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Abstract

Decentralized methods to solve finite-sum minimization problems are important in many

signal processing and machine learning tasks where the data is distributed over a network

of nodes and raw data sharing is not permitted due to privacy and/or resource constraints.

In this article, we review decentralized stochastic first-order methods and provide a unified

algorithmic framework that combines variance-reduction with gradient tracking to achieve both

robust performance and fast convergence. We provide explicit theoretical guarantees of the

corresponding methods when the objective functions are smooth and strongly-convex, and show

their applicability to non-convex problems via numerical experiments. Throughout the article,

we provide intuitive illustrations of the main technical ideas by casting appropriate tradeoffs and

comparisons among the methods of interest and by highlighting applications to decentralized

training of machine learning models.

I. INTRODUCTION

In multi-agent networks and large-scale machine learning, when data is available at different

devices with limited communication, it is often desirable to seek scalable learning methods that do

not require bringing, storing, and processing data at one single location. In this article, we describe

decentralized, stochastic first-order methods, which are particularly favorable to such ad-hoc

and resource-constrained settings. Specifically, we describe a unified algorithmic framework for

combining different variance reduction methods with gradient tracking in order to significantly

improve upon the performance of the standard decentralized stochastic gradient descent (DSGD).

However, this improvement comes at a price of losing the simplicity of DSGD and we study the

added communication, computation, and storage requirements with the help of precise technical

statements. For the ease of accessibility, we restrict the theoretical arguments to smooth and

strongly-convex objectives, while the applicability to non-convex problems is shown with the help

of numerical experiments. We emphasize that smooth and strongly-convex objectives are relevant

in many machine learning applications, e.g., problems where a strongly-convex regularization is

added to otherwise convex costs, or problems where the objective functions are non-convex but

strongly-convex in the neighborhood of the local minimizers [1]. To provide context, we start by

briefly reviewing the problems of interest and their associated centralized solutions.
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A. Empirical Risk Minimization

In parametric learning and inference problems, the goal of a typical machine learning system is

to find a model g, parameterized by a real vector θ ∈ Rp, that maps an input data point x ∈ Rdx

to its corresponding output y ∈ Rdy . The setup requires defining a loss function l(g(θ;x,y)),

which represents the loss incurred by the model g with parameter θ on the data (x,y). In the

formulation of statistical machine learning, we assume that each data sample (x,y) belongs

to a joint probability distribution P(x,y). Ideally, we would like to find the optimal model

parameter θ̃
∗

by minimizing the following risk (expected loss) function F̃ (θ):

P0: θ̃
∗
= argmin

θ∈Rp

F̃ (θ), F̃ (θ) , E(x,y)∼P(x,y)l(g(θ;x,y)).

However, the true distribution P(x,y) is often hidden or intractable in practice. In supervised

machine learning, one usually has access to a large set of training samples {xi,yi}Ni=1, which

can be considered as independent and identically distributed (i.i.d.) realizations from the distri-

bution P(x,y). The average of the losses incurred by the model θ on a finite set of training data

samples {xi,yi}Ni=1, known as the empirical risk, thus serves as an appropriate surrogate for the

risk function F̃ (θ). Formally, the empirical risk minimization problem is stated as

P1: θ∗ = argmin
θ∈Rp

F (θ), F (θ) ,
1

N

N∑
i=1

l(g(θ;xi,yi)) ,
1

N

N∑
i=1

fi(θ), (1)

where θ∗ is the minimizer of the empirical risk F . This finite-sum formulation captures a wide

range of supervised learning problems. Examples include: hand-written character recognition

with regularized logistic regression where the objective functions are smooth and strongly-

convex [2]; text classification with support vector machines where the objectives are convex

but not necessarily smooth [1]; and perception tasks with deep neural networks where the cost

functions are non-convex in general [1], [2].

Our focus in this article is on smooth and strongly-convex objective functions defined as

follows. An L-smooth and µ-strongly-convex function f : Rp → R is such that ∀θ1,θ2 ∈ Rp and

for some positive constants L, µ > 0, we have

µ

2
‖θ1 − θ2‖22 ≤ f(θ2)− f(θ1)−∇f(θ1)

>(θ2 − θ1) ≤
L

2
‖θ1 − θ2‖22.

We define Sµ,L as the class of functions that are L-smooth and µ-strongly-convex [3]. We note

that if F ∈ Sµ,L, then it has a unique global minimum denoted as θ∗. For any F ∈ Sµ,L, we

have that L ≥ µ, and we define κ , L
µ as the condition number of F [3]; clearly, κ ≥ 1. For the

ease of accessibility, we restrict the theoretical arguments to the function class Sµ,L, while the

applicability to non-convex problems is shown with the help of numerical experiments.
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B. Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a simple yet powerful method that has been extensively

used to solve the empirical risk minimization problem P1. SGD, in its simplest form, starts with

an arbitrary θ0 ∈ Rp and performs the following iterations to learn θ∗ as k →∞:

θk+1 = θk − αk · ∇fsk(θk), k ≥ 0, (2)

where sk is chosen uniformly at random from {1, · · · , N} and {αk}k≥0 is a sequence of positive

step-sizes. Comparing to batch gradient method where the descent direction ∇F (θk) at each

iteration k is computed from the entire batch of data, SGD iteratively descends in the direction

of the gradient of a randomly sampled component function. SGD is thus computationally-efficient

as it evaluates one component gradient (extendable to more than one randomly selected functions)

at each iteration and is a popular alternative in problems with a large number of high-dimensional

training data samples and model parameters.

We note that the stochastic gradient∇fsk(θk) is an unbiased estimate of batch gradient∇F (θk),

i.e., Esk [∇fsk(θk)|θk] = ∇F (θk). Under the assumptions that each fi ∈ Sµ,L and each stochastic

gradient ∇fsk(θk) has bounded variance1, i.e., Esk
[
‖∇fsk(θk)−∇F (θk)‖

2
2 |θk

]
≤ σ2, ∀k, we

note that with a constant step-size α ∈
(
0, 1

L

]
, E
[
‖θk − θ∗‖22

]
decays linearly (on the log-scale),

at the rate of (1− µα)k, to a neighborhood of θ∗. Formally, we have [1],

E
[
‖θk − θ∗‖22

]
≤ (1− µα)k + ασ2

µ
, ∀k ≥ 0. (3)

This steady-state error ασ
2

µ or the inexact convergence is due to the fact that∇fsk(θ∗) 6= 0, in gen-

eral, and the step-size is constant. A diminishing step-size overcomes this issue and leads to an ex-

act convergence to the minimizer θ∗ albeit at slower rate. For example, with αk = 1
µ(k+1) , we have

E
[
‖θk − θ∗‖22

]
≤

max
{

2σ2

µ2 , ‖θ0 − θ∗‖22
}

k + 1
, (4)

for all k ≥ 0, [1]. In other words, to reach an ε-accurate solution of θ∗, i.e., E
[
‖θk − θ∗‖2

]
≤ ε,

SGD (with decaying step-sizes) requires O
(
1
ε

)
component gradient evaluations.

