

on/off

12/6 14/6

6/2
7/3

16/5

2/1

11/5

3/2
9/4

2/1

Figure 3: Small network with demands.

Results are shown in Fig. 4 and Fig. 5 where the total number of vehicles
in the network and in the congested link between the two junctions are plotted
over time. Note that there are two in-roads between the two intersections
but only link 3 is congested due to large traffic flows in the North-South
direction at the second intersection.
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Figure 4: Throughput for the small network using different policies. Cycle
time for the cyclic phase BackPressure policy and the proportional policy is
30 seconds. Slot time for the BackPressure policy and the greedy policy is
10 seconds.

Note that Figs 4 and 5 were based on the number of cars present at the
times when control decisions were made which is 30 seconds for cyclic phase
BackPressure and proportional policies. In contrast, the average travel time
depends on the waiting time on individual link which is an integral of queue
size over continuous time. For this reason, intermediate queue size was also
measured at 10 s intervals in the simulation, and the results differed by less
than 2% in compare with the coarse sampling at once per cycle assuming
linear interpolation. The resulting travel time values are reported in the
next sub-section 4.3.

Observe that the cyclic phase BackPressure control yields a lower number
of total vehicles present in the network and thus results in higher number
of vehicles reaching their destination (i.e. increased network throughput)
during the whole simulation. This is due to the fact that in the two Back-
Pressure control schemes when the bottleneck link (link 3) is congested, less
green time will be allocated to the East-West direction at the first junction.
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Figure 5: Congestion of bottleneck link for the small network using different
policies. Cycle time for the cyclic phase BackPressure policy and the pro-
portional policy is 30 seconds. Slot time for the BackPressure policy and the
greedy policy is 10 seconds.

As a result more traffic can move through the North-South direction and
the impact of a spill back from the second junction on the overall network
throughput decreases. Similarly, the BackPressure policy also outperforms
the proportional policy and the greedy policy, since those two schemes al-
locate similar amount of green time to the East-West direction at the first
junction despite the presence of a spilled back traffic and thus waste some of
the green time.

4.2.2. Large Melbourne CBD network

A similar study is performed with a large network with its turning infor-
mation and arrival rates indicated in Fig. 2. The parameter η is once again
set to 2.5. In this setting, the King Street has the largest flows, thus, any
flow that shares an intersection with King Street tends to be under-served
especially the intersection between King Street and Lonsdale Street and the
intersection between King Street and Bourke Street. Generally in the peak
period, congestion in any link will cause spill-back which leads to further
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congestion in the neighbouring junctions. This can only be recognized by
the two BackPressure policies through comparing the in-road i and out-road
i′, and more service will be allocated in this case to traffic flows on the less
congested directions. In contrast, the proportional policy and the greedy
policy only consider the queue lengths present at in-road i, and may waste
some green time to the congested direction where traffic comes to a standstill
due to the spill back.

Results for this scenario are shown in Fig. 6 and Fig. 7. As shown in
Fig. 6 the cyclic phase BackPressure policy has the lowest total number of
vehicles in the network, thus it provides the highest throughput, whereas the
second highest throughput is provided by the BackPressure policy. Similarly
to the previous scenario, the two BackPressure policies outperform the other
two policies in case of heavy congestion because they take into account down-
stream queue lengths, and thus allocate resources (i.e. service phases) more
efficiently.

Fig. 7 plots the congested link over time. Herein a link is said to be
congested at a certain time if its queue length is more than 85% of the link
capacity. It is clear that the two BackPressure policies reduce the number of
congested links significantly (i.e. less number of vehicles inside the network)
resulting in higher network throughput.

4.3. Experimental Parameter Design

The cycle length in the cyclic phase BackPressure policy and the propor-
tional policy and the frequency of making decision in the BackPressure policy
and the greedy policy play a crucial role in the performance of the control
scheme. A long cycle length or the low frequency of making decision may be
less efficient due to the fact that the queue might be depleted before the end
of the service time. In the other hand, a short cycle length may reduce the
overall capacity since the vehicles have to stop and accelerate more often.
Note that the latter is in fact represents a switching cost between phases
even though the amber traffic signal is not considered here. This subsection
investigates the impact of the cycle time and decision making frequency on
the throughput and congestion level of each scheme. We study both network
topologies (the small network and the large CBD network) under the similar
demand levels as in the previous subsection with different cycle times and
decision frequencies. Particularly, for the cyclic phase BackPressure policy
and the proportional policy, the cycle length is set to {30, 60, 90, 120} sec-
onds, and for the BackPressure policy and the greedy policy, a decision is
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Figure 6: Throughput for the large network using different policies. Cycle
time for the cyclic phase BackPressure policy and the proportional policy is
30 seconds. Slot time for the BackPressure policy and the greedy policy is
10 seconds.

made every {10, 30, 60, 90} seconds, respectively.

