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Decentralized Stabilization for a Class of

Continuous-Time Nonlinear Interconnected Systems

Using Online Learning Optimal Control Approach
Derong Liu, Fellow, IEEE, Ding Wang, and Hongliang Li

Abstract— In this paper, using a neural-network-based online
learning optimal control approach, a novel decentralized con-
trol strategy is developed to stabilize a class of continuous-
time nonlinear interconnected large-scale systems. First, optimal

controllers of the isolated subsystems are designed with cost
functions reflecting the bounds of interconnections. Then, it is
proven that the decentralized control strategy of the overall
system can be established by adding appropriate feedback gains
to the optimal control policies of the isolated subsystems. Next,
an online policy iteration algorithm is presented to solve the
Hamilton–Jacobi–Bellman equations related to the optimal con-
trol problem. Through constructing a set of critic neural net-
works, the cost functions can be obtained approximately, followed
by the control policies. Furthermore, the dynamics of the estima-
tion errors of the critic networks are verified to be uniformly and
ultimately bounded. Finally, a simulation example is provided to
illustrate the effectiveness of the present decentralized control
scheme.

Index Terms— Adaptive dynamic programming, decentralized
control, large-scale systems, neural networks, nonlinear
interconnected systems, optimal control, policy iteration,
reinforcement learning.

I. INTRODUCTION

V
ARIOUS complex systems in social and engineering

areas, such as ecosystems, transportation systems, and

power systems, are considered as large-scale systems. Gen-

erally speaking, a large-scale system is comprised of several

subsystems with obvious interconnections, which leads to the

increasing difficulty of analysis and synthesis when using

classical centralized control techniques. Bakule [1] pointed out

with similar results that it is, therefore, necessary to partition

the design issue of the overall system into manageable sub-

problems. Then, the overall plant is no longer controlled by

a single controller but by an array of independent controllers

that all together represent a decentralized controller. Therefore,

the decentralized control has been a control of choice for

large-scale systems because it is computationally efficient to
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formulate control law that use only locally available subsystem

states or outputs [2]. Actually, considerable attention has been

paid to the decentralized stabilization of large-scale systems

during the last several decades [3]–[7].

As previously mentioned, a decentralized strategy consists

of some noninteracting local controllers corresponding to

the isolated subsystems, not the overall system. Thus, in

many situations, the design of the isolated subsystems is a

matter of great significance. In [8], it was shown that the

decentralized control of the interconnected system was related

to the optimal control of the isolated subsystems. Therefore,

the optimal control method can be employed to facilitate the

design process of the decentralized control strategy. However,

in [8], the cost functions of the isolated subsystems were

not chosen as the general forms, not to mention that the

detailed procedure was not given. For this reason, in this

paper, by employing the online policy iteration algorithm, we

will investigate the decentralized stabilization problem using

neural-network-based learning optimal control approach.

The optimal control of nonlinear system often leads to

solving the Hamilton–Jacobi–Bellman (HJB) equation instead

of the Riccati equation of the linear case. Though dynamic

programming is a useful technique to solve the optimization

and optimal control problems, in many cases, it is com-

putationally difficult to apply it because of the curse of

dimensionality. Fortunately, based on function approximators,

such as neural networks, adaptive (or approximate) dynamic

programming (ADP) was proposed by Werbos [9], [10] as

an alternative method to solve the optimal control problems

forward-in-time. There are several synonyms used for ADP,

including adaptive dynamic programming [11]–[15], approx-

imate dynamic programming [16]–[18], neuro-dynamic pro-

gramming [19], neural dynamic programming [20], adaptive

critic designs [21], and reinforcement learning [22]. In the

recent years, great efforts have been made to ADP and related

research in theory and applications. Numerous excellent results

have been obtained that greatly promotes the development of

relevant disciplines [23]–[40].

In light of [13], the ADP technique is closely related

to reinforcement learning when engaging in the research of

feedback control. In general, value and policy iterations are

fundamental algorithms for the reinforcement learning-based

ADP in optimal control. Policy iteration starts with a stabiliz-

ing control, whereas value iteration cannot always guarantee

the stability of control during the implementation process.

Al-Tamimi et al. [18], Zhang et al. [23], and Liu et al. [26]
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studied the optimal control problem of discrete-time non-

linear systems using value iteration algorithm. Specifically,

policy iteration represents a class of algorithms containing two

basic iterations, i.e., policy evaluation and policy improvement

[41]–[46]. Abu-Khalaf and Lewis [41] derived an offline

optimal control scheme for nonlinear systems with saturating

actuators. Then, Vrabie and Lewis [42] and Vamvoudakis and

Lewis [43] used online policy iteration algorithm to study the

infinite horizon optimal control of continuous-time nonlinear

systems, respectively. The former was performed based on

the sequential updates of two neural networks, namely, critic

network and action network, whereas in the latter, the two

networks were trained simultaneously. Recently, Liu et al. [44]

extended the policy iteration algorithm to nonlinear optimal

control problem with unknown internal dynamics and dis-

counted cost function. Besides, Bhasin et al. [46] constructed

an actor-critic-identifier architecture to deal with the infi-

nite horizon optimal control of uncertain nonlinear systems,

characterized by the introduction of a robust dynamic neural

network.

