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Abstract— Motivated by the needs of distributed Air Traffic
Management, we extend the decentralized navigation function
methodology, established in previous work for navigation of
multiple holonomic agents with global sensing capabilities to
the case of local sensing capabilities. Each agent plans its
actions without knowing (i) the destinations of the others and
(ii) the positions of agents outside its sensing neighborhood.
The overall system is modelled as a deterministic switched
system and we use tools from nonsmooth analysis to check
its stability properties. The collision avoidance and global
convergence properties are verified through simulations.

I. I NTRODUCTION

Navigation of mobile agents has been an area of sig-
nificant interest in robotics and control communities. Most
efforts have focused on the case of a single agent navigating
in an environment with obstacles [13]. Recently, decentral-
ized navigation for multiple agents has gained increasing
attention. The motivation comes from many application do-
mains, among which decentralized conflict resolution in air
traffic management(ATM) has gained increasing attention
in the past few years.

Today’s air traffic systems remain to a large extent widely
centralized [18]. A central authority, namely the Air Traffic
Controllers (ATC), is responsible for issuing instructions
to conflict-bound aircraft . To resolve conflicts they ask
aircraft to climb/descend or vector them away from the path
in the flight plan and then back on to it. Flight plans are
completely pre-defined and aircraft fly along fixed corridors
and at specified altitude. Only minor deviations from the
original flight plan are permitted on line. Autonomous
decision-making by aircraft is allowed under the Traffic
Alert Collision Avoidance System (TCAS)[14], which is-
sues advisories in order to avoid potential collisions, yet is
used only in extreme situations.

On the other hand, the demand for air transportation is
constantly increasing and threatens to exceed the capacity
of the current centralized ATM structure. The number of
passengers using air traffic is predicted to increase up to
120 % in the next ten years [4], and studies in [18] indicate
that, with the current ATM structure, a major accident could
occur every 7 to 10 days by the year 2015. Moreover,

recent technological advances in avionics such as satellite
positioning systems (the Global Positioning System (GPS)),
inter-communication systems (the Automatic Dependent
Surveillance-Broadcast (ADSB)-although its current use in
air traffic is rather limited), and powerful on-board com-
puters, are used in terms of the current centralized ATM
system and provide an improvement on it, but not a radical
change in the air traffic community.

These facts have resulted in the growing will of the air
traffic world for new architectures, which employ these
new technological innovations towards a more user-centered
system. The purpose is to supply pilots with more decisional
freedom and to reduce the authority and influence of the
ATCs. The ultimate purpose of these efforts isfree-flight,
a concept in which aircraft will be allowed to plan their
en-route trajectories and resolve any conflicts with other
aircraft in a distributed and cooperative manner. In this case,
the ATC will play the role of a passive observer.

The need for development of decentralized conflict res-
olution algorithms is therefore evident. The level of decen-
tralization depends on the perception an agent has on the
other agents’ actions and the knowledge of their objectives.
In our previous work ([5],[16]) the decentralization factor
lied in the fact that each agent had knowledge only of its
own desired destination, but not of the desired destinations
of the others. Clearly, this is a suitable model for a futuristic
distributed ATM system, where each aircraft will have
knowledge of the actions and positions of the other aircraft
at each time instant, but not of their destinations.

Nevertheless, in practice, the sensing capabilities of each
agent are limited. Consequently, each agent can not have
knowledge of the positions and/or velocities of every agent
in the workspace but only of the agents within its sensing
zone at each time instant. The interpretation of the sensing
zone of an agent that we use in this paper is a circle of
constant radius around its center of mass. Taking those as-
pects into consideration, the multi agent navigation problem
treated in this paper can be stated as follows:derive a set
of control laws (one for each agent) that drives a team
of agents from any initial configuration to a desired goal



configuration avoiding, at the same time, collisions. Each
agent has no knowledge of the others desired destinations
and has only local knowledge of their positions at each
instant. The same problem has been dealt in [1],[11] under
a game theoretic perspective, while the concept of a sensing
zone has also been used in [8] . In [20] a nonsmooth
controller was designed to achieve flocking behavior in
an environment with multiple agents with limited sensing
capabilities. In this paper we use the navigation function
method established in [12], [15],[5] and solve the problem
in a closed loop fashion.

The rest of the paper is organized as follows: in section 2
the concept of decentralized navigation functions introduced
in [5]. In section 3 we present the class of nonsmooth
navigation functions we use to cope with the limited sensing
capabilities of the agents. Section 4 is a summary of the
tools from nonsmooth analysis needed to check the stability
properties of the system in section 5. Simulation results
are presented in section 6 while section 7 summarizes the
conclusions and indicates our current research.

