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In this paper, a suboptimal state feedback integral decentralized tracking control synthesis for interconnected linear time-variant
systems is proposed by using orthogonal polynomials. Particularly, the use of operational matrices allows, by expanding the
subsystem input states and outputs over a shifted Legendre polynomial basis, the conversion of time-varying parameter dif-
ferential state equations to a set of time-independent algebraic ones. Hence, optimal open-loop state and control input coefficients
are forwardly determined. ,ese data are used to formulate a least-square problem, allowing the synthesis of decentralized state
feedback integral control gains. Closed-loop asymptotic stability LMI conditions are given.,e proposed approach effectiveness is
proved by solving a nonconstant reference tracking problem for coupled inverted pendulums.

1. Introduction

,e decentralized control has given rise to increasing at-
tention in the automatic control community. Obviously,
studies are mainly related to the so-called large-scale
interconnected dynamic system class. ,e latter family of
plants finds its application in several fields such as me-
chanical systems [1–3], power-generating plants [4, 5],
aircraft dynamics [6], aerospace transportation [7], and
economic models [8]. ,e decentralized control of an
interconnected system essence aims at making each sub-
system being controlled using only its own local state var-
iables. However, ensuring the global stability of the whole
system still remains a challenging concern [1, 9, 10].

Over the past years, many research results have been
dedicated to the decentralized control approach for linear
[11, 12] and nonlinear large-scale systems [1, 10, 13]. We
recall here some works in the literature such as decentralized
optimal control using the successive approximation ap-
proach [14], state-dependent Riccati equation (SDRE) op-
timal control [10], feedback decentralized polynomial
control for the multimachine power system [9], robust H∞
decentralized observation and control [15], and Chebyshev

wavelet-based collocation scheme [16]. In most cases, par-
ticular classes of interconnected systems are handled, and
specific mathematical conditions should be met at first in
order to achieve the problem resolution.

On the contrary, linear time-variant (LTV) systems are
known to be an immediate generalization of time-invariant
systems. In fact, this class of linear systems is the result of
nonlinear systems linearizing along a trajectory. Hence, it
permits to cover a wider operating conditions of the systems
to be studied, and as a consequence, ensures the applicability
of the resulting control approaches. It is worth noting that
the decentralized tracking problem of time-varying systems
has not been addressed excessively in the literature. Using
time-varying parameters for interconnected system mod-
eling has been considered recently in order to solve various
control problems. Among the latest contributions, one may
cite [17], where authors combine an operator form of dis-
crete-time linear systems with the classical Youla parame-
terization to characterize the set of stably realizable
decentralized controllers for LTI, LTV, or even linear
switched systems. Mohamed et al. [18] addressed the
problem of the adaptive sliding mode observer for nonlinear
interconnected systems with time-varying parameters.
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Besides, the time-variation concept has concerned the delay
modeling [19] or the output constraint modeling [20] of
large-scale systems. For the tracking problem, we particu-
larly recall the method in [1], where authors developed a
decentralized tracking control for a class of time-varying
systems based on the backstepping technique. ,e time-
variant parameters in the global systems are unknown,
bounded (that bounds need to be estimated and not literally
using the time-varying parameters), and should verify some
analytical assumptions in order to prove the stability of the
closed-loop system.

Moreover, approaches based on similar mathematical
tools (orthogonal functions, wavelets, and polynomials)
used in this work have considered only the optimal control
problem of time-varying systems. To our best knowledge, the
decentralized scheme for LTV interconnected systems has
not been treated yet. One may refer to [12, 21] and references
therein that exhibit a review on orthogonal function ap-
proaches to solve the optimal control problem for time-
varying systems. It is clear that most techniques are based on
product operational matrices, and two formulations could
be distinguished:

(i) ,e Lagrange approach: Lagrange multipliers are
introduced, and then a parameter optimization
problem is formulated by giving the necessary
conditions for optimization. Resolution could be
done via a nonlinear optimization tool.

(ii) ,e Riccati approach: here, the state transition
matrix of the two-point boundary value problem
(TPBVP) should be identified by the mean of an
orthogonal basis that leads to multiple least-square
problems.

However, in most works in the literature, as it is the case
for the above described techniques, only open-loop optimal
solutions are given, which is an important limitation since
such control could not be efficiently implemented in
practice.