C. Variance-Reduced Stochastic Gradient Descent

In practice, a successful implementation of SGD relies heavily on the tuning of the step-

sizes, and typically a decaying step-size sequence {αk}k≥0 has to be carefully chosen due to the

1In this article, we restrict to the bounded variance assumption for simplicity. This assumption however can be

relaxed, see [1], [4], [5], for example.



4

potentially large variance in SGD, i.e., the sampled gradient ∇fsk(θk) at θk can be very far from

the batch gradient ∇F (θk). In recent years, certain Variance-Reduction (VR) techniques have

been developed towards addressing this issue [6]–[9]. The key idea here is to design an iterative

estimator of the batch gradient whose variance progressively decays to zero as θk approaches θ∗.

Benefiting from this reduction in variance, VR methods have a low per-iteration computation

cost, a key feature of SGD, and, at the same time, converge linearly to the minimizer θ∗ as the

batch gradient descent (with a constant step-size for the objective function class Sµ,L). Different

constructions of the aforementioned gradient estimator lead to different VR methods [6]–[9]. We

focus on two popular VR methods in this article described as follows.

SAGA [7]: The SAGA method starts with an arbitrary θ0 ∈ Rp and maintains a table that stores

all component gradients {∇fi(θ̂i)}Ni=1, where θ̂i denotes the most recent iterate at which ∇fi was

evaluated, initialized with {∇fi(θ0)}Ni=1. At every iteration k ≥ 0, SAGA chooses an index sk

uniformly at random from {1, . . . , N} and performs the following two updates:

gk = ∇fsk(θk)−∇fsk(θ̂sk) +
1

N

N∑
i=1

∇fi(θ̂i), θk+1 = θk − α · gk. (5)

Subsequently, the entry ∇fsk(θ̂sk) in the gradient table is replaced by ∇fsk
(
θk
)
, while the

other entries remain unchanged. Under the assumption that each fi ∈ Sµ,L, it can be shown that

with α = 1
3L , we have [7],

E
[
‖θk − θ∗‖22

]
≤ C

(
1−min

{
1

4N
,
1

3κ

})k
, ∀k ≥ 0, (6)

for some C > 0. In other words, SAGA achieves ε-accuracy of θ∗ with O
(
max{N,κ} log 1

ε

)
component gradient evaluations, where recall that κ = L

µ is the condition number of the global

objective function F . Indeed, SAGA has a non-trivial storage cost of O (Np) due to the gradient

table, which can be reduced to O(N) for certain problems of interest, for example, logistic

regression and least squares, by exploiting the structure of the objective functions [6], [7].

SVRG [8]: Instead of storing the gradient table, SVRG achieves variance reduction by com-

puting the batch gradient periodically and can be interpreted as a double-loop method described

as follows. The outer loop of SVRG, indexed by k, updates the estimate θk of θ∗. At each

outer iteration k, SVRG computes the batch gradient ∇F (θk) and executes a finite number T

of SGD-type inner loop iterations, indexed by t: with θ0 = θk and for t = 0, · · · , T − 1,

vt = ∇fst(θt)−∇fst(θ0) +∇F (θ0), θt+1 = θt − α · vt, (7)

where the index st is selected uniformly at random from {1, · · · , N}. After the inner loop

completes, θk+1 can be updated in a few different ways; applicable choices include setting θk+1
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as θT , 1
T

∑T−1
t=0 θt, or choosing it randomly from the inner loop updates {θt}T−1t=0 . For instance,

assuming that each fi ∈ Sµ,L, it can be shown that with θk+1 =
1
T

∑T−1
t=0 θt, α = 1

10L , and T =

50κ, we have [8],

E[‖θk − θ∗‖2] ≤ D · 0.5k, ∀k ≥ 0,

for some D > 0. That is to say, SVRG achieves ε-accuracy with O(log 1
ε ) outer-loop iterations.

We further note that each outer-loop update requires N+2T component gradient evaluations (7).

Therefore, SVRG achieves ε-accuracy of θ∗ with O
(
(N + κ) log 1

ε

)
component gradient evalu-

ations, which is comparable to the convergence rate of SAGA.

Remark 1 (SGD with decaying step-sizes vs. VR): SGD, converging at a sublinear rateO(1/k)

to the minimizer (4), typically makes a fast progress in its early stage for certain large-scale,

complex machine learning tasks and then slows down considerably. Its complexity (4) is not

explicitly dependent on the sample size N , which is a strong feature, but it comes at a price

of a direct dependence on σ2 (the variance of the stochastic gradient). On the other hand, the

VR methods achieve fast linear convergence with the help of refined gradient estimators, for

example, gk or vt, which approach the corresponding batch gradients as their variance diminishes.

Their convergence, although dependent on the sample size N , is independent of σ2.

Remark 2 (SAGA vs. SVRG): The fundamental trade-off between SAGA and SVRG is con-

vergence speed versus storage and is often described as a trade-off between time and space [7].

Although SAGA and SVRG in theory achieve convergence rates of the same order, SVRG in

practice requires 2-3 times more component gradient evaluations to reach the same accuracy as

SAGA, however, without storing all the component gradients [7].

In the rest of this article, we show how to cast SGD and VR methods in the decentralized

optimization framework. Section: Problem Formulation describes the decentralized optimization

problem over a network of nodes. In Section: Decentralized Stochastic Optimization, we extend

centralized SGD to the decentralized problem and show that an appropriate decentralization is

achieved with the help of gradient tracking. Subsequently, in Section: Decentralized VR Methods,

we describe recent advances in decentralized methods that combine gradient tracking and variance

reduction. Section: Numerical Illustrations provides numerical experiments on strongly-convex

and non-convex problems and further highlights different tradeoffs between the methods described

in this article. Section: Extensions and Discussion summarizes certain extensions and commu-

nication/computation aspects of the corresponding problems that are popular in the literature.

