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Abstract: The structural controller, described by adding the
control places to the Petri nets, is introduced in this work to lead
the Petri net to the desired marking vectors. An algorithm (Algo-
rithm I) is developed to determine the control places for the given
Petri net. The connections and the initial marking of each control
place are determined in this algorithm. Moreover, a decentralized
structural control approach, based on overlapping decompositions, is
introduced in this work. In this decentralized approach, all disjoint
Petri subnets, which are obtained by using overlapping decomposi-
tions, are determined. The control places for each Petri subnet are
determined by using the given algorithm. Then, the control places
for the orginal Petri net are obtained by the control places of each
PSN by another algorithm (Algorithm II) and these places are added
to the orginal Petri net. Therefore, a decentralized structural con-
troller which guarantees to lead the Petri net to the desired marking
vectors is obtained.
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control, structural controller.

1. Introduction

Many supervisory controller design approaches using Petri nets have been pre-
sented in the literature (e.g., Holloway and Krogh, 1990; Sreenivas and Krogh,
1992; Giua and DiCasare, 1994; Ezpeleta et al., 1995; Barkaoui and Abdallah,
1995; Seenivas, 1997; Haoxun, 1998; Aybar and İftar, 2001, 2003b; Tordache et
al., 2001; Iordache and Antsaklis, 2001; Aybar et al., 2005). Some approaches
for the forbidden states were presented (for example, Sreenivas and Krogh, 1992;
Sreenivas, 1997; Aybar and İftar, 2003b; Aybar et al., 2005; Uzam and Won-
ham, 2006). In these cited works, deadlock-freeness, liveness, reversibility, and
boundedness, which are basic properties of Petri nets (Zhou and DiCesare, 1993)
were considered to design the supervisory controllers.
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The structural approaches were given to implement the controllers in Hol-
loway and Krogh (1990), Haoxun (1998), Barkaoui and Abdallah (1995), Ior-
dache et al. (2001), Iordache and Antsaklis (2001). In these related works, the
control places were considered. The feedback logic control for a class of Petri
nets, which contain the control places and the arcs only directed from the con-
trol places to the transitions (the output connection), was designed by these
control places in Holloway and Krogh (1990). In another work (Haoxun, 1998),
the control methodology based on S-Decreases was introduced for same class
of Petri nets. The structural analysises (trap, siphon, P-invariant) were used
for the control approaches (Barkaoui and Abdallah, 1995; Iordache et al., 2001;
Iordache and Antsaklis, 2001). By using the control places which have the input
and output connections, deadlock-freeness and liveness were guaranteed in these
related works.

In this work, the structural control approach, which guarantees to lead the
Petri net to the desired marking vectors is considered. It is assumed that any
desired marking vector is reachable from the initial marking. Since the set of
the desired marking vectors for the overall Petri net is used, this approach is
called the centralized structural control approach in this work. This controller
approach is explained so that the control places are added to the Petri nets.
An algorithm, written by using pseudo-codes, is presented to determine the
control places (the input and output connections and the initial marking of each
place are determined). In the presented algorithm, Algorithm I, the important
difference is that the set of desired marking vectors, instead of structural analysis
(Barkaoui and Abdallah, 1995; Iordache et al., 2001; Iordache and Antsaklis,
2001) is used. Moreover, a program in the Microsoft Visual Basic programming
language is developed to implement this algorithm. The definition of the Petri
net is supplied using an ascii input file for this program. The results of the
program are displayed on the screen.

After the centralized approach is introduced, the decentralized structural
control approach is also presented to guarantee the occurrence of the desired
marking vectors in this work. The decentralized control design has also been
investigated for the discrete event systems (DESs) in many works (e.g., Ramadge
and Wonham, 1989; Lin and Wonham, 1990; Rudie and Wonham, 1992; Cho
and Lim, 1999; Aybar and İftar, 2003b; Aybar et al., 2005). This control design
approach is chosen to reduce the computational complexity (for detailes about
the computational complexity in DES, see Esparza and Nielsen, 1994; Aybar
and İftar, 2003b; Aybar et al., 2005). The overlapping decompositions approach,
which is used in the decentralized controller design was first introduced by Ikeda
and Siljak (1980) for the continuous-state systems. This approach was then used
for DESs by İftar and Özgüner (1998) for a state vector modeling, and Aybar
and İftar (2002) for Petri net modeling.