On the other side, several orthogonal function-based
contributions have been extensively proposed during the last
three decades for the analysis, identification, optimal con-
trol, and model reduction of linear [22, 23] and some classes
of nonlinear systems [24–27]. In the literature, there are
several orthogonal function bases dedicated to solve the
above cited problems arising in control theory. One may
refer to research activities based on Legendre polynomials
[22, 28], Chebyshev [12], Hermite polynomials [29], block
pulse [25], Walsh functions [30], or even hybrid of piecewise
and polynomials [31]. In our work, shifted Legendre poly-
nomials are chosen to develop time-variant systems and
manipulate related operational matrices, more specifically
the Kronecker product operational matrix, to solve the
posed optimal tracking problem.

In this paper, we aim to design a suboptimal decen-
tralized state feedback integral tracking control technique
applied for interconnected linear time-variant systems. ,is
approach consists in expanding all variables involved in the
considered dynamic subsystems over shifted Legendre basis.

It will be then possible to reduce the corresponding inter-
connected time-variant parameter differential equations into
some coupled time-independent algebraic equations. ,us,
computations become clearly more easier to be undertaken.
More precisely, the proposed approach is achieved by fol-
lowing the below 2 steps :

(1) Consider the global time-varying system and solve
the related optimal control problem with a direct
approach based on shifted Legendre polynomials.
,is permits to avoid the resolution of a high-order
TPBVP with time-varying parameters and allows to
obtain global state and control coefficients on the
basis by just finding a direct relation between the
coefficients and deducing the control from the
approached expression of the criterion.

(2) Once open-loop global state and control coefficients
are obtained, we inject each subsystem state and
control coefficients in the proposed decentralized
state feedback with an integral action equation. ,at
leads, by the mean of the integration operational
matrix of the basis, to an algebraic equation where
unknowns are only control gains. A formulated least-
square problem is then solved.

Finally, we will be interested to study the stability of the
overall system controlled with the proposed feedback action.
As a consequence, an augmented system is constructed and
LMI conditions are given, guaranteeing asymptotic stability
of the closed loop.

,is article is organized as follows: shifted Legendre
polynomial properties and problem formulation are pre-
sented in Section 2. Open-loop optimal control synthesis
and suboptimal state feedback integral control determina-
tion are given Section 3. Section 4 is reserved to the stability
analysis. A numerical simulated example based on coupled
inverted pendulums is provided in the Section 5, and it
highlights the achieved developments.

2. Preliminaries and Problem Statement

2.1. Legendre Polynomials. ,e Legendre polynomials are
orthogonal on the interval [− 1, 1], with a weight function
w(τ) � 1. ,e set of Legendre polynomials is obtained from
the formula of Olinde Rodrigues [23]:

ℓn(τ) �
1

2nn!

dn τ2 − 1( )n
dτn

. (1)

,is gives

ℓ0(τ) � 1,

ℓ1(τ) � τ,

ℓ2(τ) �
3τ2 − 1

2
.

(2)

,ese polynomials can also be obtained from the re-
cursive relationship [23]:
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(n + 1)ℓn+1(τ) �(2n + 1)τℓn(τ) − nℓn− 1(τ), (3)

with ℓ0(τ) � 1 and ℓ1(τ) � τ.

2.2. Shifted Legendre Polynomials. In order to obtain or-
thogonal Legendre polynomials over the time interval
[0, tf], which is more useful in control synthesis, we perform
the following change of variable:

τ �
2t

tf
− 1with 0≤ t≤ tf. (4)

,e recursive relationship (3) becomes [32]

(n + 1)sn+1(t) �(2n + 1)
2t

tf
− 1( )sn(t) − nsn− 1(t), (5)

where sn(t) denotes an elementary shifted Legendre poly-
nomial defined over 0≤ t≤ tf, in which s0(t) � 1 and
s1(t) � (2t/tf) − 1.

,e principle of orthogonality of the shifted Legendre
polynomials (SLPs) is expressed by the following equation
[33]:

∫tf
0
si(t)sj(t)dt �

tf

2i + 1
δij, (6)

where δij is the Kronecker symbol.

2.3.(eOperationalMatrix of Integration of Shifted Legendre
Polynomials. In the case of shifted Legendre polynomials,
the operational matrix of integration PN is defined as follows
[28]:

∫t
0
SN(τ)dτ � PNSN(t), (7)

where

PN �
tf

2

1 1 0 0 · · · 0 0 0

−
1

3
0

1

3
0 · · · 0 0 0

0 −
1

5
0

1

5
· · · 0 0 0

⋮ ⋮ ⋮ ⋮ · · · ⋮ ⋮ ⋮

0 0 0 0 · · · −
1

2N − 3
0

1

2N − 3

0 0 0 0 · · · 0 −
1

2N − 1
0





,

(8)
is an (N ×N) constant matrix and SN(t) �
[s0(t), s1(t), . . . , sN− 1(t)]

T denotes a shifted Legendre basis
of dimension N.