Finally, Section: Conclusions concludes the paper and briefly describe some open problems.
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II. PROBLEM FORMULATION: DECENTRALIZED EMPIRICAL RISK MINIMIZATION

In this article, our focus is on the solutions for optimization problems that arise in peer-to-peer

decentralized networks. Unlike traditional master-worker architectures, where a central node acts

as a master that coordinates communication with all workers; there is no central coordinator in

peer-to-peer networks and each node is only able to communicate with its immediate neighbors,

see Fig. 2. The canonical form of decentralized optimization problems can be described as follows.

Consider n nodes, such as machines, devices, or robots, that communicate over a static undirected

graph G = (V, E), where V = {1, · · · , n} is the set of nodes, and E ⊆ V ×V is the set of edges,

i.e., a collection of ordered pairs (i, r), i, r ∈ V , such that nodes i and r can exchange information.

Following the discussion in Section: Empirical Risk Minimization, each node i holds a local risk

function, f̃i : Rp → R, not accessible by any other node in the network. The decentralized risk

minimization problem can thus be defined as

P2: θ̃
∗
= argmin

θ∈Rp

F̃ (θ), F̃ (θ) ,
1

n

n∑
i=1

f̃i(θ).

As in the centralized case with Problem P0, the underlying data distributions at the nodes may

not be available or tractable, we thus employ a local empirical risk function at each node as a

surrogate of the local risk. Specifically, we consider each node i as a computing resource that

stores/collects a local batch of mi training samples that are possibly private (not shared with

other nodes) and the corresponding local empirical risk function is decomposed over the local

data samples as fi , 1
mi

∑mi

j=1 fi,j . The goal of the networked nodes is to agree on the optimal

solution of the following decentralized empirical risk minimization problem:

P3: θ∗ = argmin
θ∈Rp

F (θ), F (θ) =
1

n

n∑
i=1

fi(θ) ,
1

n

n∑
i=1

 1

mi

mi∑
j=1

fi,j(θ)

 .

The rest of this article is dedicated to the solutions of Problem P3.

Fig. 1. (Left) A master-worker network. (Right) Decentralized optimization in peer-to-peer networks.

III. DECENTRALIZED STOCHASTIC OPTIMIZATION

We now consider decentralized solutions of Problem P3. At each node i given the current

estimate θik of θ∗ at iteration k, related algorithms typically involve the following steps:
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(1) Sample one or more component gradients from {∇fi,j(θik)}
mi

j=1;

(2) Fuse information with the available neighbors;

(3) Compute θik+1 according to a specific optimization protocol.

Recall that each node in the network only communicates with a few nearby nodes and only has

partial knowledge of the global objective, see Fig. 2 (right). Due to this limitation, an information

propagation mechanism is required that disseminates local information over the entire network.

Decentralized optimization thus has two key components: (i) agreement or consensus–all nodes

must agree on the same state, i.e., θik → θcons, ∀i; and, (ii) optimality–the agreement should be

on the minimizer of the global objective F , i.e., θcons = θ∗. Average-consensus algorithms [10]

are information fusion protocols that enable each node to appropriately combine the vectors

received from its neighbors and to agree on the average of the initial states of the nodes. They

thus naturally serve as basic building blocks in decentralized optimization, added to which are

local gradient corrections that steer the agreement to the global minimizer.

To describe average-consensus, we first associate the undirected and connected graph G with a

primitive, symmetric, and doubly-stochastic n× n weight matrix W = {wir}, such that wir 6= 0

for each (i, r) ∈ E . Clearly, we have W = W> and W1n = 1n, where 1n is the column

vector of n ones. There are various ways of constructing such weights in a decentralized manner.

Popular choices include the Laplacian and Metropolis weights, see [11] for details. Average-

consensus [10] is given as follows. Each node i starts with some vector θi0 ∈ Rp and updates its

state according to θik+1 =
∑

r∈Ni
wirθ

r
k, ∀k ≥ 0. It can be written in a vector form as

θk+1 = (W ⊗ Ip)θk, (8)

where θk = [θ1
k
>
, · · · ,θnk

>]>. Since W is primitive and doubly-stochastic2, from the Perron-

Frobenius theorem [12], we have lim
k→∞

W k = 1
n1n1

>
n and lim

k→∞
θk = (W⊗Ip)kθ0 = (1n⊗Ip)θ0,

where θ0 ,
(1>

n⊗Ip)θ0

n , at a linear rate of λk, and λ ∈ [0, 1) is the spectral radius of (W− 1
n1n1

>
n ).

That is to say, the protocol in (8) enables an agreement across the nodes on the average θ0 of

their initial states, at a linear rate. With the agreement protocol in place, we next introduce

decentralized gradient descent and its stochastic variant that build on top of average-consensus.

2In the rest of this article, W = {wir} denotes a collection of doubly-stochastic weights and λ ∈ [0, 1) is the

spectral radius of (W − 1
n
1n1

>
n ).
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A. Decentralized Stochastic Gradient Descent (DSGD)

Recall that our focus is to solve Problem P3 in a decentralized manner, when the nodes

exchange information over an arbitrary undirected graph. A well-known solution to this problem

is Decentralized Gradient Descent (DGD) [13], [14], described as follows. Each node i starts

with an arbitrary θi0 ∈ Rp and performs the following update:

θik+1 =
∑
r∈Ni

wirθ
r
k − αk∇fi

(
θik
)
, k ≥ 0. (9)

Indeed, at each node i, DGD adds a local gradient correction to average-consensus based on the

local data batch, i.e., all fi,j’s, and is the prototype of many decentralized optimization protocols.

To understand the iterations of DGD, we write them in a vector form. Let θk and ∇f(θk)

collect all local estimates and gradients, respectively, i.e., θk = [θ1
k
>
, · · · ,θnk

>]> and ∇f(θk) ,

[∇f1(θ1
k)
>
, · · · ,∇fn(θnk)

>]>, both in Rnp. Then DGD can be compactly written as

θk+1 = (W ⊗ Ip)θk − αk∇f(θk). (10)

We further define the average θk ,
1
n(1
>
n ⊗ Ip)θk of the local estimates at time k and multiply

both sides of (10) by 1
n(1
>
n ⊗ Ip) to obtain:

θk+1 = θk − αk
(1>n ⊗ Ip)∇f (θk)

n
. (11)

Based on (10) and (11), we note that the consensus matrix W makes the estimates {θik}ni=1 at

the nodes approach their average θk, while the average gradient (1>
n⊗Ip)∇f(θk)

n steers θk towards

the minimizer θ∗ of F . The overall protocol thus ensures agreement and optimality, the two key

components of decentralized optimization as we described before.