4.3.1. Small Network

For small network, the results are presented in Fig. 8, Fig. 9, and Fig. 10.
Fig. 8 shows the average number of vehicles in the network plotted against
different cycle times. Because vehicle does not disappear and stays in the
network until it exists, lower number of vehicles in the network equates to
higher throughput of the same demand. In this scenario, all of the studied
policies provide a similar throughput using their corresponding best setting.
Furthermore, it can be observed that in congested network higher cycle times
tend to have better throughput because the traffic flows are less interrupted
by the switching between phases. Nevertheless, the proposed cyclic phase
BackPressure is less sensitive to the changes of cycle time while producing a
compatible throughput.

Fig. 9 plots the average link densities versus link ID. It shows that con-
gestions occur in the same set of links throughout all of the studied policies.
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Figure 7: Congestion level for the large network using different policies. Cycle
time for the cyclic phase BackPressure policy and the proportional policy is
30 seconds. Slot time for the BackPressure policy and the greedy policy is
10 seconds.

In overall, the cyclic phase BackPressure policy and the proportional pol-
icy have lower link density than the other two policies. Fig. 10 shows the
maximum link density over time pointing to when the congestions occur in
the network. In all cases, congestions appear during the peak period and
some portion of time during the off-peak period before the build-up traffic
can be substantially drained. However, when the cycle time or the decision
frequency is set too small (e.g. 10 seconds for the BackPressure policy and
the greedy policy and 30 seconds for the cyclic phase BackPressure policy
and the proportional policy), the congestions are not able to cleared at all
except for our cyclic phase BackPressure policy.
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Figure 8: Throughput vs cycle time/frequency of decision for the small net-
work.

4.3.2. Large Melbourne CBD Network

The impact of the cycle time and frequency of decision making on network
throughput and congestion level using different policies for a large network
are investigated and discussed in this subsection. The results are shown in
Fig. 11, Fig. 12 and Fig. 13.

The average number of vehicles in the network for each setting is presented
in Fig. 11. Unlike the results in the small network, there clearly exists an
optimal value for the cycle length or decision making frequency of each policy.
In particular the optimal cycle length for proportional policy is 60 seconds,
while the optimal cycle length/decision frequency for all other policies is 30
seconds.

Proportional Cyclic phase BP Greedy BP

Avg. travel time 478.0 409.6 514.0 408.5

Table 1: Average travel time (in seconds) for the Melbourne CBD network
using optimal setting for each policy (i.e. 60 seconds cycle length for the
proportional policy, and 30 seconds cycle length for all other policies).
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(a) Cyclic phase BackPressure policy
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Figure 9: Average link density for the small network.

Observe that the optimal cycle length in the large network scenario is
shorter than that of the small network, which can be explained by shorter
link lengths and larger number of intersections on any route. Both increase
the interdependency between intersections and their performance as arriving
traffic into any internal intersection is an output traffic from the others.

Furthermore, the average travel time of each policy in their best setting
of cycle length and decision making frequency is shown in Table 1. There is a
strong correlation between the average number of vehicles in the network and
average travel time through that network. In particular, the higher number
of vehicles in the network results in the longer travel time and vice versa.
It can be seen that the proposed cyclic phase BackPressure policy has a
competitive average travel time between all the considered policies, and the
results show that the BackPressure-based policies yield a significantly better
average travel time than that of the greedy policy. Note that this better
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Figure 10: Maximum link density for the small network.

average travel time has been achieved with the control decisions using the
queue size measurements at discrete time intervals (once in every cycle) only
as explained earlier.

Fig. 12 plots the average link densities against the link ID. It shows that
the congestion area is varied with different policy and with different param-
eter settings. Any cycle length/decision frequency setting other than the
optimal setting obviously increases the congestion greatly.

Finally, Fig. 13 shows the maximum link density over time. The cycle
length plays a vital role to prevent congestion in this scenario. In the cyclic
phase BackPressure policy, the 30 second cycle length is undoubtedly out-
standing. In other policies, the small cycle lengths are seemed to be better
due to the short link lengths.
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Figure 11: Throughput vs cycle time/frequency of decision for the large
network.

5. Conclusion

We proposed in this paper a novel decentralized signal control strategy
based on the so-called BackPressure policy that does not require any a priori
knowledge of the traffic demand and only needs information (i.e. queue size)
that is local to the intersection. In contrast to other existing BackPressure-
based policies in which phases can form an erratic and unpredictable order
resulting in potential unsafe operation, our scheme allocates non-zero amount
of time to each phases within the cycle, thus repeating them in a cyclic man-
ner. Furthermore, unlike all the other existing Backpressure-based policies,
no knowledge of the local turn ratios (turning fractions) is required in our
control strategy. Instead any unbiased estimator of the turning fractions can
be utilized in the proposed scheme. We have formally proved the stability
results of the proposed signal control policy even though the controllers are
reacting based only on local information and demand in an distributed man-
ner. The stability results indicate that our policy is stable for the largest
possible set of arrival rates (or demand) that will provide sufficient through-
put even in congested network.