In the decentralized approach, after all disjoint Petri subnets are obtained,
the control places are determined for these subnets. Since each subnet is smaller
than the overall Petri net, it is, in general, much easier to determine the control
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places for Petri subnets than to determine the control places for the overall
original Petri net. Here, Algorithm I is used for the determination of the control
places for each PSN. Finally, the control places for the given (orginal) Petri net
are obtained by using the control places of each Petri subnets. This procedure
is done by another algorithm, Algorithm II. We prove that this decentralized
controller leads the original Petri net to the desired marking vectors.

2. Preliminaries

2.1. Petri net model

A Petri net is denoted as a five-tuple G(P, T, N, O, m0), where P is the set of
places, T is the set of transitions, (P ∩ T = ∅ and P ∪ T 6= ∅), N : P × T →
{0, 1} is the input matrix that specifies the arcs directed from transitions to
places, O : P × T → {0, 1} is the output matrix that specifies the arcs directed
from transitions to places and m0 is the initial marking. It is assumed that all
transitions are controllable in this work.

M : P → {0, 1} is a marking vector, M(p) indicates the number of tokens,
assigned by marking M to place p. A transition t ∈ T is enabled if and only
if M(p) ≥ N(p, t) for all p ∈ P . An enabled transition t ∈ T can fire at M ,
yielding the new marking vector:

M ′(p) = M(p) + O(p, t)−N(p, t), ∀p ∈ P . (1)

A firing sequence g is a sequence of enabled transitions t1t2 . . . tk, where t1, t2, . . . ,
tk ∈ T . A marking M ′ is said to be reachable from M if there exist a firing
sequence starting from M (i.e., the first transition of the sequence fires at M)
and yielding M ′ (i.e., the final transition of the sequence yields M ′). The set
of all marking vectors, of G, reachable from M is denoted by R(G, M). The
transition function, denoted by ρ(G, M, g), defines the yielded marking when
the sequence g fires starting from M (ρ is in fact a partial function, since it is
not defined, if g contains transitions which are not enabled). Note that we let
E(G, M) to denote the set of transitions which are enabled at M ∈ R(G, m0).

2.2. Overlapping decompositions and expansions

Overlapping decompositions and expansions of Petri nets were first introduced
in Aybar and İftar (2002). To obtain an overlapping decomposition of a Petri
net, overlapping subnets of a Petri net are first identified by examining the
topological structure of the Petri net. These Petri subnets (PSNs) are iden-
tified such that the only interconnection between the subnets are through the
overlapping part, i.e., no arc should be directed from one transition / place
in one subnet to a place / transition in another subnet unless at least one of
these transitions / places is in the overlapping part of the two subnets. More-
over, for any transition, t, in the overlapping part of two PSNs, any element of
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UT (t) := {p ∈ P | O(p, t) = 1} and of VT (t) := {p ∈ P | N(p, t) = 1} must also
be in the overlapping part of the same two PSNs. Moreover, for any place, p,
in any overlapping part we must have UP (p) := {t ∈ T | N(p, t) = 1} ⊂ T .

The overlappingly decomposed Petri net is expanded as follows (Aybar and
İftar, 2002):

i) A place or a transition in the overlapping part of n subnets is repeated
n times and each repeated place / transition is assigned to a different
subnet. Arcs between such places / transitions are also repeated and each
repeated arc is assigned the same weight as the original arc.

ii) Two transitions with proper arcs are added between any two repeated
places, such that each transition, when fires, transfers one token from one
repeated place to the other.

iii) All the tokens which are initially assigned to a place in an overlapping
part of the original Petri net are assigned to one of the repeated places
corresponding to that place. Numbers of tokens in any place, which is not
in any overlapping part, remain unchanged.

As a result of this procedure, an expanded Petri net (EPN), G̃(P̃ , T̃ , Ñ , Õ, m̃0),
which consists of S disjoint PSNs, is obtained from an original Petri net (OPN),
G(P, T, N, O, m0), which was decomposed into S overlapping PSNs. Each place
/ transition / arc of a PSN corresponds to a place / transition / arc of the OPN.
The PSNs are interconnected through the transitions introduced in step (ii) of
the above procedure. Step (iii) of the above procedure determines the initial
marking, m̃0, of the EPN. The set of places of the EPN is given by P̃ :=

⋃S

i=1
Pi,

where Pi is the set of places of the ith PSN. The set of transitions of the EPN is

given by T̃ :=
(

⋃S

i=1
Ti

)

⋃

T , where Ti are, respectively, the sets of transitions

of the ith PSN, and T is the set of transitions between the PSNs (as introduced
in step (ii) of the above procedure).