DGD is a simple yet effective method for various decentralized learning tasks. To make DGD

efficient for large-scale decentralized empirical risk minimization, where each mi is very large,

Refs. [14], [15] derive a stochastic variant, known as Decentralized Stochastic Gradient Descent

(DSGD), by substituting each local batch gradient with a randomly sampled component gradient.

DSGD is formally described in Algorithm 1. Assuming that each fi,j ∈ Sµ,L and each local

stochastic gradient has bounded variance3, i.e., Esik
[∥∥∇fi,sik(θik)−∇fi(θik)∥∥22 |θik] ≤ σ2, ∀i, k,

we have [16]: under a constant step-size, αk = α ∈
(
0,O

(
(1−λ)
Lκ

)]
, ∀k, E[‖θik − θ∗‖22] decays

at a linear rate of (1−O(µα))k to a neighborhood of θ∗ such that

lim sup
k→∞

1

n

n∑
i=1

E
[∥∥θik − θ∗

∥∥2
2

]
= O

(
ασ2

nµ
+
α2κ2σ2

1− λ
+

α2κ2b

(1− λ)2

)
, (12)

3The bounded variance assumption can also be relaxed as noted in Footnote 1 for the centralized case, see [16].
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where b , 1
n

∑n
i=1 ‖∇fi (θ

∗)‖2 and κ = L/µ. With a diminishing step-size αk = O( 1k ), DSGD

achieves an exact convergence [17], [18], such that

1

n

n∑
i=1

E
[∥∥θik − θ∗

∥∥2
2

]
= O

(
1

k

)
, ∀k ≥ 0. (13)

Algorithm 1 DSGD: At each node i
Require: θi0, {αk}k≥0, {wir}r∈Ni

.

1: for k = 0, 1, 2, · · · do

2: Choose sik uniformly at random in {1, · · · ,mi}

3: Compute the local stochastic gradient ∇fi,sik(θ
i
k).

4: Update: θik+1 =
∑

r∈Ni
wirθ

r
k − αk∇fi,sik(θ

i
k)

5: end for
Remark 3 (SGD vs. DSGD): Comparing (3) to (12), when a constant step-size α is used, the

steady-state error in both SGD and DSGD decays linearly to a certain neighborhood (controlled

by α) of θ∗. Unlike SGD, however, the steady-state error of DSGD has an additional bias, inde-

pendent of the variance σ2 of the stochastic gradient, that comes from b = 1
n

∑n
i=1 ‖∇fi (θ

∗)‖2.

The constant b is not zero in general and characterizes the difference between the minimizer

of each local objective fi and that of the global objective F . The resulting bias O
(
α2κ2b
(1−λ)2

)
can

be significantly large when the data distributions across nodes are substantially heterogeneous

or when the graph is not well-connected, a scenario that commonly arises in certain wireless

networks and IoT applications, see Section: Numerical Illustrations. In the following, we describe

a gradient tracking technique that eliminates the bias in DSGD due to the term b and thus can

be considered as a more appropriate decentralization of the centralized SGD.

B. Decentralized First-Order Methods with Gradient Tracking

To present the intuition behind the gradient tracking technique, we first recall the iterations of

the (non-stochastic) Decentralized Gradient Descent (DGD) with a constant step-size in (9). Let

us first assume, for the sake of argument, that all nodes agree on the minimizer of F at some

iteration k, i.e., θik = θ∗, ∀i. Then at the next iteration k + 1, we have

θik+1 =
∑
r∈Ni

wirθ
∗ − α∇fi(θ∗) = θ∗ − α∇fi(θ∗), (14)

where θ∗−∇fi(θ∗) 6= θ∗, in general. In other words, the minimizer θ∗ is not necessarily a fixed

point of (9). Of course, using the gradient ∇F
(
θik
)

of the global objective, instead of ∇fi
(
θik
)
,

overcomes this issue but the global gradient is not available at any node. The natural yet innovative
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idea of gradient tracking is to design a local iterative gradient tracker dik that asymptotically

approaches the global gradient ∇F
(
θik
)

as θik approaches θ∗ [19]–[23]. Gradient tracking is

implemented with the help of dynamic average consensus (DAC) [24], briefly described next.

In contrast to classical average-consensus [10] that learns the average of fixed initial states,

DAC [24] tracks the average of time-varying signals. Formally, each node i measures a time-

varying signal rik and all nodes cooperate to track the average rk ,
1
n

∑n
i=1 r

i
k of these signals.

The DAC protocol is given as follows. Each node i iteratively updates its estimate dik of rk as

dik+1 =
∑
r∈Ni

wird
r
k + rik+1 − rik, k ≥ 0, (15)

where di0 = ri0, ∀i. For a doubly-stochastic weight matrix W = {wir}, it is shown in [24] that

if
∥∥rik+1 − rik

∥∥
2
→ 0, we have that

∥∥dik − rk
∥∥
2
→ 0. Clearly, in the aforementioned design

of gradient tracking, the time-varying signal that we intend to track is the average of the local

gradients 1
n

∑n
i=1∇fi

(
θik
)
. We thus combine DGD (9) and DAC (15) to obtain GT-DGD (DGD

with Gradient Tracking) [19]–[23], as follows:

θik+1 =
∑
r∈Ni

wirθ
r
k − α · dik, (16a)

dik+1 =
∑
r∈Ni

wird
r
k +∇fi

(
θik+1

)
−∇fi

(
θik
)
, (16b)

where di0 = ∇fi
(
θi0
)
, ∀i. Intuitively, as θik → θk and dik →

1
n

∑n
i=1∇fi

(
θik
)
→ ∇F

(
θk
)
, (16a)

asymptotically becomes the centralized batch gradient descent. It has been shown in [21]–[23],

[25] that GT-DGD converges linearly to the minimizer θ∗ of F under a constant step-size when

each fi,j ∈ Sµ,L, unlike DGD that converges sublinearly to θ∗ with decaying step-sizes.