2.4. (e Integration of the Cross Product. ,e integration of
the cross product of two shifted Legendre polynomial
vectors can be obtained as [31]

Cp � ∫tf
0
SN(t)S

T
N(t)dt � tf

1 0 · · · 0

0
1

3
· · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · ·
1

2M − 1




, (9)

where Cp is an (N ×N) constant matrix.

2.5. Operational Matrix of the Kronecker Product. ,e
product of two shifted Legendre polynomials si(t) and sj(t)
can be expressed by [32]

si(t)sj(t) � ∑M− 1
k�0

ψijkLk(t), (10)

with

ψijk �
2k + 1

tf
∫tf
0
si(t)sj(t)sk(t)dt. (11)

,en, we may write

sj(t)SN(t) �

ψi00

ψi11

⋮
ψi(N− 1)(N− 1)


 � Ki

sSN(t), (12)

where Ki
s is an N ×N constant matrix, and then it becomes

SN(t)⊗SN(t) �

K0s

K1s

⋮
KN− 1
s


 � KSSN(t), (13)

where KS ∈ RN2×N is the Kronecker product operational
matrix of shifted Legendre polynomials.

2.6. Problem Statement. Consider the following optimal
control problem: find the optimal control u∗i (t), which
minimizes the following quadratic performance index:

J �
1

2
∑M
i

∫tf
t0

eTi (t)Qiei(t) + u
T
i (t)Riui(t)[ ]dt, (14)

where M is the number of interconnected subsystems and
ei(t) is the tracking error defined by

ei(t) � yi(t) − yri(t), (15)

with yi(t) ∈ Rpi being the output of the i-th subsystem and
yri(t) being the reference submodel output.
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Particularly, in this framework, we consider a global LTV
system (S) consisting ofM interconnected subsystems (Si)
described by the following state equation:

Si( ) _xi(t) � Ai(t)xi(t) + Bi(t)ui(t) + ∑M
j�1
j≠ i

Hij(t)xj(t),

yi(t) � Cixi(t),


(16)

where xi(t) ∈ Rni , ui(t) ∈ Rmi , and yi(t) ∈ Rpi are, re-
spectively, the state vector, the control vector, and the output
vector of the subsystem (Si) and Ai(t) � [aij(t)],
Bi(t) � [bij(t)], and Ci andHij(t) � [hij(t)] are some time-
dependent matrices characterising the subsystem (Si) with
respective dimensions (ni × ni), (ni ×mi), (pi × ni), and
(ni × nj).

We assume that each subsystem is assumed to be fully
measurable and controllable, and its matrices have the
following bounds:

A≤ aij(t)≤A,
B≤ bij(t)≤B,
H≤ hij(t)≤H,

(17)

where notations Λ and Λ correspond, respectively, to the
minimum and maximum of a time-dependent variable
λij(t).

,e linear time-invariant reference models to be used in
this study are obviously stable and encompass all desired
performances to be conferred to the controlled subsystems.
,ese LTI models are described by the following state
equations:

_xri(t) � Eixri(t) + Firi(t),

yri(t) � Gixri(t),
{ (18)

where xri(t) ∈ Rñri is the state vector of the i-th reference
submodel, ri(t) ∈ Rm̃ri is a nonconstant input, and
yri(t) ∈ Rpri its output vector generating, hence, a path to be
tracked and Ei, Fi, and Gi are the chosen matrices char-
acterising the reference model with respective dimensions
(ñri × ñri), (ñri ×mri), and (pri × ñri).

In the sequel, we will be concerned with the synthesis of
state feedback integral suboptimal controllers of the fol-
lowing form:

ui(t) � Niri(t) +Kixi(t) + Li ∫t
0
yi(τ) − ri(τ)( )dτ, (19)

which are aimed to make each subsystem outputs track
nonconstant inputs with respect to the corresponding ref-
erence submodel dynamics.

