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Abstract

In this paper, a distributed controller-observer schema for tracking control of
the centroid and of the relative formation of a multi-robot system with first-order
dynamics is presented. Each robot of the team uses a distributed observer to es-
timate the overall system state and a motion control strategy for tracking control
of time-varying centroid and formation. Proof of the overall convergence of the
observer-controller schema for different kinds of connection topologies, as well as
for the cases of unsaturated and saturated control inputs is presented. In particu-
lar, the solution is proven to work in the case of strongly connected topologies, in the
case of non-switching topologies, and with balanced strongly connected topologies,
in the case of switching topologies. In order to complete the work, the approach is
validated by experimental tests with a team of five wheeled mobile robots.

Keywords: Networked Robots, Distributed Robot Systems, Autonomous Agents, Dis-
tributed Estimation and Control

1 Introduction

Multi-Robot Systems (MRSs) have been widely investigated in the recent years due
their appealing characteristics in term of flexibility, redundancy, fault tolerance, and to
the possibility they offer to use distributed sensing and actuation. Nowadays, a large
literature on MRSs exists and covers aspects like system architecture, task allocation,
team heterogeneity, and communication (e.g., see [39] and reference therein).

Most recent approaches for MRS’s control mainly focus on distributed or decen-
tralized techniques for networked robots, that are MRSs where each robot has limited
sensing and communication ranges and it can only use data from its onboard sensors or
information received from its direct neighbours. In this case, the main control problem
concerns how to move the single robots using only local information and in order to
achieve global tasks that may depend on the overall system configuration.
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Decentralized algorithms for networked robots cover control and communication
problems such as, for example, controlling the MRS centroid, variance, and orien-
tation [8], cooperative reconfiguration in response to a sensed, distributed environ-
ment [27], flocking in presence of switching communication topologies [47], formation
control via communication and coordination [20], and rendezvous and formation control
while keeping connectivity [31]. A wide overview on networked robots can be found
in [33] or in the recent books [12, 22].

Dealing with networked (static or mobile) systems pose the problem of how to reach
an agreement regarding a variable, either exogenous or depending on the state of single
agents; such problem, known as consensus problem, has been recently investigated by
a wide number of researchers. Recent studies are summarized in the books [36, 43],
while in reference [37] and [44] the consensus algorithms are investigated with emphasis
on robustness, time-delays and performance bounds. The work in [30] deals with the
stability analysis of several decentralized strategies to achieve emergent behaviors as
moving in the same direction despite the absence of centralized coordination. A non-
linear stationary consensus protocol for fixed topologies is presented in [7], and further
extended in [16] for a more general class of consensus functions. However, the final
value of the consensus variable is function of the initial conditions and tracking of an
external reference signal not possible. The work in [35] introduces a unified framework
to address the consensus of multi-agent systems and the synchronization of complex
networks, and it presents a distributed observer-type consensus protocol where each
agent uses a local observer to estimate its state. The above cited papers mainly focus on
stationary consensus problems, where the consensus must be reached on a given function
of the initial states of the robots or on a given exogenous variable. On the other hand,
in many application fields the mission of a multi-robot system is usually expressed as a
time-varying/configuration dependent goal function (often termed collective behavior),
e.g., describing the location and shape of a robotic team. The problem of tracking a
time-varying reference state for each robot has been deeply investigated in [41, 43, 44],
where the reference state is assumed to be known by only a subset of robots and the
neighboring robots are required to exchange the derivative of the state. However, each
robot is required to exchange its control input with its neighbors; in order to avoid this
algebraic loop, in [42] the velocity is estimated numerically and in [13] the dynamic
consensus problem is solved via a variable structure controller. In the above mentioned
papers, the problem of tracking an assigned collective (i.e., depending on the state of all
the agents in the system) behavior is not explicitly tackled.

A notable attempt to design local control laws aimed at achieving a given collective
behavior of a multi-robot team can be found in [21] and [48]; noticeably, the approach
uses a distributed estimator of the actual collective behavior function, which is based on
the dynamic average consensus protocol proposed in [46]. In particular, the work in [46]
is focused on average consensus for estimation purposes: namely, the state of each robot
tracks the average value of N time-varying exogenous signals characterized by specific
features. However, asymptotic tracking is not guaranteed unless the goal is constant or
has poles in the left half plane.

Decentralized estimation and control have been also investigated in [45] in the frame-
work of linear state feedback control, although the problem of tracking a given collective
behavior is not addressed; moreover, the solution is based on standard linear observer
tools, and thus the results are valid only for linear plants and controllers. Fixed topolo-
gies are considered and experiments are not provided. Distributed state estimation via a
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Kalman filtering approach is presented in [14]. In [9], a hierarchical model predictive con-
trol approach for stabilization and autonomous navigation of a formation of unmanned
aerial vehicles is proposed; the approach makes use of the leader-follower paradigm:
one of the vehicles (the leader) tracks a desired target position, and all the others (the
followers) track a desired constant relative distance from it. In [40], a leader-follower
scheme has been used as well; in this case the control scheme requires to measure both
the position and the velocity of the neighboring vehicles. The trajectory of the leader
is assigned and each robot achieves a time-varying relative position with respect to the
robot ahead. Another leader-follower approach is presented in [25]. Each follower is
required to measure its relative position with respect to its leader vehicle. Starting from
the desired formation, the relative position between consecutive vehicles is univocally
determined and, then, achieved. Thus, the overall behaviour of the team emerges from
simple local rules and more complex collective behaviours are hardly achievable; the
approach is validated via numerical simulations. A solution to the formation control
problem for a team of non-holonomic robots has been presented in [18], where only
the case of a time-invariant formation is considered and the approach is validated via
numerical simulations. Formation control problem is solved also in [26]. The proposed
solution is a consensus like approach that allows to obtain only static formations. In ad-
dition, the centroid is not controlled but only the conditions on the connectivity graphs
that allow a stationary centroid are identified. Also in this case, the approach is vali-
dated via numerical simulations. In [19], the problem of cooperatively converging to
some stationary point, as well as that of cooperatively tracking a target point which
moves along a desired trajectory, is considered for the case of non-holonomic vehicles,
but tracking of a geometric formation is not considered; moreover, the solution does not
take into account task functions depending on the overall team state, the connectivity
graph is fixed, and bounds on the control input are not considered. In [29], a scalable
approach is proposed, that allows a swarm of robots to move as a group inside a dy-
namic region that can rotate or scale to enable the robots to adjust the formation. The
problem of formation control of a team of vehicles is tackled in [34], where the direct
relationship between the rate of convergence to formation and the eigenvalues of the
(directed) Laplacian of the connectivity graph is found; in this paper static formations
are analyzed, the results seem do not extend to more complex tasks and only simulative
analysis is provided. Most of the above mentioned papers tackle only the formation
control problem, while centroid tracking is not considered. However, centroid tracking
might be important in several application scenarios (e.g., escorting tasks, entrapmment,
flocking, etc.).