The stochastic variant of GT-DGD is derived in [26], termed as GT-DSGD (DSGD with Gradi-

ent Tracking), and is formally described in Algorithm 2. Under the same assumptions of smooth-

ness, strong-convexity, and bounded variance as in DSGD, the convergence of GT-DSGD is sum-

marized in the following [26]: with a constant step-size, αk = α ∈
(
0,O

(
(1−λ)2
Lκ

)]
, ∀k, E[‖θik−

θ∗‖22] decays linearly at the rate of (1−O(µα))k to a neighborhood of θ∗ such that

lim sup
k→∞

1

n

n∑
i=1

E
[∥∥θik − θ∗

∥∥2
2

]
= O

(
ασ2

nµ
+

α2σ2κ2

(1− λ)3

)
. (17)

Note that GT-DSGD, in contrast to GT-DGD, loses the exact linear convergence to the minimizer

because the gradients are now stochastic. Exact convergence can be recovered albeit at a slower

sublinear rate, i.e., with a diminishing step-size αk = O( 1k ), we have [26]

1

n

n∑
i=1

E
[∥∥θik − θ∗

∥∥2
2

]
= O

(
1

k

)
, ∀k ≥ 0. (18)
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Algorithm 2 GT-DSGD: At each node i
Require: θi0, {αk}k≥0, {wir}r∈Ni

, di0 = ∇fi,si0(θ
i
0), where si0 is chosen uniformly at random

in {1, · · · ,mi}

1: for k = 0, 1, 2, · · · do

2: Update θik+1 =
∑

r∈Ni
wirθ

r
k − αkdik

3: Choose sik+1 uniformly at random in {1, · · · ,mi}

4: Compute the local stochastic gradient ∇fi,sik+1
(θik+1)

5: Update: dik+1 =
∑

r∈Ni
wird

r
k +∇fi,sik+1

(θik+1)−∇fi,sik(θ
i
k)

6: end for

Remark 4 (DSGD vs. GT-DSGD): By comparing DSGD (12) and GT-DSGD (17), we note

that under a constant step-size, GT-DSGD removes the bias O
(
α2κ2b
(1−λ)2

)
that comes from b ,

1
n

∑n
i=1 ‖∇fi (θ

∗)‖2 in DSGD. However, the network dependence in GT-DSGD, O
(

1
(1−λ)3

)
, is

worse than DSGD where it is O
(

1
(1−λ)2

)
. A tradeoff here is imminent where the two approaches

have their own merits depending on the relative sizes of b and λ. Clearly, when the bias b

dominates, e.g., when the data across nodes is largely heterogeneous, GT-DSGD achieves a

lower steady-state error than DSGD. Under diminishing step-sizes, DSGD and GT-DSGD have

comparable performance. Of relevance here are EXTRA [27] and Exact Diffusion [28], both of

which eliminate the bias caused by b and are built on a different principle from gradient tracking.

Remark 5 (SGD vs. GT-DSGD): Note that with constant step-sizes, the performance of SGD

in (3) and GT-DSGD in (17) is comparable. In particular, both methods converge linearly but

there is a steady-state error, which is controlled by the step-size α and the variance σ2 of the

stochastic gradient, see Remark 3. Since GT-DSGD removes the bias in DSGD that comes due

to the difference of the local and global objectives (see b in (12)), it may be considered as a

more appropriate decentralization of SGD. This argument naturally leads to the idea that one

can incorporate the centralized Variance Reduction (VR) techniques in the GT-DSGD to further

improve the performance and achieve faster convergence. As we show in the following, adding

variance reduction to GT-DSGD in fact leads to an exact linear convergence with a constant

step-size and further improves its network dependence to O
(

1
(1−λ)2

)
.

Remark 6 (DSGD + VR): We emphasize that adding VR to DSGD does not enable exact linear

convergence. Following Remark 1, VR removes the steady-state error caused by the variance of

the stochastic gradient. However, in a decentralized setting, the heterogeneity across the local data
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batches is not accounted for unless gradient tracking is employed. This difference between the

local batches across the nodes is captured by the aforementioned bias b in (12) and is removed

by gradient tracking that estimates the average of local gradients across the nodes.

IV. DECENTRALIZED VARIANCE-REDUCED METHODS WITH GRADIENT TRACKING

We now provide a unified algorithmic framework, GT-VR, that provably improves DSGD and

follows from Remarks 5 and 6. This framework combines variance-reduction with GT-DSGD

to achieve both robust performance and fast convergence. First, recall from Section: Variance-

Reduced Stochastic Gradient Descent that VR methods iteratively estimate the batch gradient

from randomly drawn samples. In the decentralized case, each node i thus implements VR

locally to estimate its local batch gradient ∇fi. Gradient tracking, on the other hand, estimates

the average of the local VR estimators across the nodes and can be thought of as fusion in space.

Consequently, VR and gradient tracking jointly learn the global batch gradient ∇F at each

node asymptotically. For definiteness, we present and analyze two instances of GT-VR, namely,

GT-SAGA and GT-SVRG, and show that they achieve exact linear convergence with constant

step-sizes for the class of smooth and strongly-convex functions. We further show that in a “big-

data” regime, both GT-SAGA and GT-SVRG act effectively as means for parallel computation

and achieve a linear speed-up compared with their centralized counterparts.

A. GT-SAGA

To implement the SAGA estimators locally, each node i maintains a gradient table that stores

all local component gradients {∇fi,j(θ̂i,j)}mi

j=1, where θ̂i,j represents the most recent iterate

where the gradient of fi,j was evaluated. At iteration k ≥ 0, each node i chooses an index sik

uniformly at random from {1, · · · ,mi} and computes the local SAGA gradient gik as

gik = ∇fi,sik
(
θik
)
−∇fi,sik

(
θ̂i,sik

)
+

1

mi

mi∑
j=1

∇fi,j
(
θ̂i,j
)
, (19)

where it can be shown that gik is an unbiased estimator of the local batch gradient ∇fi(θik). Next,

the element ∇fi,sik(θ̂i,sik) in the gradient table is replaced by ∇fi,sik
(
θik
)
, while the other elements

remain unchanged. The gradient tracking iteration dik is then implemented on the estimators gik’s.

The complete implementation of GT-SAGA [29] is summarized in Algorithm 3.