3. Optimal Tracking Control Synthesis

3.1. Criterion Approximation. A global criterion to be
minimised could be defined as follows:

J �
1

2
∫tf
0
eT(t)Qe(t) + uT(t)Ru(t)( )dt, (20)

where e(t) ∈ Rp and u(t) ∈ Rm denote the global system
tracking error and the control input, respectively. Notice
that this criterion is associated to the global system (S):

_x(t) � Ag(t)x(t) + Bg(t)u(t),

y(t) � Cgx(t),

 (21)

where global system matrices Ag(t) ∈ Rn×n, Bg(t) ∈ Rm×m,
and Cg ∈ Rp×p are given by

Ag(t) � diag Ai(t)( ) +H, withH � Hij[ ], Hii � 0,

∀i, j � 1, . . . ,M,
Bg(t) � diag Bi(t)( ),
Cg � diag Ci( ).

(22)

Applying the vec operator and related Kronecker
product property [34] yields

vec(e(t)) ≈ SN(t)
T
(t)⊗ Ip( )vec eTN( ),

vec(u(t)) ≈ SN(t)
T
(t)⊗ Im( )vec uTN( ), (23)

where Ip and Im are, respectively, the (p × p) and (m ×m)
identity matrices and eTN and u

T
N are the coefficients obtained

by developing, respectively, the error and the control input
over the shifted Legendre basis.

With this approximation, the globalization of equation
(2) gives

vec eTN( ) ≈ IN ⊗Cg( )vec xTN( ) − vec yTrN( ), (24)

where xTN and yTrN are the coefficients obtained by devel-
oping, respectively, the global system state and the global
reference model output over the shifted Legendre basis.

Let us denote

zx � vec x
T
N( ),

zu � vec u
T
N( ),

ΥN � vec yTrN( ),
ΓN � vec rTN( ).

(25)

Exploiting the vec property (see Appendix), the global
criterion to be minimised is expressed as follows:

J ≈ zTx IN ⊗C
T
g( ) − ΥTN[ ]Q̃ IN ⊗Cg( )zx − ΥN[ ] + zTu R̃zu,

(26)
where Q̃ � (Cp ⊗Q) and R̃ � (CP ⊗R) with Cp the cross
product matrix presented in the previous section.

,e expression of ΥN in (26) depends on ΓN and will be
replaced by the following relation:

ΥN � IN ⊗G( ) InN − PTN ⊗E( ) PTN ⊗F( )ΓN, (27)

where matrices E � diag(Ei), F � diag(Fi), and G � diag
(Gi) define the global reference model.
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3.2. Dynamic Constraint Expansion over the Orthogonal
Basis. ,e development of time-dependent matrices in (21),
over shifted Legendre basis, yields

Ag(t) ≈ ∑N− 1
k�0

Agksk(t) ��

s0(t) · In 0

s1(t) · In

⋱
0 sN− 1(t) · In




︸����������������︷︷����������������︸
S
T
N(t)⊗ In

.

Ag0

· · ·

Ag1

· · ·

⋮
· · ·

AgN− 1




� S

T
N(t)⊗ In( ) · Ãg, (28)

where Agk∈ n×n and Ãg∈nN×n.
Similarly, one may state

Bg(t) ≈ S
T
N(t)⊗ In( )B̃g. (29)

Now, the system expansion over the SLP base is given by

xTNSN(t) − x
T
N0SN(t) � S

T
N(t)⊗ In( )ÃgxTNPNSN(t)

+ S
T
N(t)⊗ In( )B̃guTNPNSN(t),

(30)
with xTN0 being the initial state projection over the con-
sidered basis.

Applying the vec operator to (30) gives

S
T
N(t)⊗ In( )zx − S

T
N(t)⊗ Ini( )zx0

� S
T
N(t)PN( )⊗ S

T
N(t)⊗ Ini( )Ãg[ ]zx

+ S
T
N(t)PN( )⊗ S

T
N(t)⊗ Im( )B̃g[ ]zu.

(31)

Notice that

S
T
N(t)PN( )⊗ S

T
N(t)⊗ In( )Ãg

� SN(t)⊗SN(t)⊗ In( ) PTN ⊗ Ãg( )
� SN(t)⊗ In( ) KT

S
⊗ In( ) PTN ⊗ Ãg( ).

(32)

Hence, (31) becomes

zx � Vzu +Wzx0, (33)

where

W � In − KT
S
⊗ In( ) PTN ⊗ Ãg( )( )− 1,

V �W · KT
S
⊗ Im( ) PTN ⊗ B̃g( ). (34)

3.3. Optimal Open-Loop Control. Substituting (33) in (26)
and setting the optimization condition zJ/zu � 0 yield the
following optimal control:

z∗u � − (Q̂V + R̃)
− 1 zTx0W

TQ̂V + YTNQ̃CgV( ), (35)

where Q̂ � CTgQ̃Cg.
Finally, the optimal state coefficient z∗x could be also

recovered by injecting (35) in (33).