In this paper, we employ the online policy iteration algo-

rithm to tackle the decentralized control of a class of non-

linear interconnected systems. To design the decentralized

control scheme of the overall system, the optimal controllers

of the isolated subsystems are designed at first with the

cost functions modified to account for the interconnections.

Then, the decentralized control strategy can be established

by adding appropriate feedback gains to the local optimal

control policies. Next, the online policy iteration algorithm

is developed to solve the HJB equations related to the optimal

control by constructing and training some critic networks. It is

shown that the approximate closed-form expressions of the

optimal control policies are available. Hence, there is no need

to build action networks. Additionally, the uniform ultimate

boundedness (UUB) of the dynamics of the weight estimation

errors is analyzed using the Lyapunov approach. Remark-

ably, considering the effectiveness of ADP and reinforcement

learning techniques in solving the nonlinear optimal control

problem, the decentralized control approach established here is

natural and convenient. More importantly, it can be employed

to stabilize a broad class of nonlinear large-scale systems.

This paper is organized as follows. In Section II, the decen-

tralized control problem of the large-scale system is described.

In Section III, the optimal control of isolated subsystems

is presented in the framework of HJB equations, based on

which, the decentralized control strategy can be developed.

In Section IV, the online policy iteration algorithm is intro-

duced to solve the HJB equations with convergence analysis.

In addition, critic networks are constructed for facilitating the

implementation of online algorithm. The UUB of the dynamics

of the weight estimation errors is proved as well. In Section V,

an example is given to demonstrate the effectiveness of the

established approach. In Section VI, concluding remarks are

provided.

II. PROBLEM STATEMENT

In this paper, we study a class of continuous-time nonlinear

large-scale systems composed of N interconnected subsystems

Fig. 1. Structural diagram of the decentralized control problem of the
interconnected system.

described by

ẋi(t) = fi (xi (t)) + gi (xi (t))
(

ūi (xi (t)) + Z̄ i (x(t))
)

i = 1, 2, . . . , N (1)

where xi (t) ∈ R
ni and ūi (xi (t)) ∈ R

mi are the state and con-

trol vectors of the i th subsystem, respectively. In large-scale

system (1), x =
[

x T
1 x T

2 . . . x T
N

]T
∈ R

n denotes the overall

state, where n =
∑N

i=1 ni . Correspondingly, x1, x2, . . . , xN

are called local states, whereas ū1(x1), ū2(x2), . . . , ūN (xN ) are

local controls. Note that for subsystem i , fi (xi ), gi(xi ), and

gi(xi )Z̄ i (x) represent the nonlinear internal dynamics, input

gain matrix, and interconnected term, respectively.

Let xi (0) = xi0 be the initial state of the i th subsystem,

i = 1, 2, . . . , N . Additionally, we let the following assump-

tions hold throughout this paper.

Assumption 1: The state vector xi = 0 is the equilibrium

of the i th subsystem, i = 1, 2, . . . , N .

Assumption 2: The functions fi (·) and gi (·) are dif-

ferentiable in their arguments with fi (0) = 0, where

i = 1, 2, . . . , N .

Assumption 3: The feedback control vector ūi (xi) = 0

when xi = 0, where i = 1, 2, . . . , N .

Let Ri ∈ R
mi ×mi , i = 1, 2, . . . , N , be symmetric positive

definite matrices. Then, we denote Z i (x) = R
1/2
i Z̄ i (x), where

Z i (x) ∈ R
mi , i = 1, 2, . . . , N , are bounded as follows:

‖Z i (x)‖ ≤

N
∑

j=1

ρi j hi j (x j ), i = 1, 2, . . . , N. (2)

In (2), ρi j are nonnegative constants and hi j (x j ) are positive

semidefinite functions with i, j = 1, 2, . . . , N .

If we define hi (xi ) = max{h1i (xi ), h2i (xi ), . . . , hNi (xi)},

i = 1, 2, . . . , N , then (2) can be formulated as

‖Z i (x)‖ ≤

N
∑

j=1

λi j h j (x j ), i = 1, 2, . . . , N (3)

where λi j ≥ ρi j hi j (x j )/h j (x j ), i, j = 1, 2, . . . , N , are also

nonnegative constants.

When dealing with the decentralized control problem, we

aim at finding N control policies ū1(x1), ū2(x2), . . . , ūN (xN )

to stabilize the large-scale system (1). It is important to note

that in the control pair (ū1(x1), ū2(x2), . . . , ūN (xN )), ūi (xi )

is only a function of the corresponding local state, namely xi ,

where i = 1, 2, . . . , N . The schematic diagram of the

decentralized control problem is shown in Fig. 1.
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III. DECENTRALIZED CONTROLLER DESIGN VIA

OPTIMAL CONTROL SCHEME

In this section, we investigate the methodology for decen-

tralized controller design. Two sections are included in this

part. In the first section, the optimal control of the isolated

subsystems is described under the framework of HJB equa-

tions, whereas in the second section, the decentralized control

strategy can be constructed based on the optimal control

policies.

A. Optimal Control and the HJB Equations

Now, we consider the N isolated subsystems corresponding

to (1) that are given by

ẋi(t) = fi (xi(t)) + gi(xi (t))ui (xi (t)), i = 1, 2, . . . , N. (4)

For the i th isolated subsystem, we further assume that

fi + giui is Lipschitz continuous on a set �i in R
ni containing

the origin, and the subsystem is controllable in the sense

that there exists a continuous control policy on �i that

asymptotically stabilizes the subsystem.