Using simulation, we compared our cyclic phase BackPressure perfor-
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Figure 12: Average link density for the large network.

mance against other well-known policies in terms of network throughput and
congestion level using both small and large network topology with fixed rout-
ings. The results showed that our cyclic phase BackPressure policy tends to
outperform other distributed polices both in terms of throughput and con-
gestion. Although the performance of each policy varies widely depending
on the parameter setting such as cycle length or decision frequency, under
the optimal setting among the cases studied, the BackPressure with cyclic
and non-cyclic operation have better throughput in compare with the other
policies.

There are still many issues, such as non-constant switching times, finite
link travel time and link capacity etc. that have not been considered here
and will be a subject of future work.
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Figure 13: Maximum link density for the large network.
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Appendix A. Estimation of Turning Fractions

An important aspect not addressed in the previous studies applying back
pressure is the estimation of traffic turning fractions. Previous studies have
either assumed the turning fractions are either explicitly known or have been
calculated prior to the implementation of the policy.

Here we emphasize that the turning fractions can be estimated using
recent locally calculated information about traffic flows. For instance, if we
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form an estimate on the turning fractions based on the last k service cycles

q̄ii′(t) =
1

k

k
∑

κ=1

p̂ii′(t− κ), (A.1)

where p̂ii′(t) denotes the measurement result for pii′(t). If Qi(t) = 0 then
any estimate may be used to define pii′(t). Given that turning fractions are
stationary and independent of queue sizes, these estimates form an unbiased
estimate of the underlying turning probabilities as long as the measurement
error in p̂ii′(t) has zero mean, since then

p̄ii′ = E[q̄ii′(t)|Qi(t) > 0]. (A.2)

Other rules incorporating historical data or more recent data could also be
considered here. What is necessary is that q̄ii′(t) provides an unbiased esti-
mate of the underlying turning fractions of the vehicles for non-empty queues.
It is even possible to use an inconsistent estimate of the turning fractions or
for the proportions to change on a larger time scale, as long as the estimate
is unbiased, independent of (the history of) Q(t).

Appendix B. Proof of the main stability result

In this section we prove Theorem 1. In order to that, we have to clarify
some assumptions made about the stochastic elements of our model and pro-
vide some technical lemmas which are proven in a supplementary document
together with Proposition 1.

Appendix B.1. Assumptions

1. The number of cars that can be served from any in-road within a traffic
cycle is bounded,

Smax = max
t∈Z+,i∈I

Si(t) < ∞. (B.1)

2. (pii′(t) : ii
′ ∈ L) is stationary and independent of queue lengths (Qi(τ) :

i ∈ I) and the number of cars served at each queue (Si(τ) : i ∈ I) for
all τ ≤ t.

3. The matrix I − p̄ is invertible. Thus we have, for ii′ ∈ L

E [Si(t)pii′(t)|Q(t)] =
∑

σ∈Sj

σiP
j
σ(t)p̄ii′ (B.2)

E [Si(t) ∧Qi(t)pii′(t)|Q(t)] = E [Si(t) ∧Qi(t)|Q(t)] p̄ii′. (B.3)
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4. The number of arrival (Ai(t) : t ∈ Z
I
+) is independent of the state of

the queues in the road traffic network. Thus the average arrival rate
into each junction can be defined as

āi(t) = E[Ai(t)]. (B.4)

5. The error term in the queue size measurement, δ(t) is bounded, i.e.

|δi(t)| ≤ δmax ∀i ∈ I. (B.5)

Appendix B.2. Lemmas

In this section, we will prove a number of additional lemmas that are
required for the main proofs. The first lemma describes the difference of the
weights caused by the error in measurement, whereas the second describes
a general result on weights. The third lemma is a consquence of them,
introducing a bound which is used multiple times in proving later statements.

Lemma 1.

wσ(Q(t)) = wσ(Q̂(t))− wσ(δ(t)), (B.6)

where wσ(Q(t)) is defined according to (6).

Proof. This statement is a straightforward consequence of the definition of
the weights and the measurement error given in (1) and (6). Namely,

wσ(Q(t)) =
∑

i∈j

σi

(

Qi(t)−
∑

i′:ii′∈L

q̄ii′(t)Qi′(t)

)

=
∑

i∈j

σi

(

(

Q̂i(t)− ǫi(t)
)

−
∑

i′:ii′∈L

q̄ii′(t)
(

Q̂i′(t)− δi′(t)
)

)

=
∑

i∈j

σi

(

Q̂i(t)−
∑

i′:ii′∈L

q̄ii′(t)Q̂i′(t)

)

−
∑

i∈j

σi

(

δi(t)−
∑

i′:ii′∈L

q̄ii′(t)δi′(t)

)

= wσ(Q̂(t))− wσ(δ(t)).