3.4. Suboptimal State Feedback Integral Synthesis. We are
interested now, based on open-loop optimal results (z∗u , z

∗
x ),

to synthesize a suboptimal control of type (19).
It is possible now to capture, for each subsystem, optimal

state x∗TiN and input u∗TiN coefficients from the optimal global
system ones.

On the other hand, expansion of the decentralized state
feedback integral control over SLP basis yields

uTiNSN(t) � Nir
T
iNSN(t) +Kix

T
iN

+ Li y
T
iN − y

T
riN( )PNSN(t).

(36)

Simplifying the basis and applying the vec operator with
optimal coefficients, the synthesis of control parameters
could be done by solving the following least-square problem:

A · Δ �B, (37)

with

A � diag rTiN ⊗ Imi
⋮x∗TiN ⊗ Imi

⋮ Cix
∗T
iN PN − r

T
iNPN( )T ⊗ Imi

[ ]( ),

B �

z∗u1

z∗u2

⋮
z∗uM


,

(38)
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where z∗ui � vec(u
∗T
iN ) and

Δ �

vec N1( )
vec K1( )
vec L1( )
· · ·

vec N2( )
vec K2( )
vec L2( )
· · ·

⋮
· · ·

vec NM( )
vec KM( )
vec LM( )





. (39)

4. Closed-Loop Stability Analysis

Consider the following augmented state space submodel:

_xi(t)

_xai(t)
[ ] � Ai(t) 0

Ci 0
[ ] xi(t)

xai(t)
[ ] + Bi(t)

0
[ ]ui(t)

+
0

− 1
[ ]ri(t),

(40)

where xai � ∫t0(yi(τ) − ri(τ))dτ. Hence, each controlled
subsystems with input (19) may be written as

_Xi(t) � Ai(t)Xi(t) + Bi(t)ri(t), (41)

where Xi(t) �
xi(t)
xai(t)

[ ] is the augmented state for each
subsystem and

Ai(t) �
Ai(t) + Bi(t)Ki Bi(t)Li

Ci 0
[ ],

Bi(t) �
Bi(t)Ni

− 1
 .

(42)

,e closed-loop global system may be constructed as
follows:

_Xg(t) � Acl(t)Xg(t) + Bcl(t)r(t), (43)

where Acl � diag(Ai(t)) and Bcl � diag(Bi(t)), for
i � 1, . . . ,M.

As a consequence, the linear time-varying model defined
by equation (43) can be expressed in the following polytopic
form such as M � [Acl ∣ Bcl] belongs to a polytope of ma-
trices M defined by [35]

M � M �M(θ) � �Acl θ �Bcl
∣∣∣∣ ( θ)( )[ ]/M(θ)

�∑q
i�1

θi Acli Bcli
∣∣∣∣[ ]( ),

(44)

where θ ∈ Θ, the set of all barycentric coordinates:

Θ � θ �

θ1

θ2

⋮
θq


/∑

q

i�1

θi � 1




. (45)

,e closed-loop system (43) is a mean square asymp-
totically stable with an H∞ disturbance attenuation c if and
only if there exists a positive definite matrix
P ∈ R(n+M)×(n+M) such that [36]

A
T

cliP + PAcli PBcli CTg

BcliP − cIm 0

Cg 0 − Ip


< 0, ∀i � 1, . . . ,M. (46)

5. Application to Coupled Inverted Pendulums

,e considered benchmark [1, 37] consists of two identical
pendulums which are coupled through a moving spring
and move in a plane (Figure 1). We assume that the
pivot position of the moving spring is a function of time
a(t) which can change along the full length l of the
pendulums.

,e objective of the decentralized controller is to
control each pendulum with mass m independently, such
that each pendulum will follow its own desired (reference)
trajectory, while the connected spring is moving.
,e linearized dynamic equations of the two pendulum
systems (for small displacements about the equilibrium)
are

_x1 �

0 1

g

l
−
ka(t)2

ml2
0


x1 +

0

1

ml2


u1 +

0 0

ka(t)2

ml2
0


x2,

_x2 �

0 1

g

l
−
ka(t)2

ml2
0


x2 +

0

1

ml2


u1 +

0 0

ka(t)2

ml2
0


x1,

(47)

where x1 � [θ1, θ1
·

]T and x2 � [θ2, θ2
·

]T, k and g are the
spring and gravity constants, and u1 and u2 are the torque
inputs applied at the pivot points.