In this paper, to deal with the infinite horizon optimal

control problem, we have to find the control policies ui (xi),

i = 1, 2, . . . , N , which minimize the local cost functions

Ji (xi0) =

∫ ∞

0

{

Q2
i (xi(τ )) + uT

i (xi (τ ))Ri ui (xi(τ ))
}

dτ

i = 1, 2, . . . , N (5)

where Qi (xi ), i = 1, 2, . . . , N , are positive definite functions

satisfying

hi (xi) ≤ Qi (xi ), i = 1, 2, . . . , N. (6)

Based on optimal control theory, here, the designed feed-

back controls must not only stabilize the subsystems on �i ,

i = 1, 2, . . . , N , but also guarantee that the cost functions (5)

are finite. In other words, the control policies must be admis-

sible. Below is the definition of admissible control.

Definition 1: Consider the isolated subsystem i , a con-

trol policy µi (xi ) is defined as admissible with respect

to (5) on �i , denoted by µi ∈ �i (�i ), if µi (xi) is continuous

on �i , µi (0) = 0, ui (xi ) = µi (xi ) stabilizes (4) on �i , and

Ji (xi0) is finite for all xi0 ∈ �i .

For any set of admissible control policies µi ∈ �i (�i ),

i = 1, 2, . . . , N , if the associated cost functions

Vi (xi0) =

∫ ∞

0

{

Q2
i (xi (τ )) + µT

i (xi (τ ))Riµi (xi (τ ))
}

dτ

i = 1, 2, . . . , N (7)

are continuously differentiable, then the infinitesimal versions

of (7) are the so-called nonlinear Lyapunov equations

0 = Q2
i (xi ) + µT

i (xi )Riµi (xi) + (∇Vi (xi ))
T ( fi (xi )

+ gi(xi )µi (xi )), i = 1, 2, . . . , N (8)

with Vi (0) = 0, i = 1, 2, . . . , N . In (8), the terms ∇Vi (xi),

i = 1, 2, . . . , N , denote the partial derivatives of the local

cost functions Vi (xi) with respect to local states xi , i.e.,

∇Vi (xi ) = ∂Vi (xi)/∂xi , where i = 1, 2, . . . , N .

Define the Hamiltonian functions of the N isolated subsys-

tems as follows:

Hi(xi , µi ,∇Vi (xi )) = Q2
i (xi ) + µT

i (xi )Riµi (xi )

+ (∇Vi(xi ))
T ( fi (xi ) + gi(xi )µi (xi ))

(9)

where i = 1, 2, . . . , N .

The optimal cost functions of the N isolated subsystems

can be formulated as

J ∗
i (xi0) = min

µi ∈�i (�i )

∫ ∞

0

{

Q2
i (xi (τ )) + µT

i (xi (τ ))Ri

×µi (xi (τ ))
}

dτ, i = 1, 2, . . . , N. (10)

In view of optimal control theory, the optimal cost functions

J ∗
i (xi ), i = 1, 2, . . . , N , satisfy the HJB equations

0 = min
µi ∈�i (�i )

Hi(xi , µi ,∇ J ∗
i (xi )), i = 1, 2, . . . , N (11)

where ∇ J ∗
i (xi ) = ∂ J ∗

i (xi )/∂xi , i = 1, 2, . . . , N . Assume

that the minima on the right hand side of (11) exist and are

unique. Then, the optimal control policies for the N isolated

subsystems are

u∗
i (xi ) = arg min

µi ∈�i (�i )
Hi(xi , µi ,∇ J ∗

i (xi))

= −
1

2
R−1

i gT
i (xi )∇ J ∗

i (xi ), i = 1, 2, . . . , N. (12)

Substituting the optimal control policies (12) into the nonlinear

Lyapunov equations (8), we can obtain the formulation of

the HJB equations in terms of ∇ J ∗
i (xi), i = 1, 2, . . . , N , as

follows:

0 = Q2
i (xi ) + (∇ J ∗

i (xi ))
T fi (xi )

−
1

4
(∇ J ∗

i (xi ))
T gi (x)R−1

i gT
i (xi )∇ J ∗

i (xi ) (13)

with J ∗
i (0) = 0 and i = 1, 2, . . . , N .

Remark 1: The formulas developed in (12) display an array

of closed-form expressions of the optimal control policies,

which obviates the need to search for the optimal control

policies via optimization process. However, the knowledge

of J ∗
i (xi ), i = 1, 2, . . . , N , is required, which implies the

importance of the solutions of HJB equations.

B. Decentralized Control Strategy

According to (12), we have expressed the optimal control

policies, i.e., u∗
1(x1), u∗

2(x2), . . . , u∗
N (xN ), for the N iso-

lated subsystems (4). In the following, we will show that

by proportionally increasing some local feedback gains, a

stabilizing decentralized control scheme can be established for

the interconnected system (1). Now, we give the following

lemma, indicating how the feedback gains can be added, to

guarantee the asymptotic stability of the isolated subsystems.

Lemma 1: Consider the isolated subsystems (4), the feed-

back controls

ūi (xi ) = πi u
∗
i (xi)

= −
1

2
πi R−1

i gT
i (xi )∇ J ∗

i (xi ), i = 1, 2, . . . , N (14)
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ensure that the N closed-loop isolated subsystems are asymp-

totically stable for all πi ≥ 1/2, where i = 1, 2, . . . , N .