Finally, it is worth remarking the work on spatially distributed gradients of collective
objective functions presented in [15, 17]. In these works, aggregate cost functions to
be minimized are properly defined and results in distributed control laws. The solved
problem is different from the one faced in this paper in that only aggregate task functions
can be considered and tracking is not possible.

This paper focuses on a distributed controller-observer schema for tracking control of
centroid and formation of a multi-robot system with first-order dynamics. The common
idea is that each robot estimates the collective state of the system via a local observer;
the estimated value is used in a proper controller in charge of tracking the assigned task
functions.

The use of an observer-controller scheme and the availability of a reliable estimate
of the whole system’s state provides some important advantages with respect to other
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approaches:

• it represents a bridge towards the extension to a class of more general collective
behavior functions, where the centroid and the formation task are two examples.
Indeed, our current research is focused on these promising extensions;

• since each agent can build a reliable image of the whole state of the team, addi-
tional important functions can be added to the control systems such as, e.g., fault
diagnosis and connectivity control;

• estimation of the whole state allows to obtain a quite strong (i.e., exponential, in
the unsaturated case) convergence result, thus ensuring good robustness properties
of the closed-loop system.

Moreover, the same observer works for strongly connected fixed directed topologies,
strongly connected balanced switching topologies, non-saturated and saturated control
laws. Differently from other approach, this makes the designed solution useful in different
real scenarios, where limits of the single robotic units should be considered (e.g., non-
linear behaviour of the actuators) and environment changes could occur.

The paper builds on the results of [2, 5], where tracking of the sole weighted centroid
has been achieved by resorting to a distributed controller. Here, tracking an assigned
the time-varying relative formation, in addition to the centroid, is achieved; thus, more
than one collective functions of all robots’ states is considered. Specifically, with respect
to [5], the following novelties are introduced:

• we consider the simultaneous tracking control of both centroid and relative forma-
tion;

• convergence of both estimation and tracking errors is analytically proven in differ-
ent cases, i.e.: in the presence of bounded/unbounded control inputs (this proof
is not provided in [5]) and in the case of strongly connected and, then, undirected
topologies (extending the work in [5] to the case of unbalanced directed graphs);

• experimental validation on a real setup with five mobile robots is provided. Specif-
ically, a distributed multi-robot system composed of five Khepera III mobile robots
communicating via ad-hoc network has been adopted; the MRS has been success-
fully commanded to perform a time-varying centroid and formation control mis-
sion, in the case of saturated/unsaturated control inputs and using a switching
direct communication topology.

Preliminarily results on the centroid and formation control problem have been pre-
sented in [3] and in [4]; with respect to the latter papers, a more detailed theoretical
analysis and a wider experimental campaign are presented in this paper.

2 Background

Consider a system composed of N robots, where the ith robot’s state is denoted by
xi ∈ IRn. Each robot is characterized by a single-integrator dynamics

ẋi = ui, (1)
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where ui ∈ IRn. The collective state is given by x =
[
xT
1 . . . xT

N

]T ∈ IRNn and the
collective dynamics is then expressed as

ẋ = u, (2)

where u =
[
uT
1 . . . uT

N

]T ∈ IRNn is the collective input vector.
The information exchange between the robots is described by a graph G(E ,V) charac-

terized by its topology [20],[23],[38], i.e., the set V of the indexes labeling the N vertices
(nodes), the set of edges (arcs) E = V × V connecting the nodes, and the (N × N)
Adjacency matrix,

A = {aij} : aii = 0, aij =

{
1 if (j, i) ∈ E
0 otherwise.

whose element aij is different form zero if the node j th can send information to node
i th. In place of the Adjacency matrix, the (N ×N) Laplacian matrix defined as

L = {lij} : lii =
N∑

j=1,j 6=i

aij , lij = −aij, i 6= j

is commonly used. Moreover, we assume that the i th robot receives information only
from a reduced set of nodes (called its neighbors) Ni = {j ∈ V : (j, i) ∈ E}, and it does
not know the topology of the overall communication graph. Some useful properties and
definitions about the communication graphs are reported in the Appendix B.

2.1 Control objective

The control objective is to make the team centroid and the relative formation follow
desired time-varying references. To this aim, the two tasks are represented via the task
functions:

• the centroid of the system:

σ1(x) =
1

N

N∑

i=1

xi = J1x, (3)

where J1 ∈ IRn×Nn is the Jacobian of the task, such that σ̇1 = J1ẋ,

J1 =
1

N

(
1TN ⊗ In

)
, (4)

and In is the (n× n) identity matrix.

• the formation of the system, expressed as an assigned set of relative displacement
between the robots:

σ2(x)=
[
(x2−x1)

T (x3−x2)
T. . . (xN−xN−1)

T
]T

= J2x, (5)

where J2 ∈ IR(N−1)n×Nn is the Jacobian of the task, such that σ̇2 = J2ẋ,

J2 =




−In In On · · · On On

On −In In · · · On On

...
...

...
...

...
...

On On On · · · −In In


 , (6)

where On is the (n× n) null matrix.
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The Pseudo-inverses , J †
1 and J

†
2, of the above Jacobian matrices are reported in

Appendix C.
The main goals of the subsequent developments are:

• to design, for each robot, a state observer providing an estimate, ix̂ ∈ IRNn,
asymptotically convergent to the collective state, x, as t → ∞;

• to design, for each robot, a feedback control law, ui = ui(t,
ix̂), such that σ1(x)

and σ2(x) asymptotically converges, respectively, to σ1,d(t) and σ2,d(t), as t → ∞.

Both the observer and the controller for each robot can only use local information,
i.e., the state and input of the robot itself, and information received from its neighboring
robots, Ni. Moreover, it is assumed that each robot knows in advance the desired values
of the task functions and of their first time derivatives.

3 State observer

Let Γ i be the (n×Nn) matrix

Γ i =
[
On · · · In︸︷︷︸

i th node

· · · On

]
. (7)

and Πi be the (Nn×Nn) matrix Π i = Γ T
i Γ i. The following equality holds

∑N
i=1 Π i =

INn.
The estimate of the collective state is computed by the i th robot (i = 1, . . . , N) via

the observer

i ˙̂x = ko



∑

j∈Ni

(
jx̂− ix̂

)
+Π i

(
x− ix̂

)

+ iû(t, ix̂), (8)

where ko > 0 is a scalar gain to be properly selected and

iû(t, ix̂) =




u1(t,
ix̂)

u2(t,
ix̂)

...
uN (t, ix̂)


 ∈ IRNn (9)

represents the estimate of the collective input available to the i th robot. The exact
expression for iû(t, ix̂) will be detailed in the remainder depending on the specific control
law. Notice that, to implement the observer (8), the robot uses only local information
since Π i selects only the i th component of the collective state x, i.e., the robot’s own
state. In addition, exchange of the neighbors estimates is required.

For the sake of notation compactness, the state estimates can be stacked into the

vector, x̂⋆ =
[
1x̂T . . . N x̂T

]T ∈ IRN2n; thus, a stacked vector of estimation errors can
be defined as well

x̃⋆ =




1x̃
2x̃
...

