
XXX , VOL. XX, NO. XX, MONTH 2014 1

Decentralized Traffic Aware Scheduling in 6TiSCH

Networks: Design and Experimental Evaluation
Nicola Accettura, Member, IEEE, Elvis Vogli, Student Member, IEEE, Maria Rita Palattella, Member, IEEE,

Luigi Alfredo Grieco, Senior Member, IEEE, Gennaro Boggia, Senior Member, IEEE,

Mischa Dohler, Fellow, IEEE,

Abstract—This paper capitalizes on two emerging trends, i.e.
the growing use of wireless at the edge of industrial control
networks and the growing interest to integrate IP into said
networks. This is facilitated by recent design contributions from
the IEEE and the IETF, where the former developed a highly
efficient deterministic time-frequency scheduled medium access
control protocol in form of IEEE 802.15.4e TSCH and the
latter IPv6 networking paradigms in form of 6LoWPAN/ROLL,
and scheduling approaches in form of 6TiSCH. The focus of
the present work is on advancing the state of the art of
deterministic 6TiSCH schedules towards more flexible but equally
reliable distributed approaches. In addition, this paper aims
to introduce the first implementation of 6TiSCH networks for
factory automation environments: it outlines the challenges faced
to overcome the scalability issues inherent to multi-hop dense
low-power networks; the experimental results confirm that the
naturally unreliable radio medium can support time-critical
and reliable applications. These developments pave the way for
wireless industry-grade monitoring approaches.

Index Terms—6TiSCH, IEEE 802.15.4e, scheduling algorithms,
Timeslotted Channel Hopping

I. INTRODUCTION

Industrial networks, often referred to as Operational Tech-

nology (OT), and computer networks, referred to as Informa-

tion Technology (IT), emerged simultaneously some 40 years

ago, each designed with a specific aim and different range

of applications in mind. After being developed for years in

parallel, IT and OT technologies commence to converge and

be mutually integrated, enabling OT traffic to be transported

over a shared IP-based IT infrastructure. Due to their different

goals, OT and IT have evolved in a radically different way one

from another. Therefore, a number of new challenges have to

be overcome in order to make the IT/OT integration viable [1].

The IP version 6 (IPv6) protocol [2] is the de-facto IP

standard version for the IT/OT convergence. While the IP

protocol has been used since the beginning at the networking

layer of IT systems, OT needs to adapt not only to the IP

N. Accettura is with “Berkeley Sensor & Actuator Center”, University of
California Berkeley, USA (e-mail: nicola.accettura@eecs.berkeley.edu).

E. Vogli, L. A. Grieco, and G. Boggia are with the “Dip. di Elettrotecnica
ed Elettronica”, Politecnico di Bari, v. Orabona 4, 7015, Bari, Italy (e-mail:
e.vogli@poliba.it; a.grieco@poliba.it; g.boggia@poliba.it).

M. R. Palattella is with the SnT, University of Luxembourg, 4 rue Alphonse
Weicker, L-2721 Luxembourg (e-mail: maria-rita.palattella@uni.lu).

M. Dohler is with King’s College London (KCL), London, UK (e-mail:
mischa.dohler@kcl.ac.uk).

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

standard itself, but also to the whole IP protocols suite [3],

including among others the IPv6 Routing Protocol for Low-

Power and Lossy Networks (RPL) [4], and the Constrained

Application Protocol (CoAP) [5]. At the same time it is

necessary to adapt the IP suite to match the constraints and

requirements of industrial networks (e.g., monitoring systems,

motion detection, control loops, etc.), which are deterministic

by design, and different from traditional IP QoS-based net-

works. To this aim, new protocols and an overall architecture

tying the adapted protocol suite together should be defined by

Standard Developing Organization (SDO) [1].

Following this trend, a new Working Group, namely

6TiSCH [6], [7], has been created at the IETF to enable IPv6

over the deterministic Time Slotted Channel Hopping (TSCH)

mode of the IEEE802.15.4e standard [8]. In the 6TiSCH

architecture, low-power wireless devices form a multi-hop

Low power and Lossy Networks (LLN), that is plugged into

Internet through one or more LLN Border Routers (LBRs) [9].

Inside the LLN, nodes communicate by following a com-

mon schedule, which is a matrix of cells, each of them

assigned to a pair of neighbor nodes for communicating at

a given time, on a specific channel. The performance of the

LLN (e.g., throughput, average packet latency, node energy

consumption, network lifetime) are strictly dependent by the

way this schedule is built.

The IEEE802.15.4e standard [8] defines the mechanisms

to execute a communication schedule. At the same time, it

leaves as out of its scope defining how the schedule is built,

updated and maintained, and designating the entity in charge

of performing these tasks. Therefore, one of the goals of

the 6TiSCH Working Group (WG) is to develop a standard

approach to manage this schedule and build it according to

the network requirements [10].

6TiSCH has been recently working on the definition of a

so-called “minimal” schedule, a static one, which is either pre-

configured, or learnt by a node when joining the network.

Such schedule mode does not exploit the full benefits of

IEEE802.15.4e TSCH, but it can be used during network

bootstrap, as a fallback mode of operation when no dynamic

scheduling solution is available or functioning, or during early

interoperability testing and development [11].