II. D ECENTRALIZED NAVIGATION FUNCTIONS

In this section, we review the decentralized navigation
function method used in [5] for the case of multiple
holonomic agents. Consider a system ofn agents operating
in the same workspaceW ⊂ R2. Each agenti occupies a
disk: R = {q ∈ R2 : ‖q−qi‖ ≤ ri} in the workspace where
qi ∈ R2 is the center of the disk andri is the radius of the
agent. The dynamics of each agent are given byq̇i = ui

and the configuration space is spanned byq = [q1, . . . , qn]T .
The proposed control law for each agent is given by

ui = −Ki · ∂ϕi

∂qi
(1)

whereKi is a positive gain and thedecentralized navigation
functionϕi is defined as

ϕi =
γdi + fi

((γdi + fi)k + Gi)1/k
(2)

The term γdi = ‖qi − qdi‖2 in the potential function
is the squared metric of the agent’si configuration from
its desired destinationqdi. The functionGi expresses all
possible collisions of agenti with the others, whilefi

guarantees that theϕi attains positive values in proximity
situations even wheni has already reached its destination.

A. Construction of theGi function

We review now the construction of the “collision” func-
tion Gi for each agenti. The “Proximity Function”between
agentsi and j is given by

βij = ‖qi − qj‖2 − (ri + rj)2

We will use the termrelation to describe the possible
collision schemes that can occur in a multiple agents scene
with respect to agenti. A binary relation is a relation
between agenti and another. We will call the number of

binary relations in a relation, therelation level. With this
terminology in hand, the relation of figure (1a) is a level-1
relation (one binary relation) and that of figure (1b) is a
level-3 relation (three binary relations), always with respect
to the specific agentR.
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Fig. 1. Parta represents a level-1 relation and partb a level-3 relation
wrt agentR.

A ”Relation Proximity Function” (RPF) provides a mea-
sure of the distance between agenti and the other agents
involved in the relation. Each relation has its own RPF.
Let Rk denote thekth relation of level l. The RPF of
this relation is given by:(bRk

)l =
∑

j∈(Rk)l
βij or bk =∑

j∈Pr
βij for simplicity, wherePr denotes the set of agents

participating in the specific relation.
A ”Relation Verification Function” (RVF) is defined by:

(gRk
)l = (bRk

)l +
λ(bRk

)l

(bRk
)l + (BRC

k
)1/h
l

where λ, h are positive scalars and(BRC
k
)l =∏

m∈(RC
k

)l
(bm)l where (RC

k )l is the complementary
set of relations of level-l, i.e. all the other relations with
respect to agenti that have the same number of binary
relations with the relationRk. For simplicity we denote
(BRC

k
)l ≡ b̃i =

∏
m∈(RC

k
)l

bm. The RVF can be written as

gi = bi + λbi

bi+b̃
1/h
i

It is obvious that for the highest level

l = n−1 only one relation is possible so that(RC
k )n−1 = ∅

and(gRk
)l = (bRk

)l for l = n− 1. The functionGi is now

defined asGi =
∏ni

L

l=1

∏ni
Rl

j=1(gRj )l whereni
L the number

of levels andni
Rl

the number of relations in level-l with
respect to agenti.

B. Construction of thefi function

The key difference of the decentralized method with
respect to the centralized case is that the control law of
each agent ignores the destinations of the others. By using
ϕi = γdi

((γdi)
k+Gi)1/k as a navigation function for agenti,

there is no potential fori to cooperate in a possible collision
scheme when its initial condition coincides with its final
destination. In order to overcome this limitation,we add
a function fi to γi so that the cost functionϕi attains
positive values in proximity situations even wheni has



already reached its destination. A preliminary definition
for this function was given in [5], [21]. Here, we modify
the previous definitions to ensure that the destination point
is a non-degenerate local minimum ofϕi with minimum
requirements on assumptions. We define the functionfi by:

fi(Gi) =





a0 +
3∑

j=1

ajG
j
i , Gi ≤ X

0, Gi > X

whereX, Y = fi(0) > 0 are positive parameters the role of
which will be made clear in the following. The parameters
aj are evaluated so thatfi is maximized whenGi → 0
and minimized whenGi = X. We also require thatfi is
continuously differentiable atX. Therefore we have:

a0 = Y, a1 = 0, a2 =
−3Y

X2
, a3 =

2Y

X3

The parameterX serves as a sensing parameter that acti-
vates thefi function whenever possible collisions are bound
to occur. The only requirement we have forX is that it
must be small enough whenever the system has reached its
equilibrium, i.e. when everyone has reached its destination.
In mathematical terms:

X < Gi (qd1, . . . , qdN ) ∀i
That’s the minimum requirement we have regarding knowl-
edge of the destinations of the team. Intuitively, the desti-
nations should be far enough from one another.