Similar to centralized SAGA [7], GT-SAGA converges linearly to θ∗ with a constant step-size.

More precisely, assuming each fi,j ∈ Sµ,L and by choosing α = min
{
O
(

1
µM

)
,O
(
m
M

(1−λ)2
Lκ

)}
,
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Algorithm 3 GT-SAGA at each node i

Require: θi0, α, {wir}r∈Ni
, di0 = gi0 = ∇fi(θi0), Gradient table {∇fi,j(θ̂i,j)}mi

j=1, θ̂i,j = θi0, ∀j.

1: for k = 0, 1, 2, · · · do

2: Update θik+1 =
∑

r∈Ni
wirθ

r
k − αdik;

3: Choose sik+1 uniformly at random from {1, · · · ,mi};

4: Compute gik+1 = ∇fi,sik+1

(
θik+1

)
−∇fi,sik+1

(
θ̂i,sik+1

)
+ 1

mi

∑mi

j=1∇fi,j
(
θ̂i,j
)
;

5: Replace ∇fi,sik+1

(
θ̂i,sik+1

)
by ∇fi,sik+1

(
θik+1

)
in the gradient table.

6: Update dik+1 =
∑

r∈Ni
wird

r
k + gik+1 − gik;

7: end for

where m = mini{mi},M = maxi{mi}, we have [29],

1

n

n∑
i=1

E
[∥∥θik − θ∗

∥∥2
2

]
≤ R

(
1−min

{
O
(

1

M

)
,O
(
m

M

(1− λ)2

κ2

)})k
, ∀k ≥ 0, (20)

for some R > 0. In other words, GT-SAGA achieves ε-accuracy of θ∗ in

O
(
max

{
M,

M

m

κ2

(1− λ)2

}
log

1

ε

)
parallel local component gradient computations. We emphasize that GT-SAGA, unlike the stochas-

tic algorithms (DSGD and GT-DSGD) discussed before, exhibits linear convergence to the global

minimizer θ∗ of F . This exact linear convergence is a consequence of both variance reduction

and gradient tracking; see Remarks 7, 8, 9 and 10 for additional comments.

B. GT-SVRG

GT-SVRG, formally described in Algorithm 4, is a double-loop method, where the outer loop

index is k and the inner loop index is t, that builds upon the centralized SVRG. At every

outer loop, each node i computes a local batch gradient and proceeds to a finite number T

of inner loop iterations; in the inner loop, each node i performs GT-DSGD (type) iterations

in addition to updating the local gradient estimate vit (Algorithm 4: Step 7). It can be verified

that vit is an unbiased estimator of the corresponding local batch gradient at node i. In practice,

all options (a)-(c) work similarly well. For example, under option (a), it is shown in [29] that

with α = O
(
(1−λ)2
Lκ

)
and T = O

(
κ2 log κ
(1−λ)2

)
, the outer loop of GT-SVRG follows:

1

n

n∑
i=1

E
[∥∥θik − θ∗

∥∥2
2

]
≤ U · 0.9k, (21)

for some U > 0. This argument implies that GT-SVRG achieves ε-accuracy of θ∗ in O
(
log 1

ε

)
outer loop iterations. We further note that each outer-loop update requires each node i to com-
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pute mi + 2T local component gradients. GT-SVRG thus achieves ε-accuracy of θ∗ in totally

O
((

M +
κ2 log κ

(1− λ)2

)
log

1

ε

)
parallel local component gradient computations.

Algorithm 4 GT-SVRG at each node i
Require: θi0, α, {wir}r∈Ni

, di0 = vi0 = ∇fi(θi0).

1: for k = 0, 1, 2, · · · do

2: Initialize θi0 = θik

3: Compute ∇fi(θi0) = 1
mi

∑mi

j=1∇fi,j(θ
i
0)

4: for t = 0, 1, 2, · · · , T − 1 do

5: Update θit+1 =
∑

r∈Ni
wirθ

r
t − α · dit;

6: Choose sit+1 uniformly at random from {1, · · · ,mi};

7: Compute vit+1 = ∇fi,sit+1

(
θit+1

)
−∇fi,sit+1

(
θi0
)
+∇fi(θi0);

8: Update dit+1 =
∑

r∈Ni
wird

r
t + vit+1 − vit;

9: end for

10: Set di0 = diT and vi0 = viT

11: Option (a): Set θik+1 = θiT

12: Option (b): Set θik+1 =
1
T

∑T−1
t=0 θit

13: Option (c): Set θik+1 as a random selection from {θit}T−1t=0

14: end for

Remark 7 (GT-SAGA vs. GT-SVRG: Linear speedup): Both GT-SAGA and GT-SVRG have a

low per-iteration computation cost and converge linearly to θ∗, i.e., they reach ε-accuracy of θ∗

respectively in O
(
max

{
M, Mm

κ2

(1−λ)2

}
log 1

ε

)
and O

((
M + κ2 log κ

(1−λ)2

)
log 1

ε

)
parallel local com-

ponent gradient computations. Interestingly, when the data sets at the nodes are large and balanced

such that M ≈ m� κ2

1−λ2 , the complexities of GT-SAGA and GT-SVRG become O(M log 1
ε ),

independent of the network, and are n times faster than that of centralized SAGA and SVRG.

Clearly, in this “big-data” regime, GT-SAGA and GT-SVRG each acts effectively as a means for

parallel computation and achieves a linear speed-up compared with its centralized counterpart.

Remark 8 (GT-SAGA vs. GT-SVRG: Unbalanced data): It can also be observed that when data

samples are distributed over the network in an unbalanced way, i.e., Mm is large, GT-SVRG may

achieve a lower complexity than GT-SAGA in terms of number of component gradient evaluations.

However, from a practical implementation standpoint, an unbalanced data distribution may lead

to a longer wall-clock time in GT-SVRG. This is because the next inner loop cannot be executed
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until all nodes finish their local batch gradient computations and nodes with a large amount of

data take longer to finish this computation, leading to an overall increase in runtime. Clearly,

there is an inherent trade-off between network synchrony, latency, and the storage of gradients

as far as the relative implementation complexities of GT-SAGA and GT-SVRG are concerned.

If each node is capable of storing all local component gradients, then GT-SAGA is preferable

due to its flexibility of implementation and faster convergence in practice. On the other hand, for

large-scale optimization problems where each node holds a very large number of data samples,

storing all component gradients may be infeasible and therefore GT-SVRG may be preferred.