N x̃


 =




x− 1x̂

x− 2x̂
...

x− N x̂


 = 1N ⊗ x− x̂⋆, (10)

where the symbol ⊗ represents the Kronecker product.
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The collective estimation dynamics is given by

˙̂x⋆ = −koL
⋆x̂⋆ + koΠ

⋆x̃⋆ + û⋆, (11)

where
L⋆ = L⊗ INn, Π⋆ = diag

{[
Π1 . . . ΠN

]}
(12)

and

û⋆(t, x̂⋆) =




1û(t, 1x̂)
2û(t, 2x̂)

...
N û(t,N x̂)


 ∈ IRN2n. (13)

4 Decentralized control law: non-saturated case

In a centralized architecture, a solution to the problem could be achieved via the cen-
tralized control law

ucent(t,x) = u1,cent(t,x) + u2,cent(t,x), (14)

where (l = 1, 2) and the subscript cent stands for centralized.

ul,cent(t,x) = J
†
l (σ̇l,d(t) + kl,c (σl,d(t)− σl(x))) , (15)

kl,c > 0 are scalar gains and J
†
l = JT

l

(
J lJ

T
l

)−1
represent the pseudo-inverses of the

Jacobian matrices J l.
It can be noticed that, based on equations (52) and (53), J1J

T
2 = (J2J

T
1 )

T =
On×(N−1)n, where Op×q denotes the (p× q) null matrix; hence

J1J
†
2 = On×(N−1)n, J2J

†
1 = O(N−1)n×n. (16)

Equation (16) represents a condition of compatibility (orthogonality) of the two tasks
[1]. Indeed, thanks to such a condition, the tracking error dynamics for both the tasks
is given by (l = 1, 2)

˙̃σl = −kl,cσ̃l, (17)

which ensures exponential convergence to zero of the tracking errors, σ̃l = σl,d − σl.
In the case of decentralized architecture, along the line of the centralized control law

in eq. (14),(15) and equalities (47),(48) in the Appendix C, the control input of the i th
robot can be computed using the estimate of the system state according to the following
control law:

ui(t,
ix̂) = ui,1(t,

ix̂) + ui,2(t,
ix̂), (18)

with
ui,1(t,

ix̂) = σ̇1,d(t) + k1,c
(
σ1,d(t)− σ1(

ix̂)
)
, (19)

and
ui,2(t,

ix̂)=J
†
2,i

(
σ̇2,d(t)+ k2,c

(
σ2,d(t)−σ2(

ix̂)
))

, (20)

where kl,c > 0 (l = 1, 2) are scalar gains to be selected.
The input estimate in eq. (9), used by the observer in eq. (8), becomes (j = 1, . . . , N)

uj(t,
ix̂) = σ̇1,d+k1,c

(
σ1,d − J1

ix̂
)
+J

†
2,j

(
σ̇2,d + k2,c

(
σ2,d − σ2(

ix̂)
))
, (21)
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where J
†
2,j comes from a block partition of J†

2 and can be computed via eq. (49)–(51)
in the Appendix C.

Stability properties of the overall controller-observer scheme, in the case of fixed
topology of the communication graph, are determined by the following theorem:

Theorem 1 If the communication graph is directed, strongly connected and has fixed
topology, for any choice of the controller gains, kc,1 and kc,2, there exists a choice of the
observer gain, ko, such that the state estimation error, x̃⋆ = 1N ⊗ x− x̂⋆, and the task
tracking errors, σ̃1, σ̃2, are globally exponentially convergent to 0N2n, 0n and 0(N−1)n,
respectively.

Proof 1 The dynamics of the state estimation error x̃⋆ = 1N ⊗ x− x̂⋆ and of the task
tracking errors σ̃1 = σ1,d − σ1(x), σ̃2 = σ2,d − σ2(x), will be derived first.

Since (L⊗ INn) (1N ⊗ x) = L1N⊗x and L1N = 0N , the estimation error dynamics
can be derived from (2) and (10) as

˙̃x⋆ = koL̃x̃
⋆ + 1N ⊗ u− û⋆. (22)

where L̃ = − (L⋆ +Π⋆) is Hurwitz for strongly connected graphs, as shown in Appendix
E.

By taking into account eq. (1),(3),(4) and (18)–(20), the following equalities hold

˙̃σ1 = σ̇1,d −
1

N

N∑

i=1

ẋi = σ̇1,d −
1

N

N∑

i=1

ui(t,
ix̂)

= σ̇1,d −
1

N

N∑

i=1

(
σ̇1,d + k1,c

(
σ1,d − σ1(

ix̂)
))

− 1

N

N∑

i=1

J
†
2,i

(
σ̇2,d + k2,c

(
σ2,d − σ2(

ix̂)
))

. (23)

The above equality can be further elaborated by adding and subtracting σ1(x) and using
eq. (52) in Appendix C

˙̃σ1=−
k1,c
N

N∑

i=1

(
σ1,d − σ1(

ix̂)
)
+
k2,c
N

N∑

i=1

J
†
2,iσ2(

ix̂)

=−k1,cσ̃1 −
k1,c
N

N∑

i=1

(
σ1(x)− σ1(

ix̂)
)
− k2,c

N

N∑

i=1

J
†
2,i

(
σ2(x)− σ2(

ix̂)
)

=−k1,cσ̃1−
k1,c
N

N∑

i=1

J1
ix̃− k2,c

N

N∑

i=1

J
†
2,iJ2

ix̃.

Hence, the tracking error dynamics for the first task is given by

˙̃σ1 = −k1,cσ̃1 −Kσ1x̃
⋆, (24)

where

Kσ1 =
1

N

[
k1,cJ1 + k2,cJ

†
2,1J2 . . . k1,cJ1 + k2,cJ

†
2,NJ2

]
.
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As for the error dynamics of the second task, the following chain of equalities can be
devised

˙̃σ2=σ̇2,d − J2ẋ = σ̇2,d − J2

N∑

i=1

Γ T
i ui

=σ̇2,d − J2

N∑

i=1

ΓT
i

(
σ̇1,d + k1,c

(
σ1,d − σ1(

ix̂)
))

− J2

N∑

i=1

ΓT
i J

†
2,i

(
σ̇2,d + k2,c

(
σ2,d − σ2(

ix̂)
))

.

By exploiting eq. (53) and (54) in Appendix C and by adding and subtracting σ1(x) and
σ2(x) to σ1(

ix̂) and σ2(
ix̂), respectively, the following chain of equalities is obtained

˙̃σ2=−k1,cJ2

N∑

i=1

ΓT
i

(
σ1,d − σ1(

ix̂)
)
− k2,cJ2

N∑

i=1

ΓT
i J

†
2,i

(
σ2,d − σ2(

ix̂)
)

=−k2,cσ̃2−k2,cJ2

N∑

i=1

ΓT
i J

†
2,iJ2

ix̃−k1,cJ2

N∑

i=1

ΓT
i J1

ix̃.