It is clear that a(t) ∈ [0, l], then we know that the dis-
placement of the pendulums and the connected spring is
bounded, so the constant bounds of matrices characterising
the two subsystems can be obtained.
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u1
u2

θ1 θ2

m
m

k

a

l

Figure 1: Two interconnected inverted pendulums.
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Figure 2: Optimal and suboptimal state trajectories of subsystem 1.
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Figure 3: Optimal and suboptimal state trajectories of subsystem 2.

Mathematical Problems in Engineering 7



For simulations, we set the time-varying function a(t) �
(l/2)(1 + sin(ωt)) and choose g/l � 1, 1/ml2 � 1, and let
kl2/4 � 25 and ω � π.

,e reference model (18) for each pendulum is chosen as

E1,2 �
0 1

− 1 − 2
[ ],

F1,2 �
0

1
[ ],

G1,2 � 1 0[ ].
(48)

,e reference trajectories used in simulation were
chosen as

r1(t) � 1 + sin(t) + sin(2t),

r2(t) � 1 + cos(t) + cos(2t).
(49)

Optimal open-loop trajectories for both subsystems 1
and 2 are depicted, respectively, in Figures 2 and 3. Optimal
tracking results are obtained for the horizon time tf � 20
and N � 26 which is the shifted Legendre basis dimension.
,e tracking is ensured by minimising the quadratic cri-
terion with Q1,2 � diag(10

3) and R1,2 � 1.
,e feedback approach applied to the interconnected

pendulums leads to the following decentralized state feed-
back integral actions:

–5

–4

–3

–2

–1

0

1

2

3

4

5

Optimal control

State feedback integral action

0 2 4 6 8 10 12 14 16 18 20

Figure 4: Optimal and suboptimal control signals of subsystem 1.
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Figure 5: Optimal and suboptimal control signals of subsystem 2.
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N1 � 0.274,

K1 �[− 7.2635 − 3.6248],

L1 � − 2.9728,

N2 � 1.7476,

K2 �[− 8.3477 − 4.8091],

L2 � − 3.4561.

(50)

Closed loop for both subsystems is also given in Figures 2
and 3. It is then clear that controlled states reproduce the
shape of the optimal ones.

State feedback integral actions compared to optimal
open-loop inputs are drawn in Figures 4 and 5. It appears
that both optimal and suboptimal signals are in the same
variation range.

,e asymptotic stability with an H∞ disturbance at-
tenuation of the closed-loop system is verified by the feasible
solution of the formulated LMI. ,e obtained LMI variables
are

P �

2.9401 0.4237 0.7387 − 0.9920 − 0.1118 − 0.2182

0.4237 0.3752 0.2994 0.1285 − 0.0110 − 0.0081

0.7387 0.2994 2.6532 − 0.4524 − 0.0103 − 0.7878

− 0.9920 0.1285 − 0.4524 3.8961 0.6411 0.9556

− 0.1118 − 0.0110 − 0.0103 0.6411 0.4731 0.3503

− 0.2182 − 0.0081 − 0.7878 0.9556 0.3503 3.1039




,

c � 0.3058.

(51)

6. Conclusion

In this paper, a new suboptimal decentralized control
technique is designed by using orthogonal functions as an
interesting tool of dynamical system approximation, more
specifically shifted Legendre polynomials with operational
matrices of integration and Kronecker product are exploited.

,e main advantage of the proposed technique is its
applicability to the class of time-varying interconnected
systems. Hence, the suboptimal decentralized state feedback
integral controller parameters are adjusted such that each
subsystem has a specific desired performance of a chosen
reference model by solving a time-independent least-square
problem.

In the future work, we intend to extend the actual study
to the synthesis of the optimal tracking control for inter-
connected nonlinear time-varying systems.

Appendix

Kronecker Product and vec(.)
Function Property

For anymatricesX, Y, and Z having appropriate dimensions,
the following property of the Kronecker product is given
[34]:

vec(XYZ) � ZT ⊗X( )vec(Y), (A.1)

where vec denotes the vectorization operator of a matrix [34]
and ⊗ stands for the Kronecker product.

Let A, B, C, and D be matrices with appropriate di-
mensions, and we recall the following property [34]:

(A⊗B)(C⊗D) � AC⊗BD. (A.2)

Data Availability

System parameters used for simulation in the paper are given
in the manuscript.
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