3. The control places

This section explains how the control places, which are the basis of the cen-
tralized approach, are determined. An algorithm (Algorithm I) is developed to
determine the control places such that the connections of the control places to
the transitions of the given nets are obtained and the number of token of each
control places is determined.

Algorithm I requires the Petri net definition G and the set Rd(G, m0). Here,
Rd(G, m0) denotes the set of the desired marking vectors. It is organized in
three parts corresponding to the determination of the input matrix and the
output matrix, and the initial marking. Nc : Pc × T → {0, 1} denotes the input
matrix for the control places, specifying the arcs directed from transitions to
places, Oc : Pc × T → {0, 1} denotes the output matrix for the control places,
specifying the arcs directed from places to transitions and Mc0 : Pc → {0, 1}
denotes the initial marking of the control places. Here, Pc denotes the set of the
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control places. In the first part of Algorithm I, the set Tf = {t ∈ T | ρ(G, M, t) /∈
Rd(G, m0), M ∈ Rd(G, m0)}, which denotes the set of forbidden transitions,
is constructed and then one control place is used for each element of Tf . It is
known that, since any element of Tf is obtained as depending on any desired
marking vector, this transition may be fired at any other desired vector. The
physical connections of these places to the transitions are defined by the input
matrix and the output matrix, described in the second part of Algorithm I. In
the last part of Algorithm I, the initial marking of the new added control places,
Mc0 , is determined.

Algorithm I: Control Place Algorithm

Pc := ∅, Tf := ∅, k = 1
/ Part I: Construct the input matrix for the control places /
For i = 1 to |Rd|
Tx = E(G, [Rd]i)
For j = 1 to |Tx|
If ρ(G, [Rd]i, [Tx]j) /∈ Rd Then
Tf ← Tf ∪ {[Tx]j}
Pc ← Pc∪̂{pk

c}
Nc(p

k
c , [Tx]j) = 1

k ← k + 1
End

End
End
For i = 1 to |Pc|
For j = 1 to |T |
If Nc(p

j
c, [T ]i) 6= 1 Then

Nc(p
j
c, [T ]i) = 0

End
End

End
/ Part II: Construct the output matrix for the control places /
For i = 1 to |Pc|
For j = 1 to |Tf |
For n = 1 to |Rd|
Ty = E(G, [Rd]n)
For r = 1 to |Ty|
If Nc(p

i
c, [Tf ]j) = 1 And ρ(G, ρ(G, [Rd]n, [Ty]r), [Tf ]j) ∈ Rd Then

Oc(p
i
c, [Ty]r) = 1

End
End

End
End

End
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For i = 1 to |Pc|
For j = 1 to |T |
If Oc(p

j
c, [T ]i) 6= 1 Then

Oc(p
j
c, [T ]i) = 0

End
End

End
/ Part III: Construct the initial marking for the control places /
For j = 1 to |Pc|
Mc0(p

j
c) = 0

End
For i = 1 to |Tf |
For j = 1 to |Pc|
If Nc(p

j
c, [Tf ]i) = 1 And ρ(G, m0, [Tf ]i) ∈ Rd Then

Mc0(p
j
c) = 1

End
End

End

The notation is used in this algorithm as follows: for a set X , |X | denotes
the number of the elements of X , and [X ]i denotes the ith element of X (i =
1, 2, . . . , |X |). All the sets are assumed to be ordered sets. When a new element
is added to a set of size n, the new element is taken as the (n + 1)st element.
Both ∪ and ∪̂ are used to denote the set union. A ∪̂ B is used, rather than
A ∪ B, whenever it is known apriori that A ∩ B = ∅. To evaluate Z = A ∪ B,
the set Z is first initialized as A; for each element (from first to last), b, of
B, it is then checked whether b ∈ A. If b /∈ A, then b is added to set Z. To
evaluate Z = A ∪̂ B, on the other hand, elements of A and of B are simply
appended to form Z. For a vector M , M(i) denotes the ith element of M . For
an n-dimensional vector A and a scalar a, [A a] denotes the (n+1)-dimensional
vector obtained by appending a to A.