Hence, the tracking error dynamics for the first task is given by

˙̃σ2 = −k2,cσ̃2 −Kσ2x̃
⋆, (25)

where
Kσ2 = J2

[
Γ1(k1,cJ1+k2,cJ

†
2,1J2) . . . ΓN (k1,cJ1 + k2,cJ

†
2,NJ2)

]
.

In the following, exponential convergence of the state estimation error, x̃⋆, is first
proven; then, convergence of the task tracking errors, σ̃1 and σ̃2, is investigated.

The estimation error dynamics in eq. (22) can be seen as the exponentially stable
linear dynamics

˙̃x⋆ = koL̃x̃
⋆,

perturbed by the term 1N⊗u− û⋆. Based on equations (18)-(21), the perturbation term
‖1N⊗u−û⋆‖ can be upper bounded as follows

‖1N⊗u−û⋆‖ ≤
N∑

i=1

N∑

j=1

∥∥uj(
jx̂)− uj(

ix̂)
∥∥

≤
N∑

i=1

N∑

j=1

∥∥(uj,1(
jx̂)−uj,1(

ix̂)
)∥∥+

N∑

i=1

N∑

j=1

∥∥(uj,2(
jx̂)− uj,2(

ix̂)
)∥∥

=

N∑

i=1

N∑

j=1

k1,c
∥∥J1

(
ix̂− jx̂

)∥∥+
N∑

i=1

N∑

j=1

k2,c

∥∥∥J†
2,jJ2

(
ix̂− jx̂

)∥∥∥ ,

where the 2-norm has been used for vectors and matrices. By using inequalities (55) and
(56) in Appendix C, a constant upper bound can be obtained

‖1N⊗u−û⋆‖≤
(√

Nk1,c + k2,c

) N∑

i=1

N∑

j=1

∥∥ix̃− jx̃
∥∥
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≤
(√

Nk1,c + k2,c

) N∑

i=1

N∑

j=1

(∥∥ix̃
∥∥+

∥∥jx̃
∥∥)

=2N2
(√

Nk1,c + k2,c

)
‖x̃⋆‖ .

In sum
‖1N⊗u−û⋆‖ ≤ 2N2kc ‖x̃⋆‖ , (26)

where kc =
√
Nk1,c + k2,c. Since the perturbation is vanishing at the origin, x̃⋆ = 0N2n

is an equilibrium point of the perturbed system as well. Then, consider the candidate
Lyapunov function

Vo = x̃⋆TP ox̃
⋆, (27)

where P o ∈ IRN2n×N2n is a symmetric positive definite matrix to be chosen. Function
Vo satisfies the following inequality

λPm
‖x̃⋆‖2 ≤ Vo ≤ λPM

‖x̃⋆‖2 , (28)

where λPm
and λPM

denote, respectively, the smallest and the largest eigenvalue of P o.
The time derivative of Vo along the trajectories of eq. (22) is then given by

V̇o = −kox̃
⋆TQox̃

⋆ + 2x̃⋆TP o (1N ⊗ u− û⋆) , (29)

where Qo is a symmetric and positive definite matrix and P o is the symmetric and
positive definite solution of the Lyapunov equation

L̃
T
P o + P oL̃ = −Qo, (30)

which exists for any Qo, since L̃ is Hurwitz. Thus, V̇o can be upper bounded as follows

V̇o ≤ −
(
koλQm

− 4λPM
N2kc

)
‖x̃⋆‖2 , (31)

where λQm
denotes the smallest eigenvalue of Qo.

Therefore, inequalities (26), (28) and (31) imply that ‖x̃⋆‖ globally exponentially
converges to 0N2n [32] if

ko > 4N2λPM
kc/λQm

. (32)

As for the task tracking errors σ̃1 and σ̃2, their error dynamics in eq. (24) and
(25) can be viewed as originated by the linear exponentially stable systems (l = 1, 2)
˙̃σl = −kl,cσ̃l, perturbed by exponentially vanishing terms Kσl

x̃⋆. Thus, σ̃1 and σ̃2

converge exponentially to 0n and 0(N−1)n, respectively, under condition (32).
It is worth noticing that condition in eq. (32) can be always satisfied by suitably

choosing ko for any given kc. However, it must be remarked that it is a, somewhat
conservative, sufficient condition for convergence (i.e., gains not satisfying the condi-
tion may guarantee stability as well), which imposes a faster convergence of the observer
estimates with respect to the controller tracking errors. Hence, it can be loosely con-
sidered a tuning relation. Moreover, eq. (32) clearly shows that tuning of the observer
and controller gains cannot be performed independently, i.e., a separation property does
not hold. Arguably, this is due to the fact that the observer does not know the whole
collective input, which must be reconstructed by each robot on the basis of the local state
estimate. A slightly less restrictive sufficient condition than eq. (32) can be obtained via
a Lyapunov analysis of the whole perturbed system (using the same candidate function
Vo) and exploiting the detailed expression of 2x̃⋆TP o (1N ⊗ u− û) in V̇o.
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Remark 4.1 With regards to the computational load of the proposed approach, it is easy
to show that the number of floating point operations (FLOPs) required to implement the
proposed observer-controller scheme grows linearly with respect to the network size N .
In the case of a team composed by N = 1000 agents (greater than the number of agents
in most of the practical cases) and n = 3, the required computational load would be
about 78 · 103 FLOPs. Thus, by considering a conservative value of 10MFLOPs/s as
computational capability for the agent’s controller, the time needed for the algorithm
computation is less than 8ms. The required memory for variables storage would be
only of 6KByte. In sum, the proposed solution is fully compatible with state-of-the-
art commercial hardware, as demonstrated by the experimental case study described in
Section 7.

5 Decentralized control law: saturated case

In order to ensure a bounded control input, the control law computed by the i th robot
is modified as follows:

ui(t,
ix̂) = ui,1(t,

ix̂) + ui,2(t,
ix̂), (33)

where
ui,1(t,

ix̂) = σ̇1,d(t) + k1,c tanh
(
σ1,d(t)− σ1(

ix̂)
)
, (34)

and
ui,2(t,

ix̂) = J
†
2,i

(
σ̇2,d(t) + k2,c tanh

(
σ2,d(t)− σ2(

ix̂)
))

(35)

and k1,c, k2,c are positive scalar gains to be selected. The observer we consider in this
case is the same as in Section 3. As it can be noticed, differently from control law in
eq. (18)-(20), the component-wise tanh(·) function has been used. Hence, the control
input can be bounded as follows

‖ui(t)‖ ≤ ‖σ̇1,d(t)‖+ k1,c + ν ′2(N)(‖σ̇2,d(t)‖+ k2,c),

where ‖σ̇1,d(t)‖, ‖σ̇2,d(t)‖ are assumed to be bounded functions and ν ′2(N) is a bounding
constant defined in eq. (58) of Appendix C. Hence, the task reference derivatives and
the gains k1,c, k2,c can be set according to the bounds imposed on ui by, e.g., actuator
velocity limits.