At the same time, 6TiSCH aims to investigate and develop

centralized and distributed scheduling solutions. In the central-

ized case, the schedule is built by a Path Computation Element

(PCE), a specific schedule entity, located into the Internet

that continuously collects information from the network (e.g.,

XXX , VOL. XX, NO. XX, MONTH 2014 2

traffic requirements from the nodes), in order to adjust the

TSCH schedule accordingly. In the distributed case, there is no

central entity, but nodes in the LLN agree on the schedule to be

used, by applying distributed multi-hop scheduling protocols

and neighbor-to-neighbor scheduling negotiation [12].

After the publication of the IEEE802.15.4e standard [8],

both centralized and distributed scheduling approaches have

been investigated by the research community, even before the

birth of the 6TiSCH WG.

The first pioneer work [13] proposed a centralized solution,

i.e., a Traffic Aware Scheduling Algorithm (TASA) that, by

exploiting matching and coloring procedures, allows to sched-

ule cells to all the nodes across the entire network topology

graph. Briefly, with TASA the TSCH schedule is settled based

on the network topology and the traffic load. In detail, the

PCE uses the information related to the paths, coming from

the routing protocol (e.g., RPL), and those related to the traffic

(e.g., average traffic load generated by each node) in order to

assign cells within the schedule, and provide the required level

of QoS (duty cycle, throughput, etc.) to each active flow [14].

However, such scheduling technique triggers the exchange of

a huge amount of signaling overhead, since each node in

the network is supposed to communicate end-to-end with the

PCE for both (i) sending topology and traffic load related

information and (ii) receiving its own portion of the collision-

free schedule. In addition, an underneath assumption is that

the network churn is very low. This is somehow unrealistic

also in non-mobile network scenarios, since the radio medium

reliability is unpredictable in nature: to adapt the network

topology to the best reliability available (i.e., the Packet

Delivery Ratio (PDR), of each link), the routing protocol

will change the routing topology, thus triggering schedule

re-computations and more signaling phases with additional

signaling overhead in the end.

As a counterpart, in the context of the OpenWSN

project [15], some distributed approaches have also been stud-

ied. For instance, uRes [16] proposes the use of a negotiation

process between neighbor nodes to schedule cells. In detail,

uRes allocates cells minimizing the number of collisions,

based on the knowledge of their neighbors schedule. Since

collisions can still occur, they are resolved by re-allocating

the colliding cells [17].

Recently, the Decentralized Traffic Aware Scheduling

(DeTAS) technique [18] was proposed to address the schedul-

ing needs of deterministic networks and was conceived to

comply with the following guidelines:

1) ensure the smallest end-to-end latency between data

generation and its reception at the application sink (i.e.,

the root node in a RPL-organized network);

2) keep the queue utilization as small as possible, through a

strict alternation of transmitting and receiving cells into

the TSCH slotframe structure;

3) use neighbor-to-neighbor signaling for gathering mini-

mal information about the network and traffic features

and for distributing minimal information to compute

a collision-free schedule, thus bounding the signaling

overhead;

4) compute deterministic time schedules in a decentralized

fashion to manage networks rooted to multiple coordi-

nated sinks, while leaving the channel offset computa-

tion based on the RPL rank of each node in the network.

The guideline expressed by item 1) was also exploited in

designing TASA, while the other ones are inherent to DeTAS.

In [18], it has been shown that the guideline of 2) allows

nodes’ queues to be almost empty, as a natural consequence of

a better schedule organization w.r.t. to that of TASA. To shed

some light on these and other features, after having introduced

in Sec. II the 6TiSCH architecture as the technical landscape

behind DeTAS, we briefly recall its theoretical design in

Sec. III.

With regard to item 3), in this paper a DeTAS neighbor-

to-neighbor signaling is described in more details in Sec. IV.

For the sake of completeness, we also mention here the work

of Morell et al. [19], which defined a form of neighbor-to-

neighbor signaling exchanges by exploiting the concept of

label switching in TSCH networks and proposing the use of

reservation to establish and manage tracks between nodes in

the network. In that proposal, the TSCH schedule is built

by collecting information along the track and installing it

during the downstream reservation message, in a RSVP-like

fashion [17]. It has to be noted that the neighbor-to-neighbor

RSVP-like signaling computes the scheduled resources along a

given path between a node in the network and the traffic sink.

Instead, the neighbor-to-neighbor DeTAS signaling computes

the scheduled resources for the routing sub-tree rooted at

a given node in the network: that node spreads aggregated

schedule information which are in turn hop-by-hop unbundled

to compute the schedule of each node in the sub-tree. This

feature is very important, because the signaling overhead is

significantly small, since the schedule computation is dis-

tributed into the network with each DeTAS-enabled neighbor

being able to decide how the schedule of its RPL-children has

to be built.

It is worth to note that the original DeTAS proposal in [18]

was only formulated as a high level algorithm design and many

missing items have been contributed in this manuscript to let

DeTAS become a real protocol ready to use in industrial plants

and beyond. They include a lightweight signaling protocol, the

implementation in the OpenWSN stack, and an experimental

evaluation which actually proofs the theoretical findings of the

original DeTAS formulation. Thanks to these contributions it

is now possible to claim that DeTAS is a real protocol ready

to be used and customized in different industrial settings.