This algorithm is implemented by a program in the Microsoft Visual Basic
language. This program displays the input and output connections and the
initial markings of all control places.

The Petri net G with the control places is called the controlled Petri net
(CPN), denoted by the tuple Ḡ(P̄ , T, N̄ , Ō, m̄0). The set of places is P̄ := P∪Pc,
the initial marking is m̄0 = [mT

0 MT
c0

]T (here, [.]T denotes the transpose of [.]),
and N̄ / Ō := P̄ × T → {0, 1}, denotes the input / output matrix such as

N̄(p, t) :=

{

N(p, t), if p ∈ P
Nc(p, t), if p ∈ Pc

, Ō(p, t) :=

{

O(p, t), if p ∈ P
Oc(p, t), if p ∈ Pc

for t ∈ T.

We now prove that only desired states occur in CPN.
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Theorem 1 If CPN is obtained by using the above method, then R−cp(Ḡ) =
Rd(G, m0). Here, R−cp(Ḡ) := {M∗ : P → N | M∗(p) = M̄(p), ∀p ∈ P, ∀M̄ ∈
R(Ḡ, m̄0)} contains the marking vectors without the markings of the control
places.

Proof. Since the initial marking for CPN, m̄0, contains the initial marking of
OPN, m0 ∈ R−cp(Ḡ) and m0 ∈ Rd(G, m0). It is known that any M ∈ Rd(G, m0)
is reachable from m0 and Rd(G, m0) is constructed starting from the initial
marking, m0.

1) For m0 ∈ Rd(G, m0) and m̄0 ∈ R(Ḡ, m̄0).

a) If Mo = ρ(G, m0, ti) ∈ Rd(G, m0), ti ∈ E(G, m0) (i.e., m0(p) = 1,
∀p ∈ •ti(G)), then there is no control place or one control place, px

c

with m̄0(p
x
c ) = 1 obtained by using Algorithm I for the transition ti.

Here, •ti(G) denotes the set of input places into the transition t in
G.

1a-1) If there is no control place, then ti is enabled at m̄0, because of
•ti(G) = •ti(Ḡ). ti ∈ E(Ḡ, m̄0) and M̄o = ρ(Ḡ, m̄0, ti) ∈
R(Ḡ, m̄0) are obtained. In this case, there exists the marking
vector M∗ ∈ R−cp(Ḡ) for M̄o.

1a-2) If there exists a control place, px
c , with m̄0(p

x
c ) = 1, then ti is

enabled at m̄0, since m̄0(p) = 1, ∀p ∈ •ti(Ḡ) = •ti(G) ∪ {px
c}.

In this case, there exists the marking vector M∗ ∈ R−cp(Ḡ) for
M̄o.

We obtain M∗ = Mo, M∗ ∈ R−cp(Ḡ) and Mo ∈ Rd(G, m0).

b) If ρ(G, m0, ti) /∈ Rd(G, m0), ti ∈ E(G, m0), then the control place,
pb

c, (m̄0(p
b
c) = 0), which is connected to this transition ti as the input

is obtained by using Algorithm I. In this case, ti is not enabled at
m̄0, since m̄0(p

b
c) = 0 for pb

c ∈ •ti(Ḡ).

c) If ti /∈ E(G, m0), then ti /∈ E(Ḡ, m̄0), because of the structure of the
net.

2) For Mo ∈ Rd(G, m0) and M̄o ∈ R(Ḡ, m̄0).

a) If M ′ = ρ(G, Mo, tj) ∈ Rd(G, m0), tj ∈ E(G, Mo) (i.e., Mo(p) = 1,
∀p ∈ •tj(G) for G), then there is no control place or one control
place, py

c with M̄o(py
c ) = 1, obtained by using Algorithm I for the

transition tj .

2a-1) If there is no control place, then tj is enabled at M̄o, because of
•tj(G) = •tj(Ḡ). tj ∈ E(Ḡ, M̄o) and M̄ ′ = ρ(Ḡ, M̄o, tj) ∈
R(Ḡ, m̄0) are obtained. In this case, there exists the marking
vector M ‡ ∈ R−cp(Ḡ) for M̄ ′.