Stability properties of the overall controller-observer scheme in the presence of input
saturation are determined by the following theorem:

Theorem 2 If the communication graph is directed, strongly connected and has fixed
topology, for any choice of the controller gains, kc,1 and kc,2, there exists a choice of the
observer gain, ko, such that the state estimation error, x̃⋆ = 1N ⊗ x − x̂⋆, is globally
exponentially convergent to 0N2n and the task tracking errors, σ̃1 and σ̃2, are globally
asymptotically convergent to 0n and 0(N−1)n, respectively.

Proof 2 As in Section 4, the first step consists in deriving the dynamics of the estima-
tion error and of the task tracking errors.

The estimation error dynamics can be written still in the form of eq. (22), and thus
is not reported here.
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The dynamics of the tracking errors, σ̃1 = σ1,d − σ1(x) ∈ IRn and σ̃2 = σ2,d −
σ2(x) ∈ IR(N−1)n, can be derived via eq. (1),(3)–(4) and (33)–(35), by following the
same steps as in Section 4, i.e.,

˙̃σ1=−
k1,c
N

N∑

i=1

tanh
(
σ1,d − σ1(

ix̂)
)
−k2,c

N

N∑

i=1

J
†
2,i tanh

(
σ2,d − σ2(

ix̂)
)
, (36)

˙̃σ2=−k1,cJ2

N∑

i=1

ΓT
i tanh

(
σ1,d−σ1(

ix̂)
)
−k2,cJ2

N∑

i=1

Γ T
iJ

†
2,itanh

(
σ2,d−σ2(

ix̂)
)
. (37)

In order to investigate the convergence of x̃⋆, σ̃1 and σ̃2, the overall candidate
Lyapunov function is considered

V = Vo + V1,c + V2,c, (38)

whose expression will be detailed in the following.
Again, the state estimation error dynamics in eq. (22) can be thought as an expo-

nentially stable linear system perturbed by the term 1N ⊗ u − u⋆. By exploiting the
Lipschitz continuity of tanh(·), the same bound in eq. (26) on the perturbation term can
be derived. Thus, Vo is chosen equal to function in eq. (27). The same argument adopted
in Section 4 leads to prove global exponential convergence of the state estimation error
to zero under the same sufficient condition in eq. (32), since the time derivative of Vo

along the trajectories of eq. (22) is still given by eq. (31).
As for the tracking errors related to the first task, consider the following function

V1,c =

n∑

i=1

ln(cosh(σ̃1,i)), (39)

where σl,i (l = 1, 2) is the i th component of vector σl. In view of the Lipschitz continuity
of tanh(·) and eq. (52), (55), (57), (58) in Appendix C, the time derivative of V1,c along
the trajectories of the tracking errors dynamics (36) can be bounded as follows

V̇1,c =

n∑

i=1

tanh(σ̃i,1) ˙̃σi,1 = (tanh(σ̃1))
T ˙̃σ1

= −k1,c ‖tanh(σ̃1)‖2 −
k1,c
N

tanh(σ̃1)
T

N∑

i=1

(
tanh

(
iσ̃1

)
−tanh(σ̃1)

)

−k2,c
N

tanh(σ̃1)
T

N∑

i=1

J
†
2,i

(
tanh

(
iσ̃2

)
−tanh (σ̃2)

)

≤ −k1,c ‖tanh(σ̃1)‖2 +
k1,c
N

‖tanh(σ̃1)‖
N∑

i=1

‖J1‖
∥∥ix̃
∥∥

+
k2,c
N

‖tanh(σ̃1)‖
N∑

i=1

∥∥∥J†
2,i

∥∥∥ ‖J2‖
∥∥ix̃
∥∥

≤ −k1,c ‖tanh(σ̃1)‖2 +
√
N

k1,c
N

‖tanh(σ̃1)‖
N∑

i=1

∥∥ix̃
∥∥

12



+ν2(N)ν ′2(N)
k2,c
N

‖tanh(σ̃1)‖
N∑

i=1

∥∥ix̃
∥∥

≤ −k1,c ‖tanh(σ̃1)‖2 + ρ1,c ‖tanh(σ̃1)‖ ‖x̃⋆‖ . (40)

where (l = 1, 2) iσ̃l = σl,d − σl(
ix̂), ρ1,c =

√
Nk1,c + ν2ν

′
2k2,c.

As for the tracking errors related to the second task, consider the following function

V2,c =

(N−1)n∑

i=1

ln(cosh(σ̃2,i)). (41)

In view of the Lipschitz continuity of tanh(·) and eq. (53), (54), (57), (58) in Appendix
C, the time derivative of V2,c along the trajectories of the tracking errors dynamics (37)
can be bounded as follows

V̇2,c=

(N−1)n∑

i=1

tanh(σ̃2,i) ˙̃σ2,i = tanh(σ̃2)
T ˙̃σ2

=−k2,c ‖tanh(σ̃2)‖2 − k1,c tanh(σ̃2)
TJ2

N∑

i=1

Γ T
i

(
tanh

(
iσ̃1

)
−tanh(σ̃1)

)

−k2,c tanh(σ̃2)
TJ2

N∑

i=1

ΓT
iJ

†
2,i

(
tanh

(
iσ̃2

)
−tanh(σ̃2)

)

=−k2,c ‖tanh(σ̃2)‖2 − k1,c ‖tanh(σ̃2)‖‖J2‖
N∑

i=1

‖Γ i‖
∥∥J1

ix̃
∥∥

−k2,c ‖tanh(σ̃2)‖‖J2‖
N∑

i=1

∥∥∥ΓT
iJ

†
2,i

∥∥∥
∥∥J2

ix̃
∥∥

≤−k2,c ‖tanh(σ̃2)‖2 + ν2(N)
√
Nk1,c ‖tanh(σ̃2)‖

N∑

i=1

∥∥ix̃
∥∥

+ν22(N)ν ′2(N)k2,c ‖tanh(σ̃2)‖
N∑

i=1

∥∥ix̃
∥∥

≤−k2,c ‖tanh(σ̃2)‖2 + ρ2,c ‖tanh(σ̃2)‖ ‖x̃⋆‖, (42)

with ρ2,c = Nν2(
√
Nk1,c + ν2ν

′
2k2,c) = Nν2ρ1,c.

The time derivative of eq. (38) along the trajectories of the error dynamics in eq. (22),
(36) and (37) can be upper bounded via eq. (31), (40) and (42)

V̇ ≤ −
(
koλQm

− 4λPM
N2kc

)
‖x̃⋆‖2

−k1,c ‖tanh(σ̃1)‖2 − k2,c ‖tanh(σ̃2)‖2

+ρ1,c ‖tanh(σ̃1)‖ ‖x̃⋆‖+ ρ2,c ‖tanh(σ̃2)‖ ‖x̃⋆‖.