Remark 9 (Related work on decentralized VR methods): Existing decentralized VR methods

include DSA [30] that combines EXTRA [27] with SAGA [7], diffusion-AVRG that combines

exact diffusion [28] and AVRG [31], DSBA [32] that adds proximal mapping [33] to each

iteration of DSA, ADFS [34] that applies an accelerated randomized proximal coordinate gradient

method [35] to the dual formulation of Problem P3, and Network-SVRG/SARAH [36] that

implements variance-reduction in the decentralized DANE framework based on gradient tracking.

We note that in large-scale scenarios where M ≈ m is very large, both GT-SAGA and GT-SVRG

improve upon the convergence rate of these methods in terms of the joint dependence on κ

and M ≈ m, with the exception of DSBA and ADFS. Both DSBA and ADFS achieve better

iteration complexity, however, at the expense of computing the proximal mapping of a component

function at each iteration. Although the computation of this proximal mapping is efficient for

certain function classes, it can be very expensive for general functions.

Remark 10 (Communication complexity): We now compare the communication complexities

of the decentralized algorithms discussed in this article. Since the node deployment is not neces-

sarily deterministic, we provide the expected number of communication rounds per node required

to achieve an ε-accurate solution (each communication is over a p-dimensional vector). Note that

DSGD, GT-DSGD, and GT-SAGA all incur O(dexp) expected number of communication rounds

per node, at each iteration, where dexp is the expected degree of the (possibly random) commu-

nication graph G. Thus, their expected communication complexity is their iteration complexity

scaled by dexp and is given by O(dexp
1
ε ), O(dexp

1
ε ), and O

(
max

{
M, Mm

κ2

(1−λ)2

}
dexp log

1
ε

)
,

respectively. For GT-SVRG, we note that a total number of O(log 1
ε ) outer-loop iterations are

required, where each corresponding inner loop incurs O(T ) = O
(
κ2 log κ
(1−λ)2 dexp

)
rounds of com-

munication, resulting into to a total communication complexity of O
(
κ2 log κ
(1−λ)2 dexp log

1
ε

)
. Clearly,

GT-SAGA and GT-SVRG, due to their fast linear convergence, improve upon the communication
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complexities of DSGD and GT-DSGD. It is further interesting to observe that in the big-data

regime where each node has a large number of data samples, GT-SVRG achieves a lower

communication complexity than GT-SAGA. Finally, we note that all gradient-tracking based

algorithms require two consecutive rounds of communication per stochastic gradient evaluation

with neighboring nodes to update the estimate θik and the gradient tracker dik, respectively. This

may increase the communication burden of the network especially when θik is of high dimension.

We note that, for the sake of completeness, we add dexp to the communication complexities, which

is a function of the underlying graph G; in particular, dexp=O(1) for random geometric graphs

(assuming constant density of deployment of nodes) and dexp=O(log n) for exponential graphs,

see also Section: Numerical Illustrations on these graphs.

V. NUMERICAL ILLUSTRATIONS

In this section, we present numerical experiments to illustrate the convergence properties of

the decentralized stochastic optimization algorithms discussed in this article, i.e., DSGD, GT-

DSGD, GT-SAGA, and GT-SVRG. We show experimental results on two different types of

graphs shown in Fig. 2: (i) an exponential graph with n = 16 nodes modeling a highly-structured

training environment with a large number of data samples per node; and, (ii) a random geometric

graph with n = 1, 000 nodes modeling a large-scale, ad-hoc training scenario. Their associated

doubly-stochastic weight matrices W are generated by the Metroplis method with the second

largest eigenvalue λ of 0.75 in the former and 0.9994 in the latter. The decentralized training

problem we consider is classification of hand-written digits from the MNIST dataset [37] with

the help of logistic regression (strongly-convex) and a two-layer neural network (non-convex).

Fig. 2. (Left) An exponential graph with 16 nodes. (Right) A random geometric graph with 1, 000 nodes.

A. Logistic Regression: Strongly-convex

We first compare the algorithms of interest in the context of training a regularized logistic

regression model [2], that is smooth and strongly-convex, to classify two digits {3, 8}. We use

a total of N =12, 000 images for training and 1, 966 images for testing. Each node i holds mi
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training samples, i.e., {xi,j , yi,j}mi

j=1 ⊆ R784×{−1,+1}, where xi,j is the feature vector (image)

and yi,j is the corresponding binary label. The nodes cooperate to solve the following problem:

min
b∈R784, c∈R

F (b, c) =
1

n

n∑
i=1

1

mi

mi∑
j=1

ln
[
1 + exp

{
−(b>xi,j + c)yi,j

}]
+
λ

2
‖b‖22,

where θ = [b>c]>, the regularization parameter is λ = 1/N , and the features are normalized to

unit vectors [6], [38]. We plot the optimality gap, i.e., F (θk)−F (θ∗), vs. the number of parallel

component gradient evaluations and compare the algorithms in both balanced and unbalanced

data distribution scenarios, recall Remarks 7 and 8. The step-size for all algorithms is constant

and is chosen to be 1/L, while the inner-loop length T of GT-SVRG is N/n in the case of

balanced data and 4N/n in the case of unbalanced data.

Balanced Data: To model a stable training environment with a balanced data distribution, e.g.,

in data centers or computing clusters, we choose a highly structured, well-connected, exponential

graph with n = 16 nodes resulting into a relatively large number of samples (mi = 750) per node.

Each node has approximately the same number of images in each class, i.e., the data distribution is

balanced and homogeneous, leading to similar local cost functions among the nodes and therefore

the bias term b in DSGD is relatively small. From Remarks 3 and 4, recall that when b is small

and the graph is well-connected, DSGD and GT-DSGD exhibit similar performance that is also

verified numerically in Fig. 3. Adding variance reduction to GT-DSGD however significantly

improves the performance in terms of both the optimality gap and the test accuracy, leading to

a linear convergence in both GT-SAGA and GT-SVRG to the exact solution.
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Fig. 3. Decentralized logistic regression with balanced data over the 16-node exponential graph, where each epoch

represents N/n = 750 component gradient evaluations at each node.

Unbalanced Data: We next compare the algorithms when the data distribution is unbalanced

and the nodes interact over a random geometric graph of n = 1, 000 nodes, modeling a large-scale,

wireless communication network. In this case, the N = 12, 000 training images are randomly

distributed among the nodes, see Fig. 4 (right) for the number of training samples at each node.