2a-2) If there exist the control place, py
c , and M̄o(py

c ) = 1, then tj
is enabled at M̄o. Since tj ∈ Tf and M ′ = ρ(G, Mo, tj) ∈
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Rd(G, m0), Oc(p
y
c , ti) = 1 are determined. Thus, tj is enabled at

M̄o. In this case, there exists the marking vector M ‡ ∈ R−cp(Ḡ)
for M̄ ′.

We obtain M ‡ = M ′, M ‡ ∈ R−cp(Ḡ) and M ′ ∈ Rd(G, m0).

b) If ρ(G, Mo, tj) /∈ Rd(G, m0), tj ∈ E(G, m0), then the control place,
pq

c (M̄o(pq
c) = 0), which is connected to this transition tj as the input

is obtained by using Algorithm I. In this case, tj is not enabled at
M̄o, since M̄o(pq

c) = 0 for py
c ∈ •tj(Ḡ).

c) If tj /∈ E(G, Mo), then tj /∈ E(Ḡ, M̄o), because of the structure of
net.

There exists the marking vector, M̄+ ∈ R(Ḡ, m̄0) for M+ ∈ Rd(G, m0) by using
induction method from (1)-(2) such that M̄+(p) = M+(p), ∀p ∈ P . Therefore,
the set R−cp(Ḡ) is equal to the set Rd(G, m0).

We consider the example Petri net, shown in Fig. 1. In this net, the set of
places is P ={p1, p2, p3, p4, p5, p6}, the set of transitions is T ={t1, t2, t3, t4, t5, t6},
and the initial marking is m0 = [1 0 0 0 1 0]T (it is known that deadlock occurs
when t1, t4, t2 fires at the initial marking in this Petri net).
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Figure 1. The example Petri net

The set of the desired markig vectors for this net is given as Rd(G, m0) =
{[1 0 0 0 1 0]T , [0 1 0 0 1 0]T , [0 0 0 1 0 0]T , [1 0 0 0 0 1]T , [0 0 1 0 0 1]T , [0 0 0 0 1 0]T}.
To obtain the element of this set, Algorithm I can be used for this aim. When the
algorithm is used, Pc = {p1

c, p
2
c}, Tf = {t1, t2}, Nc(p

1
c , t1) = 1, Nc(p

2
c , t2) = 1,

Nc(p, t) = 0, for p ∈ Pc, and ∀t ∈ T \ {t1, t2}, Oc(p
1
c , t5) = 1, Oc(p

1
c , t6) = 1,

Oc(p
2
c , t4) = 1, Oc(p, t) = 0, for p ∈ Pc, and ∀t ∈ T \ {t5, t6}, and Mc0 = [1 0]T
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Figure 2. The controlled Petri net

are obtained. After the control places are determined for this Petri net, CPN is
obtained (see Fig. 2). The control places effect the firing transitions and satisfy
R−cp(Ḡ) = Rd(G, m0). Moreover, deadlock does not occur in CPN.

4. Decentralized structural control approach

Decentralized approach, which is based on overlapping decompositions of Petri
nets to guarantee the occurence of the desired states is introduced in this sec-
tion. It is assumed that an overlapping decomposition and a corresponding
expansion, G̃(P̃ , T̃ , Ñ , Õ, m̃0), of the given OPN, G(P, T, N, O, m0), is obtained
as explained in Section 2-2.

In this approach, each PSN is considered in the determination of the control
places. The kth PSN is denoted by Gk(Pk, Tk, Nk, Ok, mk0). It is assumed that
an initial marking, mk0 , is the part of a valid initial marking of EPN (not
necessarily m̃0). The kth controlled PSN with the control places is denoted by
Ḡk(P̄k, Tk, N̄k, Ōk, m̄k0). Here, P̄k := Pk∪P k

c , m̄k0 = [mT
k0

MT
ck0

]T , N̄k and Ōk

are the input and output matrices, P k
c = {pk1

c , pk2
c , ...} is the set of the control

places for kth PSN, Mck0
is the initial marking for the control places in kth PSN.

After all PSNs are obtained, the set of the desired marking vectors for each
PSN is constructed as follow:

Rkd
(Gk, mk0) contains the marking vector Mk such that Mk(p̃) = M(p),

k ∈ {1, ..., S}, M ∈ Rd(G, m0), p̃ ∈ Π(p) ∩ Pk, ∀p ∈ P .