And thanks to the open freely available implementation in

OpenWSN, it can be tested before deployment.

As a major contribution, in Sec. V we deeply show and

analyze DeTAS performances in terms of end-to-end latency,

reliability and duty-cycle by means of experimental results.

Specifically, we only considered single-sink topologies and

discovered that some assumptions on the channel offset reuse,

made in [18] and cited in the guideline 4), are somehow

unrealistic in practical scenarios. In this paper we show that a

neighbor-to-neighbor signaling can be used also to overcome

this issue. Finally, Sec. VI draws concluding remarks and

pictures the envisaged future works.

XXX , VOL. XX, NO. XX, MONTH 2014 3

II. 6TISCH ARCHITECTURE

The IEEE802.15.4 PHY protocol [20] has been the de-

facto standard with the longest-standing impact in low-power

wireless mesh technology, and has been widely used by low-

power battery-powered devices to build LLNs.

The need to interconnect IEEE802.15.4-based low power

networks to the Internet triggered the birth of various WGs

within the IETF, including 6LoWPAN [21] - now 6lo [22]

-, ROLL (the group behind the RPL routing protocol [4]),

and CORE (behind the CoAP web transfer protocol [5]) that

have defined how to fit an IPv6 protocol stack on top of

IEEE802.15.4.

The IEEE802.15.4e standard [8] was published in 2012

as an amendment of the IEEE802.15.4-2011 Medium Access

Control (MAC) protocol only [20]. In other words, it did not

amend the physical layer and therefore, it can still operate on

any IEEE802.15.4-compliant hardware.

Despite that, the IEEE802.15.4e TSCH MAC mode –

which is the main focus of the activities within the 6TiSCH

group, and also of our work – is very different from the

“legacy” IEEE802.15.4 MAC protocol. TSCH combines time

synchronization with channel hopping, to achieve ultra low-

power operation and high reliability, respectively. More-

over, unlike the industrial standards (i.e., WirelessHART [23]

and ISA100.11a [24], [25]) from which it inherits, the

IEEE802.15.4e TSCH focuses exclusively on the MAC layer.

This clean layering lets TSCH fitting under an IPv6-enabled

“upper” protocol stack.

Given the aforementioned appealing features of the

IEEE802.15.4e TSCH, members of both academia and indus-

try have created a new Working Group, 6TiSCH, at IETF to

build IPv6-enabled LLNs, rooted in the IEEE802.15.4e TSCH

MAC layer. The final aim of 6TiSCH consists in filling the

gaps between IEEE lower layers of an industrial IoT protocol

stack and the IETF higher layers, to enable an open standards-

based protocol stack for deterministic wireless mesh networks.

As described in [26], when possible, the 6TiSCH archi-

tecture will reuse existing protocols such as IPv6 Neighbor

Discovery (ND) [27], IPv6 over Low power Wireless Per-

sonal Area Networks (6LoWPAN) [21], and the RPL [4],

with the minimum adaptation required to meet criteria for

reliability and determinism within the mesh, and scalability

over the backbone. 6TiSCH will fill the missing gaps within

the architecture, so that IETF 6LoWPAN Header Compression

and RPL, which enables respectively IPv6 encapsulation and

routing, can optimally operate on top of the TSCH MAC layer.

A. The MAC layer: IEEE802.15.4e TSCH

The IEEE802.15.4e TSCH is suitable for deterministic

traffic, i.e., traffic flows with an emission rate and routing

path patterns that are well-known in advance. In fact, it

combines together Time Division Multiplexing (TDM), time

synchronization and time formatted into slotframes, resulting

in a deterministic wireless MAC standard.

All nodes in a TSCH multi-hop network are synchronized.

Time is sliced up into timeslots which are grouped into one

or more slotframes. A slotframe continuously repeats over

time, and its duration can be fixed to meet the application

requirements (e.g., available bandwidth, lower latency, power

consumption). In a TSCH network, the bandwidth is pre-

formatted in a TDM fashion. Thus, unlike the traditional

CSMA/CA-based networks, there is no contention for gaining

access to the channel (unless allowed explicitly in some

specific timeslots, as detailed in the next paragraph).

Due to its scheduled nature, all nodes follows a common

schedule. The latter is a matrix of scheduled cells, each of

them identified by a slotOffset, and a channelOffset

[28]. A cell represents an atomic unit of bandwidth that can be

allocated by a centralized or distributed scheduling algorithm.

A cell can be dedicated or shared: dedicated cells (those

scheduled by DeTAS, as detailed in this paper) are assigned to

the communication of a pair of neighbors; shared cells are used

by more then two communicating neighbors in a CSMA/CA

fashion (e.g., the static “minimal” configuration [11] deals only

with this kind of cells).

Because of the channel hopping nature of TSCH, the

scheduling algorithm does not care of the actual frequency the

communication happens on, since it changes at each slotframe

iteration. In fact, the channelOffset is translated into a

frequency using a specific translation function which implies

communicating neighbors to “hop” between the different avail-

able frequencies when exchaning data. Such channel hopping

technique efficiently combats multi-path fading and external

interference.

By following the schedule, each node knows when (i.e., at

which time slot), and on which channel (based on the channel

offset) it can exchange (either transmit or receive) data with

its neighbor nodes.