Proof: The lemma can be proved by showing J ∗
i (xi),

i = 1, 2, . . . , N , are Lyapunov functions. First of all, in

light of (10), we can find that J ∗
i (xi ) > 0 for any xi 	= 0

and J ∗
i (xi ) = 0 when xi = 0, which implies that J ∗

i (xi),

i = 1, 2, . . . , N , are positive definite functions. Next, the

derivatives of J ∗
i (xi ), i = 1, 2, . . . , N , along the correspond-

ing trajectories of the closed-loop isolated subsystems are

given by

J̇ ∗
i (xi) = (∇ J ∗

i (xi ))
T ẋi

= (∇ J ∗
i (xi ))

T ( fi (xi ) + gi(xi )ūi (xi )) (15)

where i = 1, 2, . . . , N . Then, by adding and subtract-

ing (1/2)(∇ J ∗
i (xi ))

T gi(xi )u
∗
i (xi ) to (15) and considering

(12)–(14), we have

J̇ ∗
i (xi ) = (∇ J ∗

i (xi ))
T fi (xi )

−
1

4
(∇ J ∗

i (xi ))
T gi (xi )R−1

i gT
i (xi )∇ J ∗

i (xi )

−
1

2

(

πi −
1

2

)

(∇ J ∗
i (xi))

T

× gi(xi )R−1
i gT

i (xi )∇ J ∗
i (xi)

= −Q2
i (xi ) −

1

2

(

πi −
1

2

)

∥

∥

∥R
−1/2
i gT

i (xi )∇ J ∗
i (xi )

∥

∥

∥

2

(16)

where i = 1, 2, . . . , N . Observing (16), we can obtain

that J̇ ∗
i (xi) < 0 for all πi ≥ 1/2 and xi 	= 0, where

i = 1, 2, . . . , N . Therefore, the conditions for Lyapunov local

stability theory are satisfied and the proof is completed.

Remark 2: Lemma 1 reveals that any feedback controls

ūi (xi ), i = 1, 2, . . . , N , can ensure the asymptotic stability

of the closed-loop isolated subsystems as long as πi ≥ 1/2,

i = 1, 2, . . . , N . However, only when πi = 1, i =

1, 2, . . . , N , the feedback controls are optimal. In fact, similar

results have been given in [47]–[49], showing that the optimal

controls u∗
i (xi ), i = 1, 2, . . . , N , are robust in the sense that

they have infinite gain margins.

Now, we present the main theorem of this paper based

on that the acquired decentralized control strategy can be

established.

Theorem 1: For interconnected system (1), there exist N

positive numbers π∗
i > 0, i = 1, 2, . . . , N , such that

for any πi ≥ π∗
i , i = 1, 2, . . . , N , the feedback controls

developed by (14) ensure that the closed-loop interconnected

system is asymptotically stable. In other words, the control

pair (ū1(x1), ū2(x2), . . . , ūN (xN )) is the decentralized control

strategy of large-scale system (1).

Proof: In accordance with Lemma 1, we observe that

J ∗
i (xi), i = 1, 2, . . . , N , are all Lyapunov functions. Here,

we select a composite Lyapunov function given by

L(x) =

N
∑

i=1

θi J ∗
i (xi ) (17)

where θi , i = 1, 2, . . . , N , are arbitrary positive constants.

Taking the time derivative of L(x) along the trajectories of

the closed-loop interconnected system, we can obtain

L̇(x) =

N
∑

i=1

θi J̇ ∗
i (xi )

=

N
∑

i=1

θi

{

(∇ J ∗
i (xi ))

T ( fi (xi ) + gi (xi )ūi (xi ))

+ (∇ J ∗
i (xi ))

T gi(xi )Z̄ i (x)
}

. (18)

Then, taking (3), (6), and (16) into consideration, (18) can be

turned into the following form:

L̇(x) ≤ −

N
∑

i=1

θi

{

Q2
i (xi)

+
1

2

(

πi −
1

2

)

∥

∥

∥R
−1/2
i gT

i (xi )∇ J ∗
i (xi )

∥

∥

∥

2

−
∥

∥

∥(∇ J ∗
i (xi ))

T gi(xi )R
−1/2
i

∥

∥

∥‖Z i (x)‖

}

≤ −

N
∑

i=1

θi

{

Q2
i (xi)

+
1

2

(

πi −
1

2

)

∥

∥

∥(∇ J ∗
i (xi ))

T gi (xi )R
−1/2
i

∥

∥

∥

2

−
∥

∥

∥(∇ J ∗
i (xi ))

T gi(xi )R
−1/2
i

∥

∥

∥

N
∑

j=1

λi j Q j (x j )

}

.

(19)

Here, we denote


 = diag{θ1, θ2, . . . , θN } (20)

� =

⎡

⎢

⎢

⎢

⎣

λ11 λ12 · · · λ1N

λ21 λ22 · · · λ2N

...
...

. . .
...

λN1 λN2 · · · λN N

⎤

⎥

⎥

⎥

⎦

(21)

and

� = diag

{

1

2

(

π1−
1

2

)

,
1

2

(

π2−
1

2

)

, . . . ,
1

2

(

πN −
1

2

)}

. (22)

Therefore, through introducing a 2N-dimensional vector

ξ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Q1(x1)

Q2(x2)
...