Here, Π(p) denotes the set of places, p̃ ∈ P̃ , of the EPN, which correspond to
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the place p, and Π̂(p̃) denotes the place p ∈ P of the OPN which corresponds to
p̃ ∈ p̃. If mk0 /∈ Rkd

(Gk, mk0), it is not possible to determine the control places
for kth PSN. Therefore, it is assumed that mk0 ∈ Rkd

(Gk, mk0), ∀k ∈ {1, 2, ...S}
in this work.

There may exist a marking vector, M∗
k ∈ Rkd

(G, m0), such that M∗
k is not

reachable from mk0 . Since each desired marking vector of any PSN corresponds
to a part of the desired marking vector of OPN, there exists a marking vector
M+

k ∈ Rkd
(G, m0), such that M+

k (p̃) = M∗
k (p̃), ∀p̃ ∈ Pk \P r

k , where P r
k denotes

the set of repeated places in the kth PSN (if there is one token in the common
place of OPN, then one of the repeated places of this common place has one
token and the remainder of the the repeated places have no tokens in EPN).
Thus, we obtain E(Gk, M∗

k ) ⊂ E(Gk, M+

k ). Therefore, M∗
k does not effect the

determination of the control places for the kth PSN.
After the control places of each PSN are determined by using Algorithm I,

the control places for OPN are determined by using control places of each PSN in
Algorithm II. This algorithm requires the control places and their connections.
Algorithm II constructs the input and output matrices for all control places
which are added to OPN. The repetition of the control places in the given
algorithm (Algorithm II) is prevented so that if •px(Ḡ) = •py(Ḡ) and px•(Ḡ) =
py • (Ḡ), then Pc is updated as Pc ← Pc \ {py}, for px, py ∈ Pc. Here, •p(Ḡ)
denotes the set of input transitions into the place p in Ḡ, and p • (Ḡ) denotes
the set of output transitions from the place p in Ḡ.

Algorithm II: Decentralized Approach Algorithm

For i = 1 to S
For j = 1 to |P i

c |
For k = 1 to |Ti|
If Nci

(pi j
c , [Ti]k) = 1 Then

Nc(p
i j
c , Φ([Ti]k)) = 1

End
If Oci

(pi j
c , [Ti]k) = 1 Then

Oc(p
i j
c , Φ([Ti]k)) = 1

End
End

End
End

Here, Φ(t̃) denotes the place t ∈ T of the OPN which corresponds to t̃ ∈ T̃ . The
initial marking for the added control places is described as Mc0(p) = Mcµ(p)0

(p),

∀p ∈ Pc. Here, µ : P̃ → {1, 2, . . . , S} is defined so that µ(p̃) = q, where q is
such that p̃ ∈ Pq. Thus, CPN is obtained by decentralized approach. Note
that a program is developed to implement this algorithm. The results of this
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program are displayed on the screen. Now, we prove that the above approach
guarantees the occurrence of the desired states for OPN.

Theorem 2 If CPN is obtained by using the control places of PSNs, R−cp(Ḡ) =
Rd(G, m0).

Proof. It is known that R−cp
k (Ḡk) ⊂ Rdk

(Gk, mk0) for kth PSN. Rdk
(Gk, mk0)

is obtained from the Rd(G, m0) under the assumption of mk0 ∈ Rkd
(Gk, mk0),

for all k ∈ {1, 2, ...S}. Each element of R−cp
k (Ḡk) corresponds to the part of the

desired marking vector. Therefore, the set R−cp(Ḡ), which is obtained by using
decentralized approach, is equal to the set Rd(G, m0).

While the complexity of the presented decentralized approach is obtained
as the sum of the complexity of Algorithm I of each PSN, Algorithm II, and
the overlapping decompositions, the complexity of the centralized approach is
defined as the complexity of Algorithm I for the OPN. Here, the complexity
of Algorithm I depends on the cardinality of the set of desired markings, the
number of the determined control places, the number of transitions and the
number of places, and the complexity of Algorithm II depends on the number
of the determined control places and the number of transitions (Cormen et al.,
1990). Since each PSN is only a part of the given OPN, besides that PSNs
have lower dimensional marking vectors, and fewer number of transitions and
places (note that, since the decomposition may, in most cases, be made by
an eye inspection, the decomposition effort may be neglected). Therefore, the
complexity of the decentralized approach is lower than the complexity of the
centralized approach.