B. The routing protocol: RPL

The RPL Routing Protocol [4] plays a key role in the

6TiSCH architecture, in that it organizes the low power mesh

in form of a Directed Acyclic Graph (DAG), rooted at a

small set of LLN sinks. For each sink, a Destination Oriented

DAG (DODAG) is created by accounting for link costs, node

attributes/status information, and an Objective Function, which

maps the optimization requirements of the target scenario.

In this paper, we consider the simplest topology with a

single sink, also referred as DODAGroot. Although RPL

can manage several kinds of traffic flows (to and from the

DODAGroot or between any pair of nodes in the network),

we have focused on the dominant multipoint-to-point traffic,

i.e., that flowing from the nodes in the network towards the

DODAGroot and more related to monitoring applications in

industrial environments.

RPL employs a gradient strategy, which introduces the

concept of rank to define the individual position of a node

with respect to its DODAGroot. A fundamental property of a

RPL-organized network is that the rank should monotonically

decrease along the DODAG and towards the destination, in

accordance to the gradient-based approach. In general, the rank

is computed based on path metrics, but it is used to let the

routing topology being loop-free. In details, the rank is a 2-

bytes value, whose most significant byte, called DAGrank,

XXX , VOL. XX, NO. XX, MONTH 2014 4

is used to compare the position of nodes within the network.

As an example, if the DAGrank of a node A is lower than

the DAGrank of another node B, A could be safely a parent

for B; if the DAGrank of two neighbors tie, none of them

can include the other as its own parent.

RPL can adopt several metrics for computing the rank and

the DAGrank. In designing DeTAS, we have forced the

DAGrank to be computed according to the minimum hop dis-

tance metric. According to the standard [4], the DODAGroot
is assigned a DAGrank equal to 1. Hence, the DAGrank
of given source node in the network is exactly equal to the

minimum hop distance from the DODAGroot augmented by

1. However, this approach can be easily extended to account

for different metrics, e.g., the Expected Transmission Count

(ETX).

III. DETAS ALGORITHM DESCRIPTION

The DeTAS algorithm has been designed for building op-

timum collision-free schedules in multi-hop IEEE802.15.4e

TSCH networks. Using a tiny amount of information, locally

exchanged among neighbor nodes, DeTAS allow to compute

the schedule in a distributed manner. Whilst scheduling the

traffic, DeTAS manages queue levels, avoiding traffic conges-

tion and, thus, possible packet drops due to overflow of nodes’

memory buffer. Finally, DeTAS can exploit the availability of

the 16 IEEE802.15.4 frequencies [8] in order to: parallelize

several transmissions at the same time, reduce the number of

active slots per slotframe (i.e., the network duty cycle), and

increase the reliability of wireless links.

In a 6TiSCH network running DeTAS, all devices are as-

sumed to be synchronized with the same slotframe, having size

equal to S time slots. Moreover, all nodes follow a common

TSCH schedule having width equal to L timeslot, with L ≤ S,

and height equal to W channel offset, with W ≤ 16. Such

schedule is set up minimizing its length, i.e., the number of

active slots, L, needed for correctly delivering the network

traffic (expressed as number of packets per slotframe) to

the DODAGroot. More specifically, all transmissions are

scheduled in consecutive L slots, leaving the remaining S−L
slots within the slotframe available for packet transmissions

related to other applications (e.g., other RPL instances). The

length L of the schedule is computed by the DODAGroot
using the formulation introduced in Sec. III-C. Instead, the

width of the schedule, i.e., the number of available channel

offsets, is at least W = 3, since frequencies can be reused

every 3-hops, thus avoiding also collisions due to interference1

[29],[30].

A. Network Topology and Traffic

Being designed for 6TiSCH networks, hereafter we will

use the 6TiSCH terminology [28], while describing the De-

TAS technique. Fig. 1 shows an example network which

is a destination-oriented tree graph coordinated by the

DODAGroot. Given a network with N source nodes, let

1In our experiments (reported in Sec. III) we tested several values of W
parameters in the range [3, 12].

{ni}, with i = 1, . . . , N , be the set of all source nodes, and n0

the DODAGroot. Furthermore, for each node ni it is possible

to identify the set ch(ni) of its children, and the sub-tree STi,

composed by ni itself and all the nodes connected to it through

multi-hop paths. Moreover, Table I summarizes the notation

used throughout this paper.

r=2n

r=3

r=4

r=5

r=1

1 n 2 n 3

n 6n 4 n 5 n 7 n 8 n 9

nn10 n n n n n n n11 12 13 14 15 16 17 18

n n n n n n n n2625242322212019

n 0

DODAG root
ST

1

ST
2

ST
3

Fig. 1: Example of a LLN with a DODAGroot acting as

application sink and 26 source nodes (r is the DAGrank).

TABLE I: List of used symbols.