(B.7)
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Lemma 2. Given weights (wy : y ∈ Y) with elements indexed by finite set

Y, we consider Y a random variable with the following probability of event

y:

Py =
eηwy

∑

y′∈Y eηwy′
(B.8)

then, the expected value of the weights w under this distribution obey the

following inequality

EwY ≥ max
y∈Y

wy −
1

η
log |Y|. (B.9)

Proof. In the following inequality, we note that the entropy of a distribution
H(P ) = −E logP (Y ) is maximized by a uniform distribution on Y , H(U) =
log |Y|.

EwY =
1

η
log

(

∑

y∈Y

eηwy

)

+
1

η
E logP (Y ) ≥

1

η
log

(

∑

y∈Y

eηwy

)

−
1

η
log |Y|

≥
1

η
log
(

eηmaxy∈Y wy

)

−
1

η
log |Y| = max

y∈Y
wy −

1

η
log |Y|,

as required.

Lemma 3.
∑

σ∈Sj

P j
σwσ

(

Q̂(t)
)

≥ max
σ∈Sj

{

wσ (Q(t))
}

− δmaxSmax|I| −
1

η
log |Sj|. (B.10)

Proof. We can prove this statement by applying Lemma 2 to wσ(Q̂(t)) ,
expanding the terms according to Lemma 1 and using the bound on δ(t) in
(B.5).

∑

σ∈Sj

P j
σwσ(Q̂(t)) = Ewσ(Q̂(t)) ≥ max

σ∈Sj

{

wσ

(

Q̂(t)
)}

−
1

η
log |Sj |

≥ max
σ∈Sj

{

wσ (Q(t)) + wσ (δ(t))
}

−
1

η
log |Sj|

≥ max
σ∈Sj

{

wσ (Q(t))
}

+min
σ∈Sj

{

wσ (δ(t))
}

−
1

η
log |Sj |

≥ max
σ∈Sj

{

wσ (Q(t))
}

− δmaxSmax|I| −
1

η
log |Sj|

(B.11)
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Lemma 4 and Lemma 5 introduce bounds on the increments of the square
of the queue sizes and their conditional expectations.

Lemma 4. There exists a constant K0 ≥ 0 such that our queue size process,

(5), obeys the bound

1

2
Qi(t+ 1)2 −

1

2
Qi(t)

2 ≤ Qi(t)

(

Ai(t)− Si(t) +
∑

i′:i′i∈L

Si′(t)pi′i(t)

)

+K0.

(B.12)

Proof. Firstly, the following bound holds for the queue size process, (5).

Qi(t+ 1) = Qi(t)− Si(t) ∧Qi(t) + Ai(t) +
∑

i′:i′i∈L

[Si′(t) ∧Qi′(t)]pi′i(t)

≤ Qi(t)− Si(t) ∧Qi(t) + Ai(t) +
∑

i′:i′i∈L

Si′(t)pi′i(t)

≤

{

Qi(t)− Si(t) + Ai(t) +
∑

i′:i′i∈L Si′(t)pi′i(t), if Qi(t) ≥ Si(t),

Ai(t) +
∑

i′:i′i∈L Si′(t)pi′i(t), otherwise.

(B.13)

Let’s consider the two cases above. Firstly, if Qi(t) < Si(t) then, and accord-
ing to the above bound, we have

1

2
Qi(t+ 1)2 −

1

2
Qi(t)

2 ≤
1

2
Qi(t + 1)2 ≤

1

2

(

Ai(t) +
∑

i′:i′i∈L

Si′(t)pi′i(t)

)2

≤
1

2
(amax + Smax(|I|+ 1))2

≤−Qi(t)

(

Si(t)− Ai(t)−
∑

i′:i′i∈L

Si′(t)pi′i(t)

)

(B.14)

+ Smax (amax + Smax(|I|+ 1)) (B.15)

+
1

2
(amax + Smax(|I|+ 1))2 .

In the final inequality, we use the fact that the term, (B.14), is bounded by
the term (B.15).
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Secondly, if Qi(t) ≥ Si(t) then, according to (B.13),

1

2
Qi(t+ 1)2 −

1

2
Qi(t)

2 ≤−Qi(t)

(

Si(t)− Ai(t)−
∑

i′:i′i∈L

Si′(t)pi′i(t)

)

+
1

2

(

Si(t)−Ai(t)−
∑

i′:i′i∈L

Si′(t)pi′i(t)

)2

≤−Qi(t)

(

Si(t)− Ai(t)−
∑

i′:i′i∈L

Si′(t)pi′i(t)

)

+
1

2
(amax + (|I|+ 1)Smax)

2 .

Thus defining

K0 =
1

2
(amax + (|I|+ 1)Smax)

2 + Smax (amax + Smax(|I|+ 1)) ,

we see that in both cases, above, we have the required bound

1

2
Qi(t+ 1)2 −

1

2
Qi(t)

2 ≤ Qi(t)

(

Ai(t)− Si(t) +
∑

i′:i′i∈L

Si′(t)pi′i(t)

)

+K0.

Lemma 5. There exists a constant K1 > 0 such that the following equality

holds

E

[

Qi(t)Si′(t)pi′i(t)
∣

∣

∣
Q(t), δ(t)

]

≤ E

[

Qi(t)
∑

σ∈Sj(i′)

σi′(t)P
j(i′)
σ q̄i′i(t)

∣

∣

∣
Q(t), δ(t)

]

+K1.