QN (xN )

− − − − − − − − − − − − −
∥

∥

∥(∇ J ∗
1 (x1))

T g1(x1)R
−1/2
1

∥

∥

∥

∥

∥

∥(∇ J ∗
2 (x2))

T g2(x2)R
−1/2
2

∥

∥

∥

...
∥

∥

∥(∇ J ∗
N (xN ))T gN (xN )R

−1/2
N

∥

∥

∥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(23)
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we can transform (19) to the following compact form:

L̇(x) ≤ − ξT

⎡

⎢

⎣


 −
1

2
�T 


−
1

2

� 
�

⎤

⎥

⎦
ξ

� − ξT
A ξ. (24)

According to (24), sufficiently large πi , i = 1, 2, . . . , N ,

can be chosen such that the matrix A is positive definite.

That is to say, there exist π∗
i , i = 1, 2, . . . , N , so that any

πi ≥ π∗
i , i = 1, 2, . . . , N , are large enough to guar-

antee the positive definiteness of A . Then, we have

L̇(x) < 0. Therefore, the closed-loop interconnected system

is asymptotically stable under the action of the control pair

(ū1(x1), ū2(x2), . . . , ūN (xN )). The proof is completed.

Clearly, the focal point of designing the decentralized con-

trol strategy becomes to derive the optimal controllers for the

N isolated subsystems on the basis of Theorem 1. Then, we

should put our emphasis on solving the HJB equations, which

yet, is regarded as a difficult task [12], [13]. Hence, in

the following, we will employ a more pragmatic approach

to obtain the approximate solutions based on online policy

iteration algorithm and neural network techniques.

IV. NEURAL-NETWORK-BASED LEARNING OPTIMAL

CONTROL OF THE ISOLATED SUBSYSTEMS USING

ONLINE POLICY ITERATION ALGORITHM

Three sections are included here. In the first section, the

online policy algorithm is introduced to tackle the optimal

control problem of the isolated subsystems, whereas the neural

network implementation process is given in the second section.

The stability proof of the dynamics of the estimation errors is

developed in the last section.

A. Online Policy Iteration Algorithm and Its Convergence

Here, the online policy iteration algorithm is introduced to

solve the HJB equations. The policy iteration algorithm con-

sists of policy evaluation based on (8) and policy improvement

based on (12), as shown in [22]. Specifically, its iteration

procedure can be described as follows.

Step 1: Choose a small positive number ǫ. Let p = 0 and

V
(0)
i (xi ) = 0, where i = 1, 2, . . . , N . Then, start

with N initial admissible control policies µ
(0)
1 (x1),

µ
(0)
2 (x2), . . . , µ

(0)
N (xN ).

Step 2: Based on the control policies µ
(p)
i (xi ), i =

1, 2, . . . , N , solve the following nonlinear Lyapunov

equations

0 = Q2
i (xi ) +

(

µ
(p)
i (xi)

)T

Riµ
(p)
i (xi )

+
(

∇V
(p+1)
i (xi )

)T(

fi (xi ) + gi (xi )µ
(p)
i (xi)

)

(25)

with V
(p+1)
i (0) = 0 and i = 1, 2, . . . , N .

Step 3: Update the control policies via

µ
(p+1)
i (xi) = −

1

2
R−1

i gT
i (xi )∇V

(p+1)
i (xi ) (26)

where i = 1, 2, . . . , N.

Step 4: If ‖V
(p+1)
i (xi ) − V

(p)
i (xi )‖ ≤ ǫ, i = 1, 2, . . . , N ,

stop and obtain the approximate optimal controls of

the N isolated subsystems; else, let p = p + 1 and

go back to Step 2.

Note that N initial admissible control policies are required

in the above algorithm. In the following, we present the

convergence analysis of the online policy iteration algorithm

for the isolated subsystems.

Theorem 2: Consider the N isolated subsystems (4), given

N initial admissible control policies µ
(0)
1 (x1), µ

(0)
2 (x2),

. . . , µ
(0)
N (xN ). Then, using the policy iteration algorithm

established in (25) and (26), the cost functions and control

policies converge to the optimal ones as p → ∞, i.e.,

V
(p)
i (xi ) → J ∗

i (xi ) and µ
(p)
i (xi ) → u∗

i (xi ) as p → ∞, where

i = 1, 2, . . . , N .

Proof: First, we consider the subsystem i . According

to [41] and [44], when given an initial admissible control

policy µ
(0)
i (xi), we have µ

(p)
i (xi ) ∈ �i (�i ) for any p ≥ 0.

Additionally, for any ζ > 0, there exists an integer p0i , such

that for any p ≥ p0i , the formulas

sup
xi∈�i

∣

∣V
(p)
i (xi ) − J ∗

i (xi )
∣

∣ < ζ (27)

and

sup
xi∈�i

∣

∣µ
(p)
i (xi ) − u∗

i (xi )
∣

∣ < ζ (28)

hold simultaneously.