Symbol Definition

S Number of slots within a slotframe
L Length of DeTAS schedule in slots
W Height of DeTAS schedule in number of channel

offset
N Number of source nodes in the network
n0 LLN sink node
ni, i = 1, ..., N Source nodes
ch(ni) Children nodes of the node ni

STi Subtree rooted to the node ni

qi Data traffic generated on the node ni (local packet
number)

Qi Data traffic generated from the subtree STi (global
packet number)

pi Parent node of the node ni

r DAGrank of nodes representing the distance in
number of hops from the DODAGroot aug-
mented by 1

QM Maximal global packet number among the children
of the DODAGroot

nM Child of the DODAGroot having the maximal
global packet number Qi

qM Local packet number of the node nM

α Number of transmit slots scheduled consecutively
in the node nM

Le Length of the schedule of the even list
Lo Length of the schedule of the odd list
Q0 Data Traffic generated from all the source nodes
Qe

0
Data Traffic generated in the subtrees rooted to
nodes in even list

Qo

0
Data Traffic generated in the subtrees rooted to
nodes in odd list

β The parameter that balances even and odd data
traffic (Qe

0
, Qo

0
)

ncut Node which schedule is divided between the even
and odd list

STcut Subtree rooted at the node ncut

DeTAS is a traffic-aware algorithm that builds the schedule

based on the traffic generated by each source node. We assume

that the network supports a multipoint-to-point traffic. In

XXX , VOL. XX, NO. XX, MONTH 2014 5

detail, every source node in the set {ni} generates a constant2

integer number of packets, i.e., the local packet number, qi,
within a slotframe, destined to the DODAGroot. For each

node ni belonging to the network with i = 1, . . . , N , we

define also the global packet number, Qi, as the total amount

of packets generated within a slotframe by the nodes belonging

to the sub-tree STi.

B. Decentralized scheduling

To setup the schedule in a distributed manner each node

ni needs to know some traffic information: (a) the amount of

traffic that it will receive from its children, and (b) the amount

of traffic it will transmit to its parent node pi. Therefore ni

computes locally its global packet number, Qi, as the sum of

its local packet number, qi, and the global packet numbers

of its children, and then forward such information to its

parent node, pi. In a recursive way, thanks to the information

exchanged at one hop distance, the DODAGroot, n0, will

be able to calculate the overall traffic of the subtree, Q0 as

well as the local packet numbers of its children. Starting from

the aforementioned traffic information, exchanged at 1-hop

distance, the schedule is built in a distributed fashion, where

each node, ni, allocates some slots within the schedule to its

children. The built schedule is collision free for the whole

network and keeps the queue utilization as low as possible. In

what follows, we detail the rules adopted in designing DeTAS

and the resulting scheduling technique.

a) Scheduling the Slot-Offsets: First of all, each DeTAS-

enabled node in the network schedules the transmission slot

in such a way to be synchronized with the reception slot of

its parent. Afterwards it allocates on its own which cells it

will use for receiving packets from its own children. In fact,

a node ni does not perform any scheduling decision until it

is informed by its parent pi about the Qi cells to be allocated

as transmitting (or tx) slots. The allocation of rx slots to the

children is performed in a recursive way, starting from the

DODAGroot and going downward towards the leaf nodes.

Once ni has been made aware of which are its tx cells, it

can decide its Qi− qi rx cells (i.e., those needed for receiving

packets from its children) and it makes sure that these two sets

of cells are not overlapped. In particular the tx and rx cells are

alternated (i.e., as depicted in the example in Fig. 2), which

means that if a type of cell is scheduled in an even slot the

other type should be scheduled in the next odd slot. Then, ni

splits its rx cells in subsets, with each subset being assigned to

a child node. In order to fulfill the requirements each child, the

corresponding subset is sized according to the supplied global

packet number. In the end, each child is made aware by ni

about the assigned subset of cells, and will configure such

cells as tx ones. In the example of Fig. 2 the node n4 splits

its subset of rx slots in two subsets, which in term should

coincide with the set of their tx slots. Such policy does not

allow two nodes having a common parent to transmit using

the same cell, thus it overcomes the hidden terminal problem.

2Such an assumption is supported by the fact that traffic is typically different
between sensors, but relatively constant over time in emerging heterogeneous
embedded applications. Actually, with an efficient signaling, DeTAS could
also support variable bit rate traffic flows.

To avoid any kind of collisions, DeTAS does not allow two

nodes with the same DAGrank to schedule transmissions

in the same timeslot. With this feature DeTAS can build

collision-free schedule, even being agnostic about the physical

connectivity between nodes in the network. Eventually, DeTAS

overcomes the exposed terminal problem too.

Interestingly, by alternating tx and rx cells, the queue of

a node is emptied of 1 packet, as soon as it receives a new

one, and viceversa. Thus, buffer overflow is avoided and queue

utilization is kept as low as possible.

Obviously, to allow packets to be correctly sent and re-

ceived, the tx cells of the children ∈ ch(ni) must be synchro-

nized with the rx cells of ni.

For the sake of clarity, and in order to add some formaliza-

tion to the description, we introduce the following definitions.

Definition 1: A node ni is even-scheduled, if its tx cells are

located in even positions within the scheduling interval, while

its rx cells are located in odd positions.

Definition 2: A node ni is odd-scheduled, if its tx cells are

located in odd positions within the scheduling interval, while

its rx cells are located in even positions.

A sub-tree STi rooted at a node ni can be even- or odd-

scheduled, according to the following additional definitions.