(B.16)

Proof. First let us suppose that the queue has been empty over the last k
time steps. Then, since a bounded number of cars arrive at the queue per
traffic cycle, the queue size Qi(t) must be less than (amax+σmax|L|). Clearly
the above bound holds for any, Qi(t) ≤ K1 = Smax(amax + σmax|L|). Now
lets suppose Qi(t) ≥ K1, we can take Qi(t) out the conditional expectation
because it is known

E[Qi(t)Si′(t)pi′i(t)|Q(t), δ(t)] = Qi(t)E[Si′(t)pi′i(t)|Q(t), δ(t)].
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The proportion of traffic p(t) is independent of S(t) and of Q(t). So the
expectation of pi′i(t) given Q(t) (and S(t)) is its mean p̄ii′. So

E[Si′(t)pi′i(t)|Q(t), δ(t)] = E[Si′(t)p̄i′i|Q(t), δ(t)] = p̄i′iE[Si′(t)|Q(t), δ(t)].

Also (3) implies

E[Si′(t)|Q(t), δ(t)] =
∑

σ∈Sj(i′)

σi′P
j(i′)
σ .

Also since qi′i(t) is an unbiased estimate of pi′i at time t, and independent of
Q(t) by assumption,

p̄i′i = E[qi′i(t)|Q(t)].

Substituting this all back in, we have

E[Qi(t)Si′(t)pi′i(t)|Q(t), δ(t)] = Qi(t)p̄i′iE[Si′(t)|Q(t), δ(t)]

= Qi(t)E[qi′i(t)|Q(t), δ(t)]
∑

σ∈Sj(i′)

σi′P
j(i′)
σ

= E

[

Qi(t)
∑

σ∈Sj(i′)

σi′P
j(i′)
σ q̄i′i(t)

∣

∣

∣
Q(t), δ(t)

]

,

thus the above inequality also holds in the case Qi(t) > K1 as required.

Lemma 6 indicates an allowed reordering of terms.

Lemma 6. The following equality holds for each measured queue size vector,

∑

i∈I

Q̂i(t)





∑

σ∈Sj(i)

σiP
j(i)
σ (t)−

∑

i′:(i′,i)∈L

∑

σ∈Sj′(i′)

σi′P
j(i′)
σ q̄i′i(t)





=
∑

k∈J

∑

σ∈Sk

P k
σ (t)

∑

i∈k

σi

(

Q̂i(t)−
∑

i′:ii′∈L

Q̂i′(t)q̄ii′(t)

)

.

Proof. Although the following set of equalities is some what lengthy, the
premise is fairly simple. We want to change to order of summation so that
we first sum over junctions J instead of first summing over in-roads I. These
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manipulations are as follows

∑

i∈I

Q̂i(t)





∑

σ∈Sj(i)

σiP
j(i)
σ (t)−

∑

i′:(i′,i)∈L

∑

σ∈Sj′(i′)

σi′P
j(i′)
σ q̄i′i(t)





=
∑

i∈I

∑

k∈J

∑

σ∈Sk

Q̂i(t)σiP
k
σ (t)I[i ∈ k]−

∑

i∈I

∑

i′:i′i∈L

∑

k∈J

∑

σ∈Sk

Q̂i(t)σi′P
k
σ q̄i′i(t)I[i

′∈k]

=
∑

k∈J

∑

σ∈Sk

P k
σ (t)

∑

i∈I

Q̂i(t)σiI[i ∈ k]−
∑

k∈J

∑

σ∈Sk

P k
σ

∑

i∈I

∑

i′:i′i∈L

Q̂i(t)σi′ q̄i′i(t)I[i
′∈k]

=
∑

k∈J

∑

σ∈Sk

P k
σ (t)

(

∑

i∈k

Q̂i(t)σi −
∑

i′∈I

∑

i:i′i∈L

Q̂i(t)σi′ q̄i′i(t)I[i
′ ∈ k]

)

=
∑

k∈J

∑

σ∈Sk

P k
σ (t)

∑

i∈k

σi

(

Q̂i(t)−
∑

i′:ii′∈L

Q̂i′(t)q̄ii′(t)

)

.

In the first equality above, we expand brackets. In the second equality, we
reorder the summation so we first sum over junctions and then over schedules.
In the third and fourth equality, we collect together terms for each in-road.

Our last lemma gives a bound on an optimization problem to be used
later.

Lemma 7. If a+ ǫ1 ∈ A then

ǫ <

(

1−
L

T

)

min
u≥0:

∑
i∈I ui=1

(

∑

j∈J

max
σ∈Sj

{wσ (u)} −
∑

i∈I

uiāi(t)

)

.