Next, we consider the N isolated subsystems. When given

µ
(0)
1 (x1), µ

(0)
2 (x2), . . . , µ

(0)
N (xN ), where µ

(0)
i (xi ) is the ini-

tial admissible control policy corresponding to the i th sub-

system, we can acquire that µ
(p)
i (xi ) ∈ �i (�i ) for any

p ≥ 0, where i = 1, 2, . . . , N . In addition, we denote

p0 = max{p01, p02, . . . , p0N }. Thus, we can conclude that

for any ζ > 0, there exists an integer p0, such that for

any p ≥ p0, (27) and (28) are true with i = 1, 2, . . . , N .

In other words, the algorithm will converge to the optimal

cost functions and optimal control policies of the N isolated

subsystems. The proof is completed.

B. Implementation Procedure via Neural Networks

For the N isolated subsystems, assume that the cost func-

tions Vi (xi ), i = 1, 2, . . . , N , are continuously differentiable.

Then, according to the universal approximation property of

neural networks, Vi (xi ) can be reconstructed by a single-layer

neural network on a compact set �i as

Vi (xi ) = ωT
ciσci (xi ) + εci (xi ), i = 1, 2, . . . , N (29)

where ωci ∈ R
li is the ideal weight, σci (xi ) ∈ R

li is the

activation function, li is the number of neurons in the hidden

layer, and εci (xi ) is the approximation error of the i th neural

network, i = 1, 2, . . . , N .

The derivatives of the cost functions with respect to their

state vectors are formulated as

∇Vi (xi ) = (∇σci (xi))
T ωci + ∇εci (xi ),

i = 1, 2, . . . , N (30)
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where ∇σic(xi ) = ∂σci (xi )/∂xi ∈ R
li ×ni and ∇εci (xi ) =

∂εci (xi )/∂xi ∈ R
ni are the gradient of the activation function

and approximation error of the i th neural network, respec-

tively, i = 1, 2, . . . , N . Based on (30), the Lyapunov equa-

tions (8) becomes

0 = Q2
i (xi ) +µT

i Riµi +
(

ωT
ci∇σci (xi ) + (∇εci (xi ))

T
)

ẋi (31)

where i = 1, 2, . . . , N.

For the i th neural network, i = 1, 2, . . . , N , assume that

the neural network weight vector ωci , the gradient ∇σci (xi),

and the approximation error εci (xi ) and its derivative ∇εci (xi )

are all bounded on the compact set �i . In addition, according

to [43], we have εci (xi ) → 0 and ∇εci (xi ) → 0 as li → ∞,

where i = 1, 2, . . . , N .

Because the ideal weights are unknown, N critic neural

networks can be built to approximate the cost functions as

follows:

V̂i (xi ) = ω̂T
ciσci (xi ), i = 1, 2, . . . , N (32)

where ω̂ci , i = 1, 2, . . . , N , is the estimated weights. Here,

σci (xi ), i = 1, 2, . . . , N , is selected such that V̂i (xi ) > 0 for

any xi 	= 0 and V̂i (xi ) = 0 when xi = 0.

Similarly, the derivatives of the approximate cost functions

with respect to the state vectors can be expressed by

∇ V̂i (xi ) = (∇σci (xi))
T ω̂ci , i = 1, 2, . . . , N (33)

where ∇ V̂i (xi ) = ∂ V̂i (xi )/∂xi , i = 1, 2, . . . , N . Then, the

approximate Hamiltonian functions can be expressed as

Hi(xi , µi , ω̂ci ) = Q2
i (xi ) + µT

i Riµi + ω̂T
ci∇σci (xi )ẋi

= eci , i = 1, 2, . . . , N. (34)

For the purpose of training the critic networks of the isolated

subsystems, it is desired to design ω̂ci , i = 1, 2, . . . , N , to

minimize the following objective functions:

Eci =
1

2
eT

ci eci , i = 1, 2, . . . , N. (35)

The standard steepest descent algorithm is introduced to tune

the critic networks, then their weights are updated through

˙̂ωci = −αci

[

∂ Eci

∂ω̂ci

]

, i = 1, 2, . . . , N (36)

where αci > 0, i = 1, 2, . . . , N , is the learning rates of the

critic networks.

On the other hand, based on (30), the Hamiltonian functions

take the following forms:

Hi(xi , µi , ωci ) = Q2
i (xi ) + µT

i Riµi + ωT
ci∇σci (xi )ẋi

= ecHi , i = 1, 2, . . . , N (37)

where ecHi = −(∇εci (xi ))
T ẋi , i = 1, 2, . . . , N , is the

residual errors because of the neural network approximation.

Denote δi = ∇σci (xi)ẋi , i = 1, 2, . . . , N . We assume that

there exist N positive constants δMi , i = 1, 2, . . . , N , such

that

‖δi‖ ≤ δMi , i = 1, 2, . . . , N. (38)

In addition, we define the weight estimation errors of the critic

networks as ω̃ci = ωci − ω̂ci , where i = 1, 2, . . . , N . Then,

combining (34) with (37) yields

ecHi − eci = ω̃T
ciδi , i = 1, 2, . . . , N. (39)

Therefore, the dynamics of the weight estimation errors can

be given as follows:

˙̃ωci = αci (ecHi − ω̃T
ciδi )δi , i = 1, 2, . . . , N. (40)

Incidentally, the persistency of excitation condition is

required to tune the i th critic network to guarantee that

‖δi‖ ≥ δmi , where δmi , i = 1, 2, . . . , N , are positive

constants. Thus, a set of probing noises will be added to the

isolated subsystems to satisfy the condition in practice.