Definition 3: A subtree STi is even-scheduled, if all nodes

∈ STi with even DAGrank are even-scheduled and those

with odd DAGrank are odd-scheduled.

Definition 4: A subtree STi is odd-scheduled, if all nodes

∈ STi with even DAGrank are odd-scheduled and those with

odd DAGrank are even-scheduled.

Fig. 2: Odd-schedule for nodes belonging to ST4 of the

destination oriented tree in Fig. 1 (note that n4 has an even

DAGrank).

Therefore Fig. 2 shows an example of an odd schedule

followed by the sub-tree ST4 of the destination oriented tree

in Fig. 1, and, details the time slots reserved to the nodes

n4, n10, n11, n19 and n20. We can see that n4, having odd

DAGrank is even-scheduled and spends the Qi even time

slots in transmission, the first Qi − qi odd time slots in

reception, and the last qi odd time slots in idle (having already

received all the packets from its children n10 and n11).

b) Scheduling the Channel-Offset: Besides the allocation

of tx of rx cells, the channel offset is changed at each hop

XXX , VOL. XX, NO. XX, MONTH 2014 6

and the same channel offset is reused only after W -hops. In

particular, for each source node ni, DeTAS allocates tx cells

with a channel offset equal to [(DAGrank−2) mod W] (for

transmitting packets to the correspondent parent pi), and rx

cells with channel offset equal to [(DAGrank−1) mod W]
(for receiving packets from children ∈ ch(ni)). If W = 1,

there is a single channel offset used for the whole schedule,

hence this setting does not exploit the bandwidth increase

available with multiple channel offsets and collisions can occur

when two or more motes are transmitting at the same time.

If W = 2, packet collisions can happen when a node ni

and its parent pi are respectively receiving (from a child) and

transmitting (to the parent) at the same time. With W ≥ 3, the

channel offset is reused at least every 3 hops. This means that

the absolute difference between the DAGranks related to two

nodes transmitting in the same cell (i.e., on the same timeslot

and channel offset) can be 0 or ≥ 3. In the latter case, there

will be ideally no collision, due to the minimum hop count

metric used for building the destination oriented tree. Instead,

if the aforementioned difference is 0, some collision due to

mutual interference can occur.

c) Considerations: It is worth noting that a node ni can

accomodate all the schedule (i.e., tx or rx cells) in a scheduling

interval of 2Qi consecutive slots within the slotframe. In fact,

within this interval, the Qi even (odd) slot offsets could be

used for scheduling tx cells (i.e., the needed cells to deliver

Qi to the parent pi), while the first Qi − qi odd (even) slot

offsets could be used for scheduling rx cells (i.e., the cells

needed by ni for receiving Qi − qi packets from the other

nodes ∈ STi). In the remaining qi odd (even) slot offsets,

the node will be idle. Hence, the node ni must be informed

only about the lowest boundary of such interval and about the

policy for alternating tx and rx cells. Such information can be

carried with a small overhead, with the additional advantage

of having an easy management of allocated resources into

constrained devices.

Moreover the nodes in a scheduled sub-tree allowed to

transmit in the same timeslot have all an even (or an odd)

DAGrank. Moreover, with such scheduling technique, it

is not possible that two nodes with the same DAGrank
can transmit simultaneously. As a consequence, it is possi-

ble to schedule simultaneously two sub-trees rooted at the

DODAGroot, with one being even-scheduled and the other

one being odd-scheduled. The schedules will be perfectly

interleaved, with at most a single node per DAGrank being

allowed to transmit packets to its parent.

C. Schedule length L

Even though the schedule is built with a distributed ap-

proach, it is initialized by the DODAGroot, that computes

the length L of the schedule, and selects, among the sub-trees

rooted at its children, the ones to be even-scheduled, and thus,

those to be odd-scheduled.

Being DeTAS a traffic-aware scheduling algorithm, the

length, L, of the schedule is a function of the network traffic.

In fact, the DODAGroot can receive at most one packet per

time slot (i.e., L ≥ Q0). At the same time, the child of the

DODAGroot, referred hereafter as nM , having the maximum

global packet number, i.e., QM = maxni∈ch(n0) Qi, will need

a schedule long enough for containing QM transmit slots and

QM − qM receive slots, i.e., L ≥ 2QM − qM . For every

randomly scattered physical topology, the proposed DeTAS

scheme is able to find the optimum schedule with the minimum

length, given by:

L = max {2QM − qM , Q0} . (1)

To this aim, DeTAS simultaneously guarantees that a single

sub-tree rooted at a sink’s child is even-scheduled, while the

sub-tree rooted at another sink’s child is odd-scheduled, thus,

they will not incur in any kind of collision, since the related

schedules are perfectly interleaved. Therefore, a DODAGroot
running DeTAS must divide its children in two lists, i.e., an

even list and an odd one. The sub-trees rooted at the children in

the even list could be sequentially even-scheduled, in a time

interval long Le time slots. At the same time, the sub-trees

rooted at the children in the odd list could be sequentially

odd-scheduled, for a time interval long Lo time slots. Since

the schedules associated with the two lists can be perfectly

overlapped, the longest schedule between the two determines

the length L of the whole network schedule.