It has been proven that this class of potential fields
are navigation functions. For further information regarding
terminology the reader is referred to [15],[6].

III. T HE CASE OFL IMITED SENSING CAPABILITIES

It has been shown in [6] that with a suitable choice
of the exponentk the proposed control law satisfies the
collision avoidance and destination convergence properties
in a bounded workspace. The decentralization feature of the
whole scheme lied in the fact that each agent didn’t have
knowledge of the desired destinations of the rest of the team.
On the other hand, each one had global knowledge of the
positions of the others at each time instant. This is far from
realistic in real world applications.

In this work we take the limited sensing capabilities of
each agent into account. We consider a bounded workspace
with n agents. Each agent has only local knowledge of the
positions of the others at each time instant. Specifically,
it only knows the position of agents which are in a cyclic
neighborhood of specific radiusdC around its center. There-
fore the Proximity Function between two agents has to be
redefined in this case. We propose the following nonsmooth
function:

βij =
{
‖qi − qj‖2 − (ri + rj)2, for ‖qi − qj‖ ≤ dC

d2
C − (ri + rj)2, for ‖qi − qj‖ > dC

The whole scheme is now modelled as a (deterministic)
switched system in which switches occur whenever a agent
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Fig. 2. The functionβij for ri + rj = 1, dC = 4.

enters or leaves the neighborhood of another. In [6], we have
usedϕ =

∑n
i=1 ϕi as a Lyapunov function for the whole

system. In this case this function is continuous everywhere,
but nonsmooth whenever a switching occurs, i.e. whenever
‖qi−qj‖ = dc for somei, j. We define theswitching surface
as:

S = {q : ∃i, j, i 6= j|‖qi − qj‖ = dc} (3)

We have proved that the system converges wheneverq /∈ S.
On the switching surface the Lyapunov function is no longer
smooth so we must use stability theorems for nonsmooth
systems. A summary of the theory we use is given in the
following section.

IV. ELEMENTS FROMNONSMOOTHANALYSIS

We consider the vector differential equation with discon-
tinuous right-hand side:

ẋ = f(x) (4)

wheref : Rn → Rn is measurable and essentially locally
bounded.
Definition 4.1 [9] In the case whenn is finite, the vector
function x(.) is called a solution of (4) in[t0, t1] if it is
absolutely continuous on[t0, t1] and there existsNf ⊂
Rn, µ(Nf ) = 0 such that for allN ⊂ Rn, µ(N) = 0 and
for almost all t ∈ [t0, t1]

ẋ ∈ K[f ](x) ≡ co{ lim
xi→x

f(xi)|xi /∈ Nf ∪N}

The above definition along with the assumption thatf is
measurable guarantees the uniqueness of solutions of (4)[9].

Lyapunov stability theorems have been extended for
nonsmooth systems in [19],[2]. The authors use the con-
cept of generalized gradientwhich for the case of finite-
dimensional spaces is given by the following definition:
Definition 4.2 [3]Let V : Rn → R be a locally Lipschitz
function. The generalized gradient ofV at x is given by

∂V (x) = co{ lim
xi→x

∇V (xi)|xi /∈ ΩV }



whereΩV is the set of points inRn whereV fails to be
differentiable.

Lyapunov theorems for nonsmooth systems require the
energy function to beregular. Regularity is based on the
concept ofgeneralized derivativewhich was defined by
Clarke as follows:
Definition 4.3 [3] Let f be Lipschitz nearx and v be a
vector inRn. The generalized directional derivative off at
x in the directionv is defined

f0(x; v) = lim
y→x

sup
t↓0

f(y + tv)− f(y)
t

Regularity of a function is defined:
Definition 4.4 [3] The functionf : Rn → R is called
regular if
1) ∀v, the usual one-sided directional derivative
f ′(x; v)exists and
2) ∀v, f ′(x; v) = f0(x; v)

The following chain rule provides a calculus for the time
derivative of the energy function in the nonsmooth case:
Theorem 4.5 [19] Let x be a Filippov solution toẋ =
f(x) on an interval containingt and V : Rn → R be a
Lipschitz and regular function. ThenV (x(t)) is absolutely
continuous,(d/dt)V (x(t)) exists almost everywhere and

d

dt
V (x(t)) ∈a.e. ˙̃

V (x) :=
⋂

ξ∈∂V (x(t))