Thus:

V̇ ≤−zT



koλQm

− 4λPM
N2kc −ρ1,c/2 −ρ1,c/2

−ρ1,c/2 k1,c 0
−ρ2,c/2 0 k2,c


z. (43)

with zT =
[
‖x̃∗‖ ‖tanh(σ̃1)‖ ‖tanh(σ̃2)‖

]T
.
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Hence, V̇ is definite negative if and only if

ko >
1

λQm

(
4N2λPM

kc +
ρ21,c
4k1,c

+
ρ1,cρ2,c
4k2,c

)
, (44)

that represents a conservative condition to choose the gain ko, k1,c and k2,c in order
to guarantee global asymptotic stability of the equilibrium x̃⋆ = 0N2n, σ̃1 = 0n, σ̃2 =
0(N−1)n.

It is worth remarking that, for given control gains, there always exists an observer
gain satisfying eq. (44).

6 Extension to switching topologies

Following the results presented in [5], the stability of the overall closed-loop system is
preserved also in the case of switching topologies, provided that in each time instant the
graph is balanced and strongly connected (in the case of directed topology) or simply
connected (in the case of undirected topology).

In fact, for the case of balanced directed topologies, LS =
(
L+LT

)
/2 is the Lapla-

cian of the mirror (undirected) graph associated to the given directed graph with Lapla-
cian L [38]. To this aim, the matrix

1

2

(
(L⊗ INn) + (L⊗ INn)

T
)
+Π⋆ = LS ⊗ INn +Π⋆,

can be considered, which is symmetric positive definite since LS is a valid Laplacian
matrix. Hence, by adopting the Lyapunov function

Vo =
1

2
x̃∗T x̃⋆, (45)

in lieu of eq. (27), the same arguments used in Section 4 and 5 can be used to prove
Theorems 1 and 2.

For the case of switching topologies, the network can be described via a finite col-
lection of K graphs of order N , Γ = {G1, . . . ,GK}, each characterized by its adjacency
matrix Ak, k ∈ I = {1, . . . ,K}. Hence, the adjacency matrix can be modeled as a func-
tion of time, i.e, A = As(t), where s(·) : t ∈ IR → I is a switching signal. In other words,
As(t) is a piecewise continuous function that associates at each time instant one of the
finite possible network configurations. Let be Ls(t) the Laplacian matrix corresponding
to As(t) that is, obviously, a piecewise continuous function too. Equations (45), and (38)
define Common Lyapunov Functions (CLFs) for any switching signal s(t), provided that
each graph in Γ is balanced and strongly connected (in the case of directed topology) or
simply connected (in the case of undirected topology). Obviously, conditions in eq. (32)
and (44) must hold for any t. To this aim, tuning of ko, k1,c and k2,c could be performed
according to the worst case scenario, i.e., by considering the minimum value of λQm

(with Qo = LS ⊗ INn +Π⋆) over the finite set of network topologies.

7 Experimental Results

The proposed distributed control approach has been experimentally tested on a multi-
robot system composed of five Khepera III robots (see Fig. 1), that are small size (12 cm
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diameter) differential drive mobile robots. Each robot is equipped with a Hokuyo URG-
04LX-UG01 Laser Range Finder (LRF) and adopts the software module developed in [6]
to perform localization in indoor environments based on Extended Kalman Filter and
Hough transform.

Figure 1: Picture of the five Khepera III robots used for the experiments.

In addition, each robot is equipped with a IEEE 802.11 wireless card, thus a wireless
ad-hoc network can be established to allow direct information exchange among the
robots. Since the communication range of the wireless links is much larger than the size
of the experiments arena, the topology of the communication graph is complete; however,
in order to avoid having a complete communication graph, the adjacency matrixes are
assigned a priori, so as to reduce the number of communicating neighbors. The presented
architecture uses asynchronous (UDP/IP based) communication and it allows running
closed loop control algorithms at a sample time of approx 300 ms. Such a sample time is
motivated by the LRF and the localization algorithm time requirements, rather than the
proposed observer-controller scheme. In the following two experiments are presented.
In the first one, the centroid moves along a desired U-shape path, while the V-shape
formation case is considered. The cases of saturated and non-saturated control input
and switching formation are tested. In the second experiment, the centroid move along
a straight line, while the formation shape switches from linear to circular.

The adoption of the single integrator dynamic model in eq. (1) is a common choice
in the literature; however, to implement the proposed technique on real non-holonomic
robots as the Khepera III, a low-level motion controller is used to generate angular and
linear velocity commands to the robots in order to let them track the assigned velocity
commands computed via eq. (18). Moreover, to avoid collisions among the robots and
with other obstacles in the environment, we integrated in the control a reactive obstacle
avoidance technique that is effective only when the relative distances among the robots
are lower than certain thresholds. This distance is measured by means of the LRF. It is
worth noticing that, despite the presence of this solution, strictly required for a proper
implementation of the proposed technique on a real robotic platform, the successful
execution of the experiments and the achieved performance allow to show the robustness
of the approach in real scenarios.

7.1 First experiment

In the experiments presented in the following, the directed communication graphs are
assumed to switch among the configurations in Fig. 2, the team centroid is commanded
to move along a desired U-shape path with initial and final positions [1.4, 1.4]T m and
[2.8, 1.4]T m, respectively; the overall length of the path covered by the centroid is
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about 5 m and the velocity profile is a trapezoidal profile with 5 cm/s cruise speed. The
assigned formation is a V-shape formation that, by changing the orientation to follow
the curvature of the centroid path, results in a time-varying formation in the global
reference frame. Fig. 3 (top) shows the desired path of the team centroid together with
the desired formation at three time instants.

1

2
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4

5

1

2

3

4

5

Figure 2: First Experiment. Left: topology in the time interval [0, 57] s. Right: topology
in the time interval [57, 80] s.

The parameters ko, k1,c and k2,c in eq. (8), (19) and (20) have been set, respectively,
to 0.6, 0.5 and 0.5. At the initial time instant, the vectors ix̂(t0)|t0=0 (i = 1, . . . , 5) in
eq. (8) are set to zero; this choice is used to test the observers performance for intentional
large initial error values.

The experiments have been performed multiple times alternatively using unsaturated
and saturated control laws. With regards to the unsaturated input case, in Fig. 3 (bot-
tom) the solid thick lines show the real paths of the robots (xi) during the experiment,
while the solid thin lines represent the paths of all the robots as estimated by one of
them (ix̂). Fig. 4 shows the norm of the estimation error ‖x̃⋆‖ and of its individual
components.

Actually, the saturated input control law is implemented using the following law:

ui(t,
ix̂) = σ̇1,d + sf1 tanh

(
k1,c

(
σ1,d − σ1(

ix̂)
)

sf1

)
+ (46)

J
†
2,iσ̇2,d(t) + sf2 tanh

(
k2,cJ

†
2,i

(
σ2,d − σ2(

ix̂)
)

sf2

)

where the scale factors sf1, sf2 are used to saturate the control input to the global
maximum value of 25 cm/s. Such a formulation is less conservative w.r.t. eq. (34-35)
and it allows to optimize the usage of the input signal without changing the stability
properties.