However, for allowing the coexistence of several applica-

tions sharing the same slotframe structure, the schedule length

related to a given application running on a network must be

bounded to the minimum possible given by eq. (1). In this

case, the DODAGroot can exactly calculate the length of

the schedule based on the information about the global and

local packet numbers provided by its own children.

As a consequence, DeTAS has to let the even and odd lists

be load balanced, in order to get their schedule lengths as

close as possible. This load balancing problem falls into the

class of multiprocessor scheduling problems [31]. The greedy

heuristic employed in this paper is the same described in

[32]: the DODAGroot’s children are ordered in a descending

order, according to their global packet number. Then, they

are appended subsequently to the list (even or odd) with the

current smallest sum of global packet numbers.

DeTAS assumes a different behavior depending on the

traffic loads of the children of the DODAGroot. Specifically,

if QM ≥ Q0/2, the node nM will obviously be the only one in

the even-list. With DeTAS, the sub-trees rooted at the nodes in

the odd-list will be subsequently odd-scheduled. At the same

time, the sub-tree rooted at nM will be even-scheduled for the

first 2(QM − α) slots, with

α = min{2QM −Q0, qM}; (2)

subsequently, the schedule of the node nM will contain α
additional consecutive slots for delivering α packets to the

DODAGroot. In the schedule related to nM illustrated in

Fig. 3(b) it can be noticed that the first 2(QM − α) slots

are even scheduled (i.e. alternated transmit and receive slots),

whereas the remaining α slots are scheduled consecutively.

Moreover in [18], it has been shown that, with this technique,

eq. (1) is always fulfilled when QM ≥ Q0/2.

The previous strategy is applied in some bounded cases,

i.e., when a child node of the DODAGroot is the bottleneck

XXX , VOL. XX, NO. XX, MONTH 2014 7

(a) Schedule pattern of a generic node of the network.

(b) Schedule pattern in the case QM ≥ Q0/2.

(c) Schedule pattern of a node in the case QM < Q0/2 and the
Qe

0 6= Qo

0, which is divided between the even and odd list.

Fig. 3: Schedule patterns of a node ni.

for at least one half of the traffic offered by the network.

As a matter of fact, the DODAGroot will have more than

two children in dense network deployments, and the routing

protocol will load balance the traffic among the children.

Hence, the most common network scenario entails the case

QM < Q0/2, i.e., the child of the DODAGroot having the

maximum global packet number, nM , will manage less than

one half of the traffic flowing towards the DODAGroot. In

this case, many techniques could be found to load balance

the even and odd list. We found that the easiest solution is

to perform the following operations: (i) for each list calculate

the sum of the global packets numbers related to the root

nodes of the subtrees in the list itself; (ii) select the list with

the biggest sum; (iii) within this list, select the subtree rooted

at the node, ncut, with the highest global packets number;

(iv) split the schedule of STcut in two parts, so that the first

part will be placed at the beginning of the network schedule

according to the same scheduling parity of the selected list,

while the second part will be scheduled in the end of the

network schedule according to the opposite scheduling parity.

In this context, DeTAS decides the sizes of the two parts of

the schedule related to STcut: since the target is to compute

the schedule with the minimum length (i.e., L = Q0), DeTAS

has to make sure that the resulting lengths of the even and odd

schedules are as close as possible.

In details, DeTAS reduces the discrepancy between the sum

Qe
0, computed over the global packet numbers related to the

even-list, and the sum Qo
0, computed over the odd-list, to 1

(if Q0 is odd) or 0 (if Q0 is even). It is worth to note that

Qe
0 + Qo

0 = Q0. The DODAGroot computes the value β,

which balances the two lists:

β =

⌊

Qe
0 −Qo

0

2

⌋

. (3)

If β ≥ 0 (β < 0)3, DeTAS will even-schedule (odd-schedule)

firstly the sub-tree STcut for 2(Qcut − |β|) time slots and,

then, all the sub-trees related to the other nodes appended in

the even-list (odd-list). Simultaneously, it will odd-schedule

(even-schedule) firstly all the sub-trees related to the nodes in

the odd-list (even-list), then the sub-tree STcut for exactly 2|β|
time slots. The resulting schedule length is L = Q0, as already

shown in [18]. Note that in this traffic load conditions, ncut

should be informed by the DODAGroot about when to even-

and when to odd-schedule STcut. This information must be

accordingly updated and propagated along STcut. For the sake

of clarity, Fig. 3(c) sketches an example schedule for ncut.

IV. DETAS IMPLEMENTATION

In order to evaluate the performance of DeTAS we have

implemented it in the OpenWSN project [15]. OpenWSN

is an implementation of a standards-based stack and, to the

best of our knowledge, it is the first and unique open-source

implementation of the IEEE802.15.4e TSCH standard. On top

of IEEE802.15.4e TSCH, OpenWSN implements Internet of

Things-related standards [3], namely 6LoWPAN, RPL and

CoAP. In order to schedule some cells, each node must be

able to exchange information with its parent and children.