ξT K[f ](x(t))

We shall use the following nonsmooth version of LaSalle’s
invariance principle to prove the convergence of the pre-
scribed system:
Theorem 4.6 [19] Let Ω be a compact set such that
every Filippov solution to the autonomous systemẋ =
f(x), x(0) = x(t0) starting inΩ is unique and remains inΩ
for all t ≥ t0. LetV : Ω → R be a time independent regular

function such thatv ≤ 0∀v ∈ ˙̃
V (if ˙̃

V is the empty set then

this is trivially satisfied). DefineS = {x ∈ Ω|0 ∈ ˙̃
V }.

Then every trajectory inΩ converges to the largest invariant
set,M , in the closure ofS.

V. STABILITY ANALYSIS

In [5], we used the sum of the separate decentralized
navigation functionsϕ =

∑
ϕi as a candidate Lyapunov

function for the whole system and showed that the derivative
of the energy function assumes negative values up to a set of
measure zero of initial conditions.We show by the following
theorem that this is also the case in the limited sensing
capabilities case:
Theorem 5.1 The system is asymptotically stabilized to
qd = [qd1, . . . , qdN ]T up to a set of initial conditions of
measure zero if the exponent k assumes values bigger than
a finite lower bound.
It has been proven in [6] that the statement is true forq /∈ S.
In the case whenq ∈ S we shall make use of theorem 4.6.
First we must use the following lemma to ensure thatϕ is

regular.
Lemma 5.2 The functionϕ is regular ∀q ∈ S.
Proof of Lemma 5.2: We show first thatβij is regular
whenever‖qi − qj‖ = dC . The directional derivative atdC

is

β′ij(dC ; v) = lim
t→0

βij(dC + tv)− βij(dC)
t

=
{

0, v ≥ 0
c < 0, v < 0

The generalized directional derivative is

β0
ij(dC ; v) = lim sup

t→0
y→dC

βij(y + tv)− βij(y)
t

=
{

0, v ≥ 0
c < 0, v < 0

so thatβ0
ij(dC ; v) = β′ij(dC ; v) ∀v. It is easy to check that

the terms∂bi

∂βij
, ∂Gi

∂bi
are nonnegative so by virtue of Theorem

2.3.9 (i),[3], the functionGi is regular atq ∈ S.
Functionϕi is continuously differentiable wrtGi. In this

case the term∂ϕi

∂Gi
is nonpositive but we are fortunate that

Gi is 1-dimensional. Following the proof of theorem 2.3.9
(ii),[3] we can see that the generalized derivative ofϕi sat-
isfies the following inequality:ϕ0

i (q; v) ≤ ∂ϕi

∂Gi
G0

i (q; v) =
∂ϕi

∂Gi
G′i(q; v) = ϕ′i(q; v). But we always haveϕ′i(q; v) ≤

ϕ0
i (q; v), so thatϕ′i(q; v) = ϕ0

i (q; v), ensuring the regu-
larity of ϕi. The functionϕ is regular as the finite linear
combination of regular functions.♦
We now proceed with a sketch of the proof of theorem 5.1.
The complete proof can be found in [7]. We make use of
the following matrix theorems in our analysis:
Theorem 5.3 (Gersgorin)[10]: Given a matrixA ∈ <n×n

then all its eigenvalues lie in the union ofn discs:

n⋃

i=1





z : |z − aii| ≤
n∑

j=1
j 6=i

|aij |





∆=
n⋃

i=1

Ri(A) ∆= R(A)

Each of these discs is called a Gersgorin disc of A.
Corollary 5.4 [10]: Given a matrixA ∈ <n×n and n
positive real numbersp1, . . . , pn then all its eigenvalues
of A lie in the union ofn discs:

n⋃

i=1





z : |z − aii| ≤ 1
pi

n∑

j=1
j 6=i

pj |aij |





A key point of Corollary 5.4 is that if we bound the first
n/2 Gersgorin discs of a matrixA sufficiently away from
zero, then an appropriate choice of the numbersp1, . . . , pn

renders the remainingn/2 discs sufficiently close to the
corresponding diagonal elements. Hence, by ensuring the
positive definiteness of the eigenvalues of the matrixM
corresponding to the firstn/2 rows, then we can render
the remaining ones sufficiently close to the corresponding
diagonal elements. This fact will be made clearer in the
analysis that follows.
Proof Sketch of Theorem 5.1: We immediately note that
the following proof is existential rather than computational.