Fig. 5 shows the errors of the task function errors σ̃1 and σ̃2 for the case of un-
saturated (top) and saturated (bottom) inputs, while Fig. 6 shows the norms of input
values to the robots for the two cases. As expected, for the unsaturated case the task
function errors converge to zero faster than in the saturated one, while the input com-
mands are much higher in the initial stage due to the amplitude of the initial errors of
task functions and observers. In both the cases, the robots successfully complete the
assigned mission keeping low task and observer errors. It is worth remarking that, in
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Figure 3: First Experiment. Top. Desired behavior. Bottom. Paths of the robots
measured (dotted lines) and as estimated by robot 0 (solid line).
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Figure 4: First Experiment. Plot of the norm of the estimation errors x̃⋆ (thick line)
and of its individual components (thin lines).

the interval 70−110 s, the robots follow circular paths; thus, external robots have higher
velocities with respect to the internal ones as evidenced in Fig. 6; despite the specific
implementation of the low-level controller for non-holonomic robot does not allow the
robots to exactly follow the assigned path during the curve, this generates very reduced
estimation and task function errors. The same missions have been executed at higher
desired cruise velocities of the centroid (.1 − .15 m/s); the robots performed correctly
the missions at the expense of higher task and state estimation errors.
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Figure 5: First Experiment. Errors of centroid (σ̃1) and formation (σ̃2) task functions
on the top and bottom, respectively for the case of unsaturated (a) and saturated (b)
inputs
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Figure 6: First Experiment. Norm of velocity inputs to the robots respectively for the
case of unsaturated (a) and saturated (b) inputs

7.2 Second experiment

In the second experiment, the team of robots is commanded to execute a switching
formation control mission in a larger indoor environment (20m of length). The robots are
commanded to move their centroid along a linear path, following a trapezoidal velocity
profile. At the same time, the formation is commanded to smoothly switch from a
linear to a circular shape; correspondingly, the connectivity graph switched between the
topologies reported in Fig. 7. The control parameters have been set as in the previous
case study. Instead, the initial state estimation is set equal to ix̂(t0)|t0=0 = 1N ⊗ xi,
i.e., each robot initializes the estimate of the collective state assuming that all the other
robots have the same initial position of the robot itself (that is the only variable directly
measurable). Fig. 8 reports the paths of the robots during the mission as well as a
few intermediate positions. In order to show the time-varying nature of the relative
formation, Fig. 9 reports the components of the desired and measured formation task
function values, while Fig. 10 shows the centroid and formation task function errors. It
is worth noticing that the task function errors remain limited and close to zero, despite
the deleterious effects of both the adoption of a low-level motion controller (required for
the non-holonomic nature of the vehicles) and the scarce localization accuracy (due to
the use of an inaccurate map of the indoor environment). Fig. 11 shows the time history
of the norm of the estimation errors, ‖x̃⋆‖, and of its individual components; considering
that ‖x̃⋆‖ is a cumulative vector of dimension N2n (that, in the specific case, is equal
to 50), it is possible noticing that, at steady state, the mean estimation error of each
robot is of few centimeters.

The Multimedia Extension accompanying the paper shows a video of one experiment
execution and of its relative task/observer errors.

8 Discussion and conclusions

In this paper, a decentralized controller-observer approach for time varying centroid
and formation control of multi-robot systems is proposed. Each robot estimates the
collective state of the system by using only local information. The estimated state is then
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Figure 7: Second experiment. Left: topology in the case of linear formation. Right:
topology in the case of circular formation.
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formation task function (respectively thin and thick lines).
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used by the individual robots to cooperatively track a global task, defined in terms of
system’s time-varying centroid and geometrical formation. The proposed solution allows
to achieve convergence of both estimation and tracking errors for both directed and
undirected communication graphs, as well as for switching communication topologies.
Moreover, the same observer is adopted to design a controller ensuring tracking with
bounded control inputs; convergence of the estimation and tracking errors is proven in
this case as well.

The availability to each robot of a reliable estimate of the whole state, despite may
require a larger, but fully compatible with actual low-cost hardware (as demonstrated
by the experiments), computational and communication load, should be considered an
advantage rather than a drawback. In fact, it can be used as a bridge to the solution
to the tracking problem with additional control objectives (e.g., complex tasks as explo-
ration, deployment and adaptive sampling) as well to the extension to a class of more
general collective behavior functions. Furthermore, additional important functions can
be added to the control systems such as, e.g., fault diagnosis and connectivity control.
With the regards to the latter point, the knowledge of the overall team state can be
used together with the communication channel model to prevent the team from assuming
configurations with not strongly connected communication graphs.

The proposed solution requires the knowledge of the number of robots and it requires
that the network should be adequately connected. Decentralized analysis of the network
state can be performed using, for example, the technique in [10] to make the robots aware
of the network connectivity state, or the technique in [11] to estimate the number of other
robots in the network. Indeed, an interesting and potentially fruitful extension of the
present work is the adoption of control policies guaranteeing connectivity maintenance
in conjuction with the proposed controller-observer scheme.

The approach has been experimentally validated in the different case studies with a
real networked robot system. Despite the presence of disturbances in sensor measure-
ments, a sampling time of the control algorithm of the order of 300 ms, asynchronous
communication (withe possible communication failure) and non-holonomic structure of
the robots, the MRS is able to successfully achieve the assigned missions keeping low
observer and task function errors.

Acknowledgments

The research leading to these results has received funding from the Italian Government,
under Grant FIRB - Futuro in ricerca 2008 n. RBFR08QWUV (project NECTAR) and
under Grant PRIN 2009 n. 20094WTJ29 (project RoCoCo), and from the European
Community Seventh Framework Programme, under grant agreement n. 287617 (collab-
orative project ARCAS).

References

[1] G. Antonelli. Stability analysis for prioritized closed-loop inverse kinematic algo-
rithms for redundant robotic systems. IEEE Transactions on Robotics, 25(5):985–
994, October 2009.

[2] G. Antonelli, F. Arrichiello, F. Caccavale, and A. Marino. A decentralized
controller-observer scheme for multi-robot weighted centroid tracking. In 2011

22



IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2778–2783, San Francisco, CA, USA, September 2011.

[3] G. Antonelli, F. Arrichiello, F. Caccavale, and A. Marino. A decentralized observer-
controller scheme for centroid and formation control with bounded control input.
In 3rd IFAC Workshop on Estimation and Control of Networked Systems, pages
252–257, Santa Barbara, CA, September 2012.

[4] G. Antonelli, F. Arrichiello, F. Caccavale, and A. Marino. Decentralized control
of dynamic centroid and formation for multi-robot systems. In 2013 IEEE Inter-
national Conference on Robotics and Automation, pages 3496–3501, Karlsruhe, D,
May 2013.

[5] G. Antonelli, F. Arrichiello, F. Caccavale, and A. Marino. A decentralized
controller-observer scheme for multi-agent weighted centroid tracking. IEEE Trans-
actions on Automatic Control, 58(5):1310 – 1316, May 2013.