5. Example

Consider the Petri net, which was presented in Aybar and İftar (2003a), shown in
Fig. 3. In this net, P ={p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11}, T = {t1, t2, t3, t4,
t5, t6, t7, t7, t8, t9, t10}, and m0 = [0 1 0 0 0 1 0 1 0 0 0]T . The analysis of this
net leads to the conclusion that the example net is neither live nor reversible.

Let us guarantee to lead the example net to the elements of the set

Rd(G, m0) = {[0 1 0 0 0 1 0 1 0 0 0]T , [1 1 0 0 0 0 0 1 0 0 0]T, [0 0 1 1 0 0 0 1 0 0 0]T,

[0 0 0 0 1 0 0 1 0 0 0]T, [0 1 0 1 0 0 0 1 0 0 0]T, [0 1 0 0 0 0 0 1 0 1 0]T ,

[0 1 0 0 0 0 0 0 0 0 1]T, [0 1 0 0 0 0 0 0 1 1 0]T, [0 1 0 0 0 0 1 1 0 0 0]T} .

We use the decentralized approach, which is given in Section 4, for this
example. The overlappingly decomposed OPN is shown in Fig. 4. Its expansion,
the EPN, is shown in Fig. 5. The set of places of the EPN is P̃ = P1

⋃

P2,
where P1 = {p1, p2, p3, p4, p5, p6a} and P2 = {p6b, p7, p8, p9, p10, p11}. The set
of transitions of the EPN is T̃ = T1

⋃

T2

⋃

T , where T1 = {t1, t2, t3, t4, t5, },
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Figure 3. Orginal Petri net (Aybar and İftar, 2003a)

T2 = {t6, t7, t8, t9, t10}, and T = {tx, ty}. The initial marking is chosen as
m̃0 = [0 1 0 0 0 1 1 0 1 0 0 0]T , i.e., it is assumed that all the tokens in
the overlapping places in the initial marking, are assigned to the corresponding
places of the first PSN (as shown in Fig. 5). The inital markings for the
first PSN and the second PSN are, respectively, m10 = [0 1 0 0 0 1]T and
m20 = [1 0 1 0 0 0]T (for detailed information about the inital markings of all
PSNs, see Aybar and İftar, 2002).

Figure 4. Overlappingly decomposed Petri net
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Figure 5. Expanded Petri net

After all PSNs are determined, the sets of the desired marking vectors for
two PSNs are obtained as

Rd1(G, m0) = {[0 1 0 0 0 1]T , [1 1 0 0 0 0]T , [0 0 1 1 0 0]T , [0 0 0 0 1 0]T ,

[0 1 0 1 0 0]T , [0 1 0 0 0 0]T }

and

Rd2(G, m0) = {[1 0 1 0 0 0]T , [0 0 1 0 0 0]T , [0 0 1 0 1 0]T , [0 0 0 0 0 1]T ,

[0 0 0 1 1 0]T , [0 1 1 0 0 0]T }.

C

11 21
C

Figure 6. The controlled Petri net (Fig. 3)
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Now, we determine the control places for each PSN so that Nc1(p
1 1
c , t2) = 1,

Nc1(p
1 1
c , t) = 0, ∀t ∈ T1 \ {t2}, Oc1(p

1 1
c , t4) = 1, Oc1(p

1 1
c , t) = 0„ ∀t ∈ T1 \ {t4},

Mc10 = [0] for the first PNS and Nc2(p
2 1
c , t8) = 1, Nc2(p

2 1
c , t) = 0, ∀t ∈ T2\{t8},

Oc2(p
2 1
c , t10) = 1, Oc2(p

2 1
c , t) = 0„ ∀t ∈ T2 \ {t10}, Mc20 = [0]. Then, by

using Algorithm II, Nc(p
1 1
c , t2) = 1, Nc(p

2 1
c , t8) = 1, Nc(pc, t) = 0, ∀pc ∈ Pc,

∀t ∈ T \ {t2, t8}, Oc(p
1 1
c , t4) = 1, Oc(p

2 1
c , t10) = 1, Oc(pc, t) = 0, ∀pc ∈ Pc,

∀t ∈ T \{t4, t10}, and Mc0 = [0 0]T are obtained (Pc = {p1 1
c , p2 1

c }). Thus, CPN,
shown in Fig. 6, is constructed by using the approach given in Section 4. In
CPN, the set of places is P̄ = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p

1 1
c , p2 1

c },
the set of transition is T = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}, the initial marking
is m̄0 = [0 1 0 0 0 1 0 1 0 0 0 0 0]T , and the input and output matrices are given
as

N̄ =

































1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

































Ō =

































0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

































.