We show that a finitek that renders the system almost ev-
erywhere asymptotically stableexists, but we do not provide
an analytical expression for this lower bound. However,
practical values ofk will be provided in the simulation
section.

Consider the global sensing case at first. In this case, the
Proximity function between agentsi and j is given by:

βij(q) = ‖qi − qj‖2 − (ri + rj)
2 = qT Dijq − (ri + rj)

2

where the2N × 2N matrix Dij is defined in [15]:

Dij =


O2(i−1)×2N

O2×2(i−1) I2×2 O2×2(j−i−1) −I2×2 O2×2(N−j)

O2(j−i−1)×2N

O2×2(i−1) −I2×2 O2×2(j−i−1) I2×2 O2×2(N−j)

O2(N−j)×2N




We can also writebi
r = qT P i

rq −
∑

j∈Pr

(ri + rj)
2 ,where

P i
r =

∑
j∈Pr

Dij , andPr denotes the set of binary relations in

relation r. It can easily be seen that∇bi
r = 2P i

rq,∇2bi
r =

2P i
r . We also use the following notation for ther-th relation

wrt agenti:

gi
r = bi

r + λbi
r

bi
r+(b̃i

r)
1/h , b̃i

r =
∏

s∈Sr
s 6=r

bi
s,

∇b̃i
r =

∑
s∈Sr
s 6=r

∏

t∈Sr
t 6=s,r

bt
i

︸ ︷︷ ︸
b̃i

s,r

· 2P i
sq

whereSr denotes the set of relations in the same level with
relationr. An easy calculation shows that

∇gi
r = . . . = 2

[
di

rP
i
r − wi

rP̃
i
r

]
q

∆= Qi
rq, P̃

i
r

∆=
∑

s∈Sr
s 6=r

b̃i
s,rP

i
s

where di
r = 1 + (1 − bi

r

bi
r+(

∼
bi

r)1/h

) λ

bi
r+(

∼
bi

r)1/h

, wi
r =

λbi
r(
∼
bi

r)
1
h
−1

h(bi
r+(

∼
bi

r)1/h)2
. The gradient of theGi function is given by:

Gi =
Ni∏
r=1

gi
r ⇒ ∇Gi =

Ni∑
r=1

Ni∏

l=1
l 6=r

gi
l

︸ ︷︷ ︸
g̃i

r

∇gi
r =

Ni∑
r=1

g̃i
rQ

i
rq

∆= Qiq

whereNi all the relations with respect to agenti. We define

∇G
∆=



∇G1

...
∇GN


 =




Q1

...
QN


 q

∆= Qq

Remembering thatui = −Ki
∂ϕi

∂qi
and that ϕi =

γdi+fi

((γdi+fi)
k+Gi)1/k , fi =

3∑
j=0

aiG
j
i the closed loop dynamics

of the system are given by:

q̇ =




−K1A
−(1+1/k)
1

{
G1

∂γd1
∂q1

+ σ1
∂G1
∂q1

}

...

−KNA
−(1+1/k)
N

{
GN

∂γdN

∂qN
+ σN

∂GN

∂qN

}


 = . . .

= −AKG (∂γd)−AKΣQq

whereσi = Giσ(Gi)− γdi+fi

k , σ(Gi) =
3∑

j=1

jajG
j−1
i ,Ai =

(γdi + fi)
k + Gi and the matrices

AK
∆= diag

(
K1A

−(1+1/k)
1 ,K1A

−(1+1/k)
1 , . . .

,KNA
−(1+1/k)
N , KNA

−(1+1/k)
N

)

︸ ︷︷ ︸
2N×2N

G
∆= diag (G1, G1, . . . , GN , GN )︸ ︷︷ ︸

2N×2N

, (∂γd) =
[
∂γd1

∂q1
. . .