[6] F. Arrichiello, S. Chiaverini, and V.K. Mehta. Experiments of obstacles and collision
avoidance with a distributed multi-robot system. In Proceeding of the IEEE Inter-
national Conference on Information and Automation, pages 727–732, Shenyang,
China, June 2012.
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Appendix A: Multimedia extensions

Extension Type Description

1 Video Video of the second experiment: Linear centroid path,
switching linear/circular formation

Appendix B: Graph properties

If all the communication links between the robots are bi-directional, the graph is called
undirected (i.e., (i, j) ∈ E ⇒ (j, i) ∈ E), otherwise, the graph is called directed. Moreover,
the graph topology can be assumed either fixed or switching (e.g., communication links
may appear or disappear).

A directed graph is called strongly connected if any two distinct nodes of the graph
can be connected via a directed path, i.e., a path that follows the direction of the edges
of the graph. An undirected graph is called connected if there is an undirected path
between every pair of distinct nodes. A node of a directed graph is balanced if its
in-degree (i.e., the number of incoming edges) and its out-degree (i.e., the number of
outgoing edges) are equal; a directed graph is called balanced if each node of the graph
is balanced. Any undirected graph is balanced.

The Laplacian matrix exhibits at least a zero eigenvalue with the (N × 1) vector
of all ones, 1N , as the corresponding right eigenvector. Hence, rank(L) ≤ N − 1 and
L1N = 0N , where 0N is the (N × 1) null vector. For a balanced directed graph (and,
thus, for an undirected graph), 1N is also a left eigenvector of L, i.e. 1TNL = 0TN . If the
graph is strongly connected rank(L) = N − 1. If the graph is undirected, the Laplacian
is symmetric and positive semidefinite; moreover, if the graph is connected, 0 is a simple
eigenvalue of L.

Appendix C: Analysis of the Jacobian matrices

The pseudoinverse of J1 is trivial

J
†
1 = 1N ⊗ In, (47)
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while

J
†
2 =




J
†
2,1
...

J
†
2,i
...

J
†
2,N




, (48)

where

J
†
2,1=

[
−(N − 1)

N
In −(N − 2)

N
In . . . − 1

N
In

]
, (49)

J
†
2,N =

[
1

N
In

2

N
In . . .

(N − 1)

N
In

]
, (50)

and, for i = 2, . . . , N − 1

J
†
2,i=

[
1

N
In . . .

i− 1

N
In −N − i

N
In . . .− 1

N
In

]
. (51)

Some useful equalities are listed below:

N∑

i=1

J
†
2,i = On×(N−1)n, (52)

J2

N∑

i=1

Γ T
i = O(N−1)n×n, (53)

with Γ i defined in (7) and

J2

N∑

i=1

Γ T
i J

†
2,i = J2J

†
2 = I(N−1)n. (54)

Some useful inequalities involving the 2-norm of the Jacobians are listed below:

‖J1‖ ≤
√
N, (55)

‖J †
2,jJ2‖ = ‖Γ jJ

†
2J2‖ = ‖Γ j‖ = 1, (56)

where the first equality trivially follows from the expression of J1J
T
1 . Since J2J

T
2 =

T 2 ⊗ In, where T 2 ∈ IR(N−1)×(N−1) is a symmetric tridiagonal matrix with 2 on the
main diagonal and −1 on the sub and super-diagonal, its eigenvalues can be computed
in closed form [24]. In detail, the largest singular value of J2, is given by σM(J2) =√

2−2 cos((N − 1)π/N). Thus,

‖J2‖ = ν2(N) =
√

2−2 cos((N − 1)π/N) ≤ 2. (57)

Moreover, the smallest singular value of J2 is σm(J2)=
√
2 − 2 cos(π/N). Thus,

∥∥∥J †
2,i

∥∥∥ ≤
∥∥∥J †

2

∥∥∥=ν ′2(N)=
1√

2− 2 cos(π/N)
. (58)
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Appendix D: Some useful properties

The properties below, where A, B, C and D are matrices of proper dimensions, are
used

Property 1 (A⊗B)(C ⊗D) = (AC)⊗ (BD).

Property 2 (A⊗B)T = AT ⊗BT.

Property 3 rank(A⊗B) = rank(A) rank(B).

Property 4 rank(A+B) = rank(A) + rank(B) if BTA = O.

Appendix E: Analysis of the matrix L̃

According to eq. (12), matrix L̃ can be written also as

L̃ = − (L⋆ +Π⋆) = −
N∑

i=1

(L+V i)⊗Πi,

where V i = viv
T
i ∈ IRN×N and vi ∈ IRN is the column vector having all the entries

equal to zero but the ith, which is equal to 1. From properties 1 and 2 in Appendix D
the following chain of inequalities follows (for i 6= j)

((L+ V i)⊗Πi)
T ((L+V j)⊗Πj) =

(
(L+ V i)

T (L+ V j)
)
⊗
(
P iTi Πj

)
=

(
(L+ V i)

T (L+ V j)
)
⊗ONn = ON2n.

Hence, properties 3 and 4 in Appendix D yield

rank

(
N∑

i=1

(L+V i)⊗Π i

)
=

N∑

i=1

rank(L+V i) rank(Π i).

Since rank(Π i) = n, ∀ i, it is

rank(L̃) = n

N∑

i=1

rank(L + V i)

From the definition of the Laplacian matrix given in Section 2 trivially follows that
L + V i is diagonally dominant, i.e., lpp + vi,p ≥ ∑

q 6=p |lpq|, ∀p (where vi,p is the i th
component of the vector vi); in addition, ∃ : lpp + vp,i >

∑
q 6=p |lpq|, since at least one

diagonal element, vi,p, of V i is equal to 1. Moreover, if the underlying directed graph is
strongly connected, matrix L+ V i is irreducible [28] [Theorem 6.2.24] and its diagonal
elements are all strictly positive. Hence, according to [28] [Corollary 6.2.27], matrix
L+V i is full rank, i.e., rank(L+V i) = N, ∀ i, and thus rank(L̃) = N2n, i.e., L̃ is full
rank as well.

According to the Gers̆gorin theorem [28], the eigenvalues of L̃ are located in the
union of the following discs (for i = 1, . . . , N2n)

Di =



λ ∈ C : |λ+ l̃ii| ≤

∑

j 6=i

|l̃ij |



 , (59)
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where l̃ii denotes the strictly positive i th diagonal element of L⋆ +Π⋆. It can be easily
recognized that, for strongly connected graphs, L⋆ + Π⋆ is diagonally dominant, and
thus the following inequality holds

∑
j 6=i |l̃ij | ≤ l̃ii. Hence, all the discs are contained in

the left-half complex plane and cannot intersect the imaginary axis but in the origin,
since they are centered on the real axis. This implies that all the eigenvalues of L̃

have nonpositive real parts and cannot be purely imaginary; on the other hand, null
eigenvalues cannot exist, since L̃ is full rank. Thus, all the eigenvalues of L̃ have strictly
negative real parts.

29