It should transmit the Qi and qi parameters to the parent

node and receive back the necessary information. In a DeTAS

enabled network, the portion of the network schedule related

to a given node is shaped according to one of the three patterns

described in Fig. 3 and discussed in the previous section. The

amount and type of information needed from a node to build

its own schedule will depend strictly on the schedule pattern

of the node. However, despite some differences, the following

parameters are used by all configuration patterns:

• Ts: slotoffset of the first cell allocated for that node

and it indicates where to start scheduling cells for its

communication;

• EO: parameter specifying if the sub-tree that a node

belongs to is even or odd-scheduled;

In the following we describe in more details the different

node patterns, by indicating the parameters needed by a

DeTAS-enabled node to build them.

• PATTERN 1: it is the most common node schedule

installed by DeTAS, and it is pictured in Fig. 3(a). For

building such node schedule, a node needs to get from

its parent only the data set {Ts,EO}. The schedule will

be built by simply alternating Qi tx cells with (Qi − qi)
rx cells, starting from Ts. The parity of the schedule

is computed based on the EO parameter and on the

DAGrank.

3In the rest of the paragraph, we indicate the alternative case and the related
settings in brackets.

XXX , VOL. XX, NO. XX, MONTH 2014 8

• PATTERN 2: this pattern is used when QM ≥ Q0/2.

Fig. 3(b) shows a example of such pattern. As already

detailed in the previous section, this pattern can be held

by a single node in the network, i.e., the child of the

DODAGroot with the highest global packet number.

Such node will firstly even-schedule (QM −α) cells, than

will schedule α consecutive tx cells, with α given by eq.2.

In addition to the common data set, the α parameter is

needed in order to schedule the final consecutive cells.

Therefore the related data set is given by {Ts,EO, α}.

• PATTERN 3: this schedule (pictured in Fig. 3(c)) can be

present on a node when QM < Q0/2 and Qe
0 6= Qo

0

are both satisfied. As described in section III, the ncut

node will allocate its cells in two parts. The first part,

composed by Qcut−β cells, will be even (odd) scheduled,

while the second part, composed by β cells, will be odd

(even) scheduled, with β being set according to eq.(3).

In addition to the common data set, a node needs to be

informed about the β parameter, for calculating the length

of the two parts of its schedule, and the starting slot offset

Tscut for the second part of the schedule. Therefore the

complete data set in this case is {Ts,EO, β, Tscut}. It

is worth noting that such kind of schedule can be present

on a single node per DAGrank in the network.

DeTAS must be able to recompute schedules when nodes

join or leave the network. To this aim, a DeTAS Version

Number (DVN), similarly to the DODAGversion number of

RPL, is managed by the DODAGroot to control the schedule

version. Such parameter is initialized to 0 at the network

bootstrap and than incremented each time the DODAGroot
triggers a new schedule distributed computation. Indeed, a new

schedule computation is needed during network formation and

whenever the topology and the traffic conditions change.

A. DeTAS MAC command frames

The DeTAS information exchange has required the defini-

tion of two “ad hoc” MAC command frames. Although the

IEEE 802.15.4e amendment introduces the Enhanced Beacons

(EBs), which could be used for exchanging minimal informa-

tion about the schedule, command frames are more appropriate

to DeTAS for the inherent possibility of quickly building the

schedule. For the sake of completeness, we mention that the

6TiSCH working group is defining new Information Elements

(IEs) to be used for cell negotiation and scheduling [33].

However, the schedule objects defined in such draft are still

not suitable for the requirements of DeTAS. One of the aim

of this paper is to highlight another form of schedule object,

that eventually could be integrated in such working draft.

According to the signaling required by DeTAS, a node ni

has to transmit to its preferred parent, pi, some information

about its Qi and/or qi parameters. For this purpose, the

Request MAC command frame (REQ) has been defined and

structured as shown in Fig. 4(a). This command frame is sent

as unicast only to the preferred parent, either when a node

joins the network or when Qi changes (i.e., in the case the

node ni receives a new REQ from one of its children).

In turn, with a broadcast Response MAC command frame

(RES), a parent can instruct its own children about the rules

(a) REQ Command frame format.

(b) RES Command frame format in the PATTERN 2 case.

Fig. 4: Frame formats for the REQ and RES commands.

(a) Format for the PATTERN 2 case.

(b) Format for the PATTERN 3 case.

Fig. 5: Format of the last neighbour (n-th) field for the RES

command.

to be followed for building the DeTAS schedule. The RES

payload contains detailed information for each of the children

receiving the message, as shown in Fig. 4(b).

As introduced earlier, the amount of scheduling information

to be sent by a node to a specific child depends on the pattern

shape that the child must follow when building its schedule.

The most common pattern to be communicated is PATTERN 1,

which requires 4 bytes per child (2 bytes for the node ID and 2

bytes for the Ts time offset). It has to be noted that a node can

have only a single child to be made aware about a different

pattern: a single child of the DODAGroot can be selected

to schedule according to PATTERN 2 (which requires a 5-

bytes long field); a single node per DAGrank can be selected

to schedule according to PATTERN 3 (which requires a 7-

bytes long field), so that a single child of a given node can

be selected to schedule according to PATTERN 3. In Fig. 4(b)

it is shown the RES command format in the case where all

the neighbors have PATTERN 1 schedule. If a neighbor has

PATTERN 2 (or a PATTERN 3) schedule, the last field of

the RES command frame (i.e., the data related to the N-th

neighbor), is substituted with the field shown in Fig. 5(a) (or

in Fig. 5(b)). Therefore the RES command