We make a further restriction that the training data samples at each node belong to only one
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class, either 3 or 8. This leads to unbalanced data sizes and heterogeneous data distributions at

the nodes, making the local functions significantly different from each other and thus the bias b

in DSGD is relatively large. The performance comparison is shown in Fig. 4 (left), where it can

be observed that DSGD degrades considerably in this case and the addition of gradient tracking

results into a smaller steady-state error (Remark 4). Adding variance reduction, as before, leads

to a linear convergence to the exact solution.
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Fig. 4. Decentralized logistic regression with unbalanced data over a 1, 000-node random geometric graph, where

each epoch represents N/n = 12 component gradient evaluations at each node.

Discussion: In both balanced and unbalanced data scenarios, the performance improvement

due to gradient tracking comes at a price of one additional round of communication per iteration,

see also Remark 10. The addition of variance reduction in GT-SAGA and GT-SVRG significantly

outperforms both DSGD and GT-DSGD. Their linear convergence however comes at a price of

additional storage in GT-SAGA and a synchronization overhead in GT-SVRG. From Remark 7, we

recall that when each node has roughly the same number of training samples, GT-SAGA converges

faster than GT-SVRG in terms of the number of parallel component gradient computations

required, as can be observed in Fig. 3. On the other hand, as discussed in Remark 8, the iteration

complexity of GT-SVRG is more robust to unbalanced data as it is independent of the M/m

factor that appears in GT-SAGA, as it is shown in Fig. 4, where GT-SAGA and GT-SVRG exhibit

similar convergence. However, GT-SVRG may incur additional latency and synchronization when

the data is unbalanced, due to the different computing time of the local batch gradient evaluations

across the network, before the execution of each inner-loop.

B. Neural Network: Non-convex

We now compare the performance of the algorithms when training a neural network with a

non-convex loss function. The local neural network implemented at each node has one fully-

connected hidden layer with 64 neurons and 51, 675 parameters in total. The goal is to train

a neural network that classifies all ten digits {0, . . . , 9} from the MNIST dataset with 60, 000
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training samples (around 6, 000 images in each class) and 10, 000 test images. The training dataset

is divided randomly over 1, 000 nodes such that each node has 60 data points. All algorithms use

a constant step-size that is manually optimized for best performance. Fig. 5 shows the loss F (θk)

and the test accuracy over epochs. We note that adding gradient tracking to DSGD improves both

the transient and steady-state performance in this non-convex setting. Similarly, adding variance-

reduction improves the performance further. This behavior is also notable in the test accuracy.
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Fig. 5. Two layer neural network over a 1, 000-node random geometric graph, where one epoch represents N/n = 60

component gradient evaluations at each node.

VI. EXTENSIONS AND DISCUSSION

We now discuss some recent progress on several key aspects of decentralized optimization

relevant to the first-order stochastic approaches described in this article.

Directed Graphs: The methods described in this article are restricted to undirected graphs.

Over directed graphs, the main challenge is that the weight matrices are either row-stochastic

(RS) or column-stochastic (CS), but cannot be doubly-stochastic (DS), in general. A well-studied

solution to this issue is based on the push-sum (type) algorithms [39] that enable consensus with

non-DS weights with the help of eigenvector estimation. Combining push-sum respectively with

DSGD [14], [15], and GT-DGD [20]–[22] leads to SGP [40], and ADD-OPT [41] that require CS

weights. A similar idea is used in FROST [42] to implement decentralized optimization with RS

weights. The issue with push-sum based extensions is that they require eigenvector estimation,

which in itself is an iterative procedure and may slow down the underlying algorithms especially

when the corresponding communication graphs are not well-connected. More recently, it is shown

that GT-DGD (16), ADD-OPT, and FROST are special cases of the AB algorithm [23], [43] that

employs RS weights in (16a) and CS weights in (16b), and thus is immediately applicable to

arbitrary directed graphs. The AB framework naturally leads to stochastic optimization with

gradient tracking over directed graphs, see SAB [44] that extends GT-DSGD to directed graphs,

and further opens the possibility to extend GT-SAGA and GT-SVRG to their directed counterparts.
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Communication and computation aspects: Communication efficiency is an important aspect

of decentralized optimization since communication can potentially become a bottleneck of the

system when nodes are frequently transmitting high-dimensional vectors (model parameters) in

the network. Different communication-efficient schemes [36], [45], communication/computation

tradeoffs [11], asynchronous implementations [46], and quantization techniques [47], [48] have

been studied with existing decentralized methods to efficiently manage the resources at each node.

Master-worker architectures: The problems described in this article have experienced a

significant research activity because of their direct applicability to large-scale training problems

in machine learning [40], [49]. Since these applications are typically hosted in controlled settings,

e.g., data centers with highly-sophisticated communication and a large number of highly-efficient

computing clusters, master-worker architectures and parameter-server models have become popu-

lar. In such architectures, see Fig. 2 (left), a central master maintains the current model parameters

and communicates strategically with the workers, which individually hold a local batch of the

total training data. Indeed, this architecture is not restricted to data centers alone and is also

applicable to certain Internet-of-Things (IoT) scenarios where the devices are able to communicate

to the master either directly via the cloud or via a mesh network among the devices. Various

programming models and several variants of master-worker configurations have been proposed,

such as MapReduce, All-Reduce, and federated learning [50], that are tailored for specific

computing needs and environments. We emphasize that, on the contrary, the motivation behind

the decentralized methods studied in this article comes from the scenarios where communication

among the nodes is ad hoc, unstructured, and specialized topologies are not available.

VII. CONCLUSIONS

In this article, we discuss general formulation and solutions for decentralized, stochastic, first-

order optimization methods. Our focus is on peer-to-peer networks that is applicable to ad-hoc

wireless communication where the nodes have resource-constraints and limited communication

capabilities. We discuss several fundamental algorithmic frameworks with a focus on gradient

tracking and variance-reduction. For all algorithms, we provide a detailed discussion on their

convergence rates, properties, and tradeoffs, with a particular emphasis on smooth and strongly-

convex objective functions. An important line of future work in the field of decentralized machine

learning is to analyze existing methods and develop new techniques for general non-convex

objectives, given the tremendous success of deep neural networks.
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