Using the decentralized controller approach given above, we obtain CPN,
the reachability set, which contains the set of the desired marking vectors
(R−cp(Ḡ) = Rd(G, m0)). Note that CPN features both reversibility and live-
ness.

An example system which was given by Holloway and Krogh (1990) is con-
sidered to show the advantage of the decentralized approach. This system con-
sists of five automated guided vehicles, three workstations, two part-receiving
stations and one completed parts station. The respective Petri net model (Hol-
loway and Krogh, 1990) has 64 places and 53 transitions. After overlapping
decompositions and expansion are used for this net, two disjoint Petri subnets
are obtained such that the first PSN has 40 places and 31 transitions, and
the second PSN has 26 places and 22 transitions (since two places are in the
overlapping part, these places are repeated for two subnets).

The sets of the desired markings, which have 100, 250, and 350 markings
are chosen to analyse the presented approaches. The programs for Algorithm I
and Algorithm II are run (on a PC with Pentium-4 microprocessor running at
2.66 GHz with 1 GB RAM) for the centralized and decentralized approaches.
In the centralized approach, the program for Algorithm I is only used for the
OPN. In the decentralized approach, the program for Algorithm I is used for
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the first and second PSNs, and another program for Algorithm II is run. The
structural controllers, which are designed by using both the centralized approach
and decentralized approach guarantee the occurrence of the desired markings
of the considered Petri net. The results for the sets of the desired markings
are given in Table 1. The ratio of the computational time is very small for
three sets, showing that it is about 16 times faster to design the decentralized
approach for the considered Petri net (Holloway and Krogh, 1990).

Table 1. Computational time

|Rd| Algorithm I Algorithm I for Algorithm I for Algorithm II Ratio

for the OPN the first PSN the second PSN

100 1649 sec. 62 sec. 47 sec. 1 sec.
(62 + 47 + 1)

1649
= 0.06

250 19653 sec. 752 sec. 473 sec. 8 sec.
(752 + 473 + 8)

19653
= 0.06

350 45846 sec. 2108 sec. 1082 sec. 16 sec.
(2108 + 1082 + 16)

45846
= 0.06

6. Conclusion

The problem, which is defined as the occurrence of the desired marking vectors
from the initial state in Petri nets, is considered in this work. For this problem,
the structural solution, which is explained by adding of the control places to the
Petri net, is presented in this work.

Algorithm I is developed to determine the control places for the entire Petri
nets. The centralized approach is designed by using this algorithm. Further-
more, a decentralized approach, which is based on overlapping decompositions,
is introduced. After the control places of each PSN are determined by using Al-
gorithm I, the control places for OPN are obtained by using Algorithm II. The
obtained control places are easily added to the OPN and then CPN is obtained.
Therefore, the elements of reachability set of CPN contain the desired markings
for OPN. Moreover, the programs, which are written in Microsoft Visual Basic
programming language, are organized to implement the presented algorithms.
The results of each program are displayed on the screen.

Some effort is needed for the determination of overlapping decomposition
of the given Petri net in the decentralized approach. This effort is neglected,
though, because the decomposition may be made by an eye inspection. More-
over, the complexity of Algorithm II is lower than the complexity of Algorithm I.
Therefore, the complexity of the decentralized approach mainly depends on the
sum of complexities of Algorithm I of each PSN. Furthermore, the computa-
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tion time in the program for Algorithm I is related to both the size of the set
of desired markings and the sets of transitions and places of the given Petri
net (when the definition of the OPN is used for the centralized approach, the
definition of each PSN is used for the decentralized approach). Therefore, the
complexity of the decentralized approach is lower than the complexity of the
centralized approach. For example, the decentralized approach is faster than
the centralized approach for the Petri net, which was given by Holloway and
Krogh (1990).

The overlapping approach can be used in the structural theory in future
studies. It is also possible to design the decentralized controllers which enforce
structural deadlock - freeness and liveness - in the following studies.
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