Proof. By definition a+ ǫ1 ∈ A when there exists a positive vector ρ = (ρjσ :
σ ∈ Sj, j ∈ J ) and a positive vector s = (si : i ∈ I) satisfying the constraints

ai + ǫ+
∑

i′:i′i∈L

si′ p̄i′i < si, (B.17)

∑

σ∈Sj

ρjσ ≤ 1−
L

T
, si ≤

∑

σ∈Sj

ρjσσi (B.18)

for each j ∈ J and i ∈ j. We can express (B.17) more concisely in vector
form as a+ǫ1 < sT(I− p̄). Notice the inverse of (I− p̄) is the positive matrix
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(I− p̄)−1 = I+ p̄+ p̄2+ ... Thus we can equivalently express condition (B.17)
as

(a+ ǫ1)T(I − p̄) < sT. (B.19)

We can now observe that if we replace s as above with

s̃i =
∑

σ∈Sj

ρjσσi (B.20)

then equations (B.17-B.18) must hold. In other words there exists a ρ =
(ρjσ : σ ∈ Sj , j ∈ J ) such that

ai + ǫ+
∑

i′:i′i∈L

∑

σ∈Sj(i′)

ρj(i
′)

σ σi′ p̄i′i <
∑

σ∈Sj

ρjσσi, for i ∈ j, with j ∈ J , (B.21)

∑

σ∈Sj

ρjσ ≤ 1−
L

T
, for j ∈ J . (B.22)

We now focus on the inequality (B.21). Rearranging it, the above holds when
there exists ρ such that

ǫ < min
j∈J ,i∈j







∑

σ∈Sj

ρjσσi −
∑

i′:i′i∈L

∑

σ∈Sj(i′)

ρj(i
′)

σ σi′ p̄i′i − ai







, (B.23)

∑

σ∈Sj

ρjσ ≤ 1−
L

T
, j ∈ J . (B.24)

The above statement can only hold if it also holds when we maximize over ρ
thus the following must hold

ǫ < max
ρ:∀j∈J ,

∑
σ∈Sj

ρjσ≤1−L/T
min

j∈J ,i∈j







∑

σ∈Sj

ρjσσi −
∑

i′:i′i∈L

∑

σ∈Sj(i′)

ρj(i
′)

σ σi′ p̄i′i − ai







.

(B.25)

Since the minimum of a finite set in R is equal to the minimum of the convex
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combinations of elements in that set,

min
i∈I







∑

σ∈Sj(i)

ρj(i)σ σi −
∑

i′:i′i∈L

∑

σ∈Sj(i′)

ρj(i
′)

σ σi′ p̄i′i − ai







= min
u≥0:

∑
i∈I ui=1







∑

i∈I

∑

σ∈Sj(i)

ρj(i)σ σiui −
∑

i∈I

∑

i′:i′i∈L

∑

σ∈Sj(i′)

ρj(i
′)

σ σi′ p̄i′iui −
∑

i∈∈I

aiui







.

(B.26)

Next by exactly the same argument used to prove Lemma 6, we have that

∑

i∈I

∑

σ∈Sj(i)

ρj(i)σ σiui −
∑

i∈I

∑

i′:i′i∈L

∑

σ∈Sj(i′)

ρj(i
′)

σ σi′ p̄i′iui −
∑

i∈I

aiui

=
∑

k∈J

∑

σ∈Sk

ρkσ
∑

i∈k

σi

(

ui −
∑

i′:ii′∈L

ui′ p̄ii′

)

−
∑

i∈I

aiui.

Substituting this equality into (B.26), we have that (B.25) reads as

ǫ < max
ρ:∀j∈J ,

∑
σ∈Sj

ρjσ≤1−L/T
min

u≥0:
∑

i∈I ui=1

{

∑

k∈J

∑

σ∈Sk

ρkσ
∑

i∈k

σi

(

ui −
∑

i′:ii′∈L

ui′ p̄ii′

)

−
∑

i∈I

aiui

}

.

(B.27)

Finally for any function f(u, ρ), it holds that minu maxρ f(u, ρ) ≥ maxρminu f(u, ρ).
Thus if ā + ǫ1 ∈ A then it must be true that

ǫ < min
u≥0:

∑
i∈I ui=1

max
ρ:∀j∈J ,

∑
σ∈Sj

ρjσ≤1−L/T

{

∑

k∈J

∑

σ∈Sk

ρkσ
∑

i∈k

σi

(

ui −
∑

i′:ii′∈L

ui′ p̄ii′

)

−
∑

i∈I

aiui

}

.

Finally, we note that the above maximization over ρ must be achieved at a
value where, for each j ∈ J , ρjσ = 1− L

T
for some σ, so

ǫ <

(

1−
L

T

)

min
u≥0:

∑
i∈I ui=1

{

∑

j∈J

max
σ∈Sj

∑

i∈j

σi

(

ui −
∑

i′:ii′∈L

ui′ p̄ii′

)

−
∑

i∈I

aiui

}

.
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Appendix B.3. Proofs

We now provide a proof that the road traffic network is unstable whenever
the arrival rates are outside the set Ā.