When implementing the online policy iteration algorithm,

to accomplish the policy improvement, we should obtain

the control polices that minimize the current cost functions.

Hence, according to (12) and (30), we have

µi (xi ) = −
1

2
R−1

i gT
i (xi )∇Vi (xi)

= −
1

2
R−1

i gT
i (xi )

(

(∇σci (xi ))
T ωci + ∇εci (xi )

)

(41)

where i = 1, 2, . . . , N . Correspondingly, the approximate

control policies can be obtained by

µ̂i (xi ) = −
1

2
R−1

i gT
i (xi )∇ V̂i (xi )

= −
1

2
R−1

i gT
i (xi )(∇σci (xi ))

T ω̂ci (42)

where i = 1, 2, . . . , N .

Remark 3: According to (42), it is obvious to observe that

the approximate control policies of the N isolated subsystems

can be derived directly based on the trained critic networks.

Therefore, unlike the traditional actor-critic architecture, the

action neural networks are not required any more.

C. Stability Analysis

When considering the critic networks, the weight estimation

dynamics are UUB as described in the following theorem.

Theorem 3: For the N isolated subsystems (4), the weight

update laws for tuning the critic networks are given by (36).

Then, the dynamics of the weight estimation errors of the critic

networks are UUB.

Proof: Choose N Lyapunov function candidates described

as follows:

Li (t) =
1

αci

tr
(

ω̃T
ci ω̃ci

)

, i = 1, 2, . . . , N. (43)

The time derivatives of the Lyapunov functions Li (t),

i = 1, 2, . . . , N , along the trajectories of the error dynam-

ics (40) are

L̇i (t) =
2

αci

tr
(

ω̃T
ci

˙̃ωci

)

=
2

αci

tr
(

ω̃T
ciαci

(

ecHi − ω̃T
ciδi

)

δi

)

(44)
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Fig. 2. Convergence of the weight vector of the critic network 1 (ωac11,
ωac12, and ωac13 represent ω̂c11, ω̂c12, and ω̂c13, respectively).

Fig. 3. Convergence of the weight vector of the critic network 2 (ωac21,
ωac22, and ωac23 represent ω̂c21, ω̂c22, and ω̂c23, respectively).

where i = 1, 2, . . . , N . After some basic manipulations, it

yields

L̇i(t) ≤ −(2 − αci )
∥

∥ω̃T
ciδi

∥

∥

2
+

1

αci

e2
cHi (45)

where i = 1, 2, . . . , N . In view of the Cauchy–Schwarz

inequality and (38), we can conclude that L̇i (t) < 0 as long

as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 < αci < 2

‖ω̃ci‖ >

√

e2
cHi

αci (2 − αci )δ
2
Mi

(46)

where i = 1, 2, . . . , N . In accordance with the Lyapunov

stability theory, we obtain that the dynamics of the weight

estimation errors of the critic networks are all UUB. Mean-

while, the norms of the weight estimation errors are bounded

as well. The proof is completed.

Remark 4: Let ˆ̄ui (xi ) = πi µ̂i (xi ), where µ̂i (xi),

i = 1, 2, . . . , N , are obtained by (42). According to the

selections of the activation functions of the critic networks,

Fig. 4. 3-D plot of the approximation error of the cost function of isolated

subsystem 1, i.e., J∗
1 (x1) − V̂1(x1).

Fig. 5. 3-D plot of the approximation error of the control policy of isolated
subsystem 1, i.e., u∗

1(x1) − µ̂1(x1).

we can easily find that the approximate optimal cost func-

tions V̂i (xi ), i = 1, 2, . . . , N , are also Lyapunov functions.

Furthermore, similar to the proof of Theorem 1, we have

L̇(x) ≤ − ξT A ξ + �e, where �e is the sum of the approx-

imation errors. Hence, we can conclude that based on the

approximate optimal control policies µ̂i (xi ), i = 1, 2, . . . , N ,

the developed control pair ( ˆ̄u1(x1), ˆ̄u2(x2), . . . , ˆ̄uN (xN )) can

ensure the UUB of the state trajectories of the closed-loop

interconnected system. It is in this sense that we accomplish

the design of the decentralized control scheme by adopting

the learning optimal control approach based on online policy

iteration algorithm.

Remark 5: Note that the controller presented here is a

decentralized stabilization one. Though the optimal decentral-

ized controller of interconnected systems has been studied

before [50], in this paper, we aim at developing a novel

decentralized control strategy based on ADP. How to extend

the present results to the design of optimal decentralized

control for nonlinear interconnected systems is part of our

future research.
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Fig. 6. 3-D plot of the approximation error of the cost function of isolated

subsystem 2, i.e., J∗
2 (x2) − V̂2(x2).

V. SIMULATION STUDY

A simulation example is provided in this section to show the

applicability of the decentralized control strategy established

in this paper.