∂γdN

∂qN

]

Σ ∆=


 Σ1︸︷︷︸

2N×2N

, . . . , ΣN︸︷︷︸
2N×2N




︸ ︷︷ ︸
2N×2N2

, Σi = diag




0, 0, . . . , σi, σi︸ ︷︷ ︸
2i−1,2i

, . . . , 0, 0




By using ϕ =
∑
i

ϕi as a candidate Lyapunov function

we have ϕ =
∑
i

ϕi ⇒ ϕ̇ =
(∑

i

(∇ϕi)
T

)
q̇,∇ϕi =

A
−(1+1/k)
i {Gi∇γdi + σi∇Gi} and after some trivial cal-

culation
∑

i

(∇ϕi)
T = . . . = (∂γd)

T
AG + qT QT AΣ

whereAG = diag

(
G1A

−(1+1/k)
1 , G1A

−(1+1/k)
1 , . . . ,

GNA
−(1+1/k)
N , GNA

−(1+1/k)
N

)

︸ ︷︷ ︸
2N×2N

and

AΣ =




AΣ1︸︷︷︸
2N×2N

...
AΣN︸︷︷︸

2N×2N




︸ ︷︷ ︸
2N2×2N

, AΣi = diag
(
A
−(1+1/k)
i σi, . . . , A

−(1+1/k)
i σi

)

︸ ︷︷ ︸
2N×2N

The derivative of the candidate Lyapunov function is cal-
culated as

ϕ̇ =
(∑

i

(∇ϕi)
T

)
· q̇ = . . .

= −
[

(∂γd)
T

qT
] [

M1 M2

M3 M4

]

︸ ︷︷ ︸
M

[
∂γd

q

]



where M1 = AGAKG,M2 = AGAKΣQ,M3 =
QT AΣAKG, M4 = QT AΣAKΣQ.

Let’s return to the local sensing case.LetS1 = {q :
∃i, j, i 6= j|(‖qi − qj‖ = dc)

∧
(‖qk − ql‖ 6= dc∀k, l : k 6=

i, j, l 6= i, j)} denote the subset ofS which corresponds to
the simplest case of switching that involves only two agents.
System dynamics are given by:

q̇ = f(q) =
[
−K1

∂ϕ1

∂q1
, ...,−Kn

∂ϕn

∂qn

]T

The vector functionf(q) is nonsmooth atS1 so that q̇ ∈
K[f ](q), q ∈ S1. We haveK[f ](q ∈ S1) = co{f−S1

, f+
S1
}

whereS
−(+)
1 = {q : ‖qi − qj‖ < (>)dC} and

f
−(+)
S1

(q ∈ S1) = lim
q∗→q,

q∗∈S
−(+)
1

f(q∗)

Likewise, the generalized gradient of the candidate Lya-
punov function at the discontinuity surface is given by
∂ϕ(q ∈ S1) = co{∇ϕ−S1

,∇ϕ+
S1
} where

∇ϕ
−(+)
S1

(q ∈ S1) = lim
q∗→q,

q∗∈S
−(+)
1

∇ϕ(q∗)

Each ρ ∈ ∂ϕ(q ∈ S1) is the convex combination of the
limit points of the convex hull:ρ = µ

(∇ϕ−S1

)
+ (1 −

µ)
(∇ϕ+

S1

)
, µ ∈ [0, 1]. Similarly, eachη ∈ K[f ](q ∈

S1) as η = λf−S1
+ (1 − λ)f+

S1
, λ ∈ [0, 1], so that

ρT η = λµ
(∇ϕ−S1

)T
f−s1

+ (1 − λ)µ
(∇ϕ−S1

)T
f+

s1
+ λ(1−

µ)
(∇ϕ+

S1

)T
f−s1

+ (1− λ)(1− µ)
(∇ϕ+

S1

)T
f+

s1
. By virtue

of theorem 4.5 one has

ϕ̇(q ∈ S1) ∈
⋂

ρ∈∂ϕ(q∈S1)

ρT η, η ∈ K[f ](q ∈ S1)

Going back to the previous analysis, it is easy to see
that the matricesAG, AK , G, Σ, AΣ are continuous in the
discontinuity surface. The matrixQ is discontinuous atS1

and that’s due to the nonsmoothness of the functionsGi, Gj .
By using the notationQ−(+)(q ∈ S1) = lim

q∗→q,

q∗∈S
−(+)
1

Q(q∗)

and noting that
⋂

ρ∈∂ϕ(q∈S1)

ρT η =
⋂

µ∈[0,1]

{
ρT η|λ ∈ [0, 1]

}

we conclude after some trivial calculation that

ϕ̇ (q ∈ S1) ∈
⋂

µ∈[0,1]




−

[
(∂γd)