Proof of Proposition 1. If ā /∈ Ā then there exists an ǫ > 0 where, for any
vector ρ = (ρjσ : σ ∈ Sj , j ∈ J ) and s = (si : i ∈ I), satisfying

∑

σ∈Sj

ρjσ ≤ 1−
L

T
, and si′ ≤

∑

σ∈Sj

ρjσσi′ (B.28)

for j ∈ J and i′ ∈ I, and there exists an in-road i such that

ai − si +
∑

i′:i′i∈L

si′ p̄i′i > ǫ. (B.29)

Consider any policy Pσ, and consider the average service devoted to each
queue and the number of departures from each queue

ρjσ(τ) =
1

τ

τ
∑

t=1

P j
σ(t) and si(τ) =

1

τ

τ
∑

t=1

Si(t).

Taking a suitable subsequence if necessary, the sequences ρjσ(t) and si(t) must
converge to some value ρjσ and si satisfying condition (B.28). The long run
queue size must converge to the average arrival minus the average departures.
Thus we have that

lim
t→∞

QΣ(t)

t
=
∑

i∈I

(

āi +
∑

i′:i′i∈L

si′ p̄i′i − si

)

> ǫ.

In the above inequality, we note that each term in the above summation is
positive since it is the limit of positive queue sizes and one of those terms in
greater than ǫ by (B.29). Thus we see that for any policy there always exists
a queue that is unstable: there exists a t0 such that for all t > t0

QΣ(t) > tǫ,

thus,

lim
τ→∞

1

τ

τ
∑

t=1

QΣ(t) ≥ lim
τ→∞

1

τ

τ
∑

t=t0

ǫt = ∞.
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So, taking expectations, we see that the network must be unstable:

lim sup
τ→∞

E

[

1

τ

τ
∑

t=1

QΣ(t)

]

≥ E

[

lim inf
τ→∞

1

τ

τ
∑

t=1

QΣ(t)

]

= ∞.

In the last inequality we apply Fatou’s Lemma.

Appendix B.4. Formal proof of Theorem 1

We now begin to develop the proof of Theorem 1. First, we require a
bound on the change in the (euclidean) distance of our queue sizes from
zero. This is proven in the following proposition.

Proposition 2. There exists a constant K∗ such that

∑

i∈I

E

[

1

2
Qi(t + 1)2 −

1

2
Qi(t)

2

∣

∣

∣

∣

Q(t), δ(t)

]

≤E





∑

i∈I

Qi(t)āi(t)−
∑

j∈J

∑

σ∈Sj

P j
σwσ(Q(t))

∣

∣

∣

∣

∣

Q(t), δ(t)



+K∗

where wσ(Q(t)) is defined by (6).

Proof. We can expand the left side through the following inequalities to reach
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the desired bound

∑

i∈I

E

[

1

2
Qi(t+ 1)2 −

1

2
Qi(t)

2

∣

∣

∣

∣

Q(t), δ(t)

]

≤
∑

i∈I

E

[

Qi(t)

(

Ai(t)− Si(t) +
∑

i′:i′i∈L

Si′(t)pi′i(t)

)

∣

∣

∣

∣

Q(t), δ(t)

]

+K0

≤
∑

i∈I

E



Qi(t)



āi(t)−
∑

σ∈Sj(i)

σiP
j(i)
σ (t) +

∑

i′:i′i∈L

∑

σ∈Sj(i′)

σi′P
j(i′)
σ q̄i′i(t)





∣

∣

∣

∣

∣

Q(t), δ(t)



+K̃

=E

[

∑

i∈I

Qi(t)āi(t)

∣

∣

∣

∣

∣

Q(t), δ(t)

]

+ K̃

−E





∑

i∈I

(

Q̂i(t)− δi(t)
)





∑

σ∈Sj(i)

σiP
j(i)
σ (t)−

∑

i′:i′i∈L

∑

σ∈Sj(i′)

σi′P
j(i′)
σ q̄i′i(t)





∣

∣

∣

∣

∣

Q(t), δ(t)





≤E





∑

i∈I

Qi(t)āi(t)−
∑

j∈J

∑

σ∈Sj

P j
σwσ(Q̂(t))

∣

∣

∣

∣

∣

Q(t), δ(t)



+K∗.