Consider the following continuous-time nonlinear large-

scale system consisting of two interconnected subsystems:

ẋ1 =

[

−x11 + x12

−0.5x11 − 0.5x12 − 0.5x12(cos(2x11) + 2)2

]

+

[

0

cos(2x11) + 2

]

(

ū1(x1)+(x11+x22) sin x2
12 cos(0.5x21)

)

ẋ2 =

[

x22

−x21 − 0.5x22 + 0.5x2
21x22

]

+

[

0

x21

]

(

ū2(x2) + 0.5(x12 + x22) cos
(

ex2
21

)

)

(47)

where x1 = [x11 x12]
T ∈ R

2 and ū1(x1) ∈ R are the state and

control variables of subsystem 1, and x2 = [x21 x22]
T ∈ R

2

and ū2(x2) ∈ R are the state and control variables of subsys-

tem 2. Let R1 = R2 = I , where I denotes the identity matrix

with suitable dimension. Additionally, let h1(x1) = ‖x1‖ and

h2(x2) = |x22|. Then, we find that Z1(x) and Z2(x) with

x = [x T
1 x T

2 ]T are upper bounded as in (3). For example, we

can select λ11 = λ12 = 1 and λ21 = λ22 = 1/2.

To design the decentralized controller of interconnected

system (47), we first deal with the optimal control problem

of two isolated subsystems. Here, we choose Q1(x1) = ‖x1‖

and Q2(x2) = |x22|. Hence, the cost functions of the optimal

control problem are

J1(x10) =

∫ ∞

0

{

x2
11 + x2

12 + uT
1 u1

}

dτ (48)

and

J2(x20) =

∫ ∞

0

{

x2
22 + uT

2 u2

}

dτ. (49)

We adopt the online policy iteration algorithm to

tackle the optimal control problem, where two critic net-

works are constructed to approximate the cost functions.

We denote the weight vectors of the two critic networks as

Fig. 7. 3-D plot of the approximation error of the control policy of isolated
subsystem 2, i.e., u∗

2(x2) − µ̂2(x2).

Fig. 8. State trajectory of subsystem 1 under the action of the decentralized
control strategy (π1µ̂1(x1), π2µ̂2(x2)).

ω̂c1 = [ω̂c11 ω̂c12 ω̂c13]
T and ω̂c2 = [ω̂c21 ω̂c22 ω̂c23]

T .

During the simulation process, the initial weights of the critic

networks are chosen randomly in [0, 2]. In addition, the

activation functions of the two critic networks are chosen as

σc1(x1) = [x2
11 x11x12 x2

12]
T and σc2(x2) = [x2

21 x21x22 x2
22]

T .

Besides, let the learning rates of the critic networks be

αc1 = αc2 = 0.1 and the initial states of the two isolated

subsystems be x10 = x20 = [1 − 1]T .

During the implementation process of the online policy

iteration algorithm, for each isolated subsystem, we add a

probing noise to satisfy the persistency of excitation condition.

We can observe that the convergence results of the weights

have occurred after 750 and 180 s, respectively. Then, the

probing signals are turned off. Actually, the weights of the

critic networks converge to

ω̂c1 = [0.498969 0.000381 0.999843]T (50)

and

ω̂c2 = [1.000002 − 0.000021 0.999992]T (51)

that are shown in Figs. 2 and 3.
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Fig. 9. State trajectory of subsystem 2 under the action of the decentralized
control strategy (π1µ̂1(x1), π2µ̂2(x2)).

Based on the convergent weights ω̂c1 and ω̂c2, we can

obtain the approximate optimal cost function and control

policy for each isolated subsystem, namely, V̂1(x1), µ̂1(x1),

V̂2(x2), and µ̂2(x2). In comparison, for the method proposed

in [43], the optimal cost function and control policy of isolated

subsystem 1 are J ∗
1 (x1) = 0.5x2

11 + x2
12 and u∗

1(x1) =

−(cos(2x11) + 2)x12, respectively. Similarly, the optimal cost

function and control policy of isolated subsystem 2 are

J ∗
2 (x2) = x2

21 + x2
22 and u∗

2(x2) = −x21x22.

Therefore, for isolated subsystem 1, the error between the

optimal cost function and the approximate one is shown in

Fig. 4. In addition, the error between the optimal control policy

and the approximate version is shown in Fig. 5. It is clear to

see that both the approximation errors are close to zero, which

verifies the good performance of the online learning algorithm.

When regarding the isolated subsystem 2, we obtain the same

simulation results shown in Figs. 6 and 7.

Next, by choosing θ1 = θ2 = 1 and π1 = π2 = 2, we

can guarantee the positive definiteness of the matrix A . Thus,

(π1µ̂1(x1), π2µ̂2(x2)) is the decentralized control strategy of

the original interconnected system (47). Here, we apply the

decentralized control scheme to controlled plant (47) for 40 s

and obtain the evolution processes of the state trajectories

shown in Figs. 8 and 9. Through zooming in the state

trajectories near the zero, it is demonstrated that the state tra-

jectories of the closed-loop system are UUB. Obviously, these

simulation results authenticate the validity of the decentralized

control approach developed in this paper.

VI. CONCLUSION

In this paper, a novel decentralized control strategy is

developed to deal with the stabilization problem of a class

of continuous-time nonlinear large-scale systems using online

policy iteration algorithm. Initially, the optimal controllers

of the isolated subsystems are designed. Then, it is shown

that the decentralized control strategy of the overall system

can be established by adding feedback gains to the obtained

optimal control policies. In addition, the online policy iteration

algorithm is introduced to solve the HJB equations iteratively.

The cost functions can be approximated by constructing sev-

eral critic networks and the expressions of the control policies

can be obtained directly. In addition, the dynamics of the

estimation errors are proved to be UUB. Simulation study

is presented to demonstrate the validity of the decentralized

control strategy in the end.
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