T
qT

]
M

[
∂γd

q

]

|λ ∈ [0, 1]





with M =
[

M1 M2

M3 M4

]
where M1 =

AGAKG,M2 = AGAKΣ(λQ− + (1− λ)Q+),M3 =(
µ (Q−)T + (1− µ) (Q+)T

)
AΣAKG and M4 =

λµ (Q−)T
AΣAKΣQ− + (1− λ) µ (Q−)T

AΣAKΣQ+ −
λ (1− µ) (Q+)T

AΣAKΣQ− −
(1− λ) (1− µ) (Q+)T

AΣAKΣQ+

In [7], we make use of corollary 5.4 to prove that the

matrix M is positive definite up to a measure zero set of
initial conditions that lead to saddle points. We first proceed
by examining the Gersgorin discs of the first half rows
of the matrixM . We denote this procedure asM1 −M2,
as the main diagonal elements ofM1 are ”compared”
with the corresponding raw elements ofM2. Note that the
submatricesM1,M2 are both diagonal, therefore the only
nonzero elements of rawi of the 4N × 4N matrix M are
the elementsMii,Mi,2N+i where of course1 ≤ i ≤ 2N
as we calculate the Gersgorin discs of the first half rows
of the matrixM . With respect to corollary 5.4,we have:

|z −Mii| ≤ 1
pi

∑
j 6=i

pj |Mij |, 1 ≤ i ≤ 2N ⇒
⇒ |z − (M1)ii| ≤ p2N+i

pi
|(M2)ii|

where (M1)ii = A
−2(1+1/k)
i KiG

2
i ,|(M2)ii| =∣∣∣A−2(1+1/k)

i σiKiGi ·
{

λ
(
Qi

ii

)+ + (1− λ)
(
Qi

ii

)−}∣∣∣,λ ∈
[0, 1]. Denote

∣∣∣λ
(
Qi

ii

)+ + (1− λ)
(
Qi

ii

)− |λ ∈ [0, 1]
∣∣∣ ∆=∣∣∣

(
Qi

ii

)±∣∣∣. It is then obvious that
∣∣∣
(
Qi

ii

)±∣∣∣
max

=

max
{∣∣∣

(
Qi

ii

)−∣∣∣
max

,
∣∣∣
(
Qi

ii

)+
∣∣∣
max

}
, which is always

bounded in a bounded workspace. Therefore we have:
∣∣∣z −A

−2(.)
i KiG

2
i

∣∣∣ ≤ p2N+i

pi

∣∣∣A−2(.)
i σiKiGi

(
Qi

ii

)±∣∣∣
⇒ z ≥ A

−2(.)
i KiG

2
i − p2N+i

pi

∣∣∣A−2(.)
i σiKiGi

(
Qi

ii

)±∣∣∣
We examine the following three cases:

• Gi → 0 In [5] we have proven that this situation
occurs whenever the potential function reaches a saddle
point. However, the third property of the definition
of a navigation function indicates thatϕi is a Morse
function, hence its critical points are isolated[12]. Thus
the set of initial conditions that lead to saddle points
are sets of measure zero[17].

• Gi > X The corresponding eigenvalue is guaranteed
to be positive as long as:

z > 0 ⇐ A
−2(.)
i Ki

(
Gi − p2N+i

pi
|σi|

∣∣∣
(
Qi

ii

)±∣∣∣
)

> 0

⇐ Gi ≥ X > p2N+i

pi
|σi|

∣∣∣
(
Qi

ii

)±∣∣∣ = γdi

k
p2N+i

pi

∣∣∣
(
Qi

ii

)±∣∣∣
⇐ k >

(γdi)max
X

p2N+i

pi

∣∣∣
(
Qi

ii

)±∣∣∣
max

• 0 < ε ≤ Gi ≤ X In [7], we prove that|σi(ε)| ≤
Y

∣∣ 1
k + 8

9

∣∣ +
∣∣γdi

k

∣∣ The corresponding eigenvalue is
guaranteed to be positive as long as:

z > 0 ⇐ ε >
{
Y

∣∣ 1
k + 8

9

∣∣ +
∣∣γdi

k

∣∣} p2N+i

pi

∣∣∣
(
Qi

ii

)±∣∣∣
max

Y≤Θ1
k⇐

k > 2max

{
2

√
Θ1

ε
,
16Θ1

9ε
,
(γdi)max

ε

}
p2N+i

pi

∣∣∣
(
Qi

ii

)±∣∣∣
max

A key point is that there is no restriction on how to select
the termsp2N+i

pi
. This will help us in deriving bounds that

guarantee the positive definiteness of the matrixM .