The first inequality can be reached by using Lemma 4 to expand the
recursion (5) for some constant K0 > 0. Then by using the inequalities

E

[

Qi(t)Si′(t)pi′i(t)
∣

∣

∣
Q(t), δ(t)

]

≤E

[

Qi(t)
∑

σ∈Sj(i′)

σi′P
j(i′)
σ q̄i′i(t)

∣

∣

∣
Q(t), δ(t)

]

+K1

(B.30)
and

E

[

Qi(t)Ai(t)
∣

∣

∣
Q(t)

]

= Qi(t)āi(t) (B.31)

with rearranging we can further expand by taking constant K̃ = K0+ |L|K1

for instance. (B.30) is proven in Lemma 5, whereas (B.31) holds by definition
(B.4). The last inequality is given by swapping the order of summation inside
the expectation from a summation over queues on in-roads I and then as a
summation over schedules Sj to the other way around, and using the bound
on the error terms in (B.5). By Lemma 6 and by the definition of the weights
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wσ(Q̂(t)) in (6), we have that

∑

i∈I

Q̂i(t)





∑

σ∈Sj(i)

σiP
j(i)
σ (t)−

∑

i′:i′i∈L

∑

σ∈Sj(i′)

σi′P
j(i′)
σ q̄i′i(t)





=
∑

k∈J

∑

σ∈Sk

P k
σ (t)

∑

i∈k

σi

(

Q̂i(t)−
∑

i′:ii′∈L

Q̂i′(t)q̄ii′(t)

)

=
∑

k∈J

∑

σ∈Sk

P k
σwσ(Q̂(t)).

Furthermore we can bound the extra term arising from the measurement
error as

E





∑

i∈I

δi(t)





∑

σ∈Sj(i)

σiP
j(i)
σ (t)−

∑

i′:i′i∈L

∑

σ∈Sj(i′)

σi′P
j(i′)
σ q̄i′i(t)





∣

∣

∣

∣

∣

Q(t), δ(t)





=
∑

i∈I

δi(t)E









∑

σ∈Sj(i)

σiP
j(i)
σ (t)−

∑

i′:i′i∈L

∑

σ∈Sj(i′)

σi′P
j(i′)
σ q̄i′i(t)





∣

∣

∣

∣

∣

Q(t), δ(t)





≤δmax · |I| · Smax(1 + |L|),

which by introducing K∗ = K̃ + δmax · |I| · Smax(1 + |L|) completes our
proof.

Now that we have proven the previous proposition, we are able to prove
the main mathematical result of this paper, Theorem 1.

Proof of Theorem 1. By Proposition 2, we have that

∑

i∈I

E

[

1

2
Qi(t+ 1)2 −

1

2
Qi(t)

2

∣

∣

∣

∣

Q(t), δ(t)

]

≤E

[

∑

i∈I

Qi(t)āi(t)−
∑

j∈J

∑

σ∈Sj

P j
σwσ(Q̂(t))

∣

∣

∣

∣

Q(t), δ(t)

]

+K∗. (B.32)

Further, by Lemma 3, we know that

∑

σ∈Sj

P j
σwσ(Q̂(t)) ≥ max

σ∈Sj

{

wσ(Q(t))
}

− δmaxSmax|I| −
1

η
log |Sj |. (B.33)
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Applying this bound to (B.32) and taking expectations, we have that

∑

i∈I

E

[

1

2
Qi(t+ 1)2 −

1

2
Qi(t)

2

]

≤E

[

∑

i∈I

Qi(t)āi(t)−
∑

j∈J

max
σ∈Sj

{wσ(Q(t))}

]

+K

(B.34)
where

K = K∗ + δmaxSmax|I| +
∑

j∈J

1

η
log |Sj|.

We focus on bounding the term (B.34) above. Recalling the definition of
QΣ(t), (11), observe that

E

[

∑

j∈J

max
σ∈Sj

{wσ(Q(t))} −
∑

i∈I

Qi(t)āi(t)

]

=E

[

QΣ(t)×

(

∑

j∈J

max
σ∈Sj

{

wσ

(

Q(t)

QΣ(t)

)}

−
∑

i∈I

Qi(t)

QΣ(t)
āi(t)

)]

≥E

[

QΣ(t)× min
u≥0:

∑
i∈I ui=1

(

∑

j∈J

max
σ∈Sj

{wσ (u)} −
∑

i∈I

uiāi(t)

)]

≥E
[

QΣ(t)× ǫ
]

. (B.35)

In the first inequality above, we substitute ui for
Qi(t)
QΣ(t)

and minimize over ui.
In the second inequality, we apply our bound from Lemma 7:

ǫ <

(

1 +
L

T

)

min
u≥0:

∑
i∈I ui=1

(

∑

j∈J

max
σ∈Sj

{wσ (u)} −
∑

i∈I

uiāi(t)

)

.

Applying (B.35) to (B.34), we gain a far simpler bound

∑

i∈I

E

[

1

2
Qi(t + 1)2 −

1

2
Qi(t)

2

]

≤ −ǫE
[

QΣ(t)
]

+K. (B.36)

Summing over t = 0, ..., τ − 1, we have

∑

i∈I

E

[

1

2
Qi(τ)

2 −
1

2
Qi(0)

2

]

≤ −ǫE

[

τ−1
∑

t=0

QΣ(t)

]

+ τK. (B.37)
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Finally, rearranging and dividing by τ gains the required bound,

lim
τ→∞

E

[

1

τ

τ−1
∑

t=0

QΣ(t)

]

≤
K

ǫ
+ lim

τ→∞

1

τǫ
E

[

1

2

∑

i∈I

Qi(0)
2

]

=
K

ǫ
< ∞.
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