We are now left to examine the Gersgorin discs of the
second half rows of the matrixM . Likewise, we denote this
procedure asM3−M4. The details of these calculations are
omitted here due to lack of space. The discs of Corollary
5.4 are evaluated:

|z −Mii| ≤
∑
j 6=i

pj

pi
|Mij |, 2N + 1 ≤ i ≤ 4N, 1 ≤ j ≤ 4N

⇒ |z − (M4)ii| ≤ Ri(M3) + Ri(M4)

where Ri(M3) =
2N∑
j=1

pj

pi

∣∣∣(M3)ij

∣∣∣,Ri(M4) =

4N∑
j=2N+1

j 6=i

pj

pi

∣∣∣(M4)ij

∣∣∣. We proceed by proving that

Ri(M3) ≥ Ri(M4)∀i. This is proven in [7] and
apparently, it is a consequence of the bounds obtained for
k in procedureM1 −M2.

The corresponding eigenvalue is guaranteed to be positive
as long as:

z > 0 ⇐ (M4)ii > Ri(M3) + Ri(M4)
⇐ (M4)ii > max {2Ri(M3), 2Ri(M4)} = 2Ri(M4)

It can be shown that this is guaranteed to be the case
provided that the parameterspi, 2N + 1 ≤ i ≤ 4N
corresponding to the second half rows of the matrixM
are chosen bigger than a finite lower bound.

The preceding analysis guarantees the positive definite-
ness of the matrixM up to a measure zero set of initial
conditions that lead to saddle points.

We can now directly apply theorem 4.6 to our case.
We have proved thatv ≤ 0 ∀v ∈ ˙̃ϕ and that the
only invariant subset of the setS = {q|0 ∈ ˙̃ϕ(q)} is{

qd = [qd1, ..., qdn]T
}

. Hence the nonsmooth version of
LaSalle’s invariance principle guarantees convergence to the
destination points.

VI. SIMULATIONS

To demonstrate the navigation properties of our decentral-
ized approach, we present a simulation of four holonomic
agents that have to navigate from an initial to a final
configuration, avoiding collision with each other. Each agent
has no knowledge of the positions of agents outside its
sensing zone, which is the big circle around its center of
mass in Fig.3, Pic.1. In this picture A-i,T-i denote the initial
condition and desired destination of agenti respectively.
The chosen configurations constitute non-trivial setups since
the straight-line paths connecting initial and final positions
of each agent are obstructed by other agents. The following
have been chosen for the simulation of figure 3:
Initial Conditions:

q1(0) =
[ −.1732 −.1

]T
, q2(0) =

[
.1732 −.1

]T
,

q3(0) =
[

0 .2
]T

, q4(0) =
[

0 −.2
]T

Final Conditions:

qd1 =
[

.1732 .1
]T

, qd2 =
[− .1732 .1

]T
,

qd3 =
[

0 −.1
]T

, qd4 =
[

0 .25
]T

Parameters:

k = 110, r1 = r2 = r3 = r4 = .05, dC = .11

Pictures 1-6 of Figure 3 show the evolution of the team
configuration within a horizon of 6000 time units. One can
observe that the collision avoidance as well as destination
convergence properties are fulfilled.
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Fig. 3. Simulation A

In the next simulation (Fig.4) the sensing zone of the red
agent A2 is shown in all the screenshots. The following
have been chosen for the simulation:
Initial Conditions:

q1(0) =
[ −.1732 −.1

]T
, q2(0) =

[
.1732 −.1

]T
,

q3(0) =
[

0 .2
]T

, q4(0) =
[

0 −.2
]T

Final Conditions:

qd1 =
[

.15 .05
]T

, qd2 =
[− .1732 .2

]T
,

qd3 =
[

0 −.1
]T

, qd4 =
[

0 .25
]T

Parameters:

k = 100, r1 = r2 = r3 = r4 = .03, dC = .08

The collision avoidance and destination requirements are
met in this case as well. We point out that since the sensing
zone of the red agent is always empty,i.e. it does not
participate in a conflict situation, its trajectory is the straight
line between its initial and final destination. This is due to
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Fig. 4. Simulation B

the fact that the sensing parameterdC is small in this case.
A bigger choice ofdC would force the red agent to alter
its trajectory, because in this case it would have to take
the positions of the other agents into account at each time
instant.

VII. C ONCLUSIONS

In this paper we extended the decentralized navigation
method to the case of multiple holonomic agents with
limited sensing capabilities. We proposed a nonsmooth
extension of the navigation function of [5] and proved
system convergence using tools from nonsmooth stability
analysis. The effectiveness of the methodology is verified
through computer simulations.

Current research includes applying this method to the
case of distributed nonholonomic agents [16] as well as
introducing new definitions of the sensing zone of an agent.
Extensions of this method to 3-dimensional dynamics are
also under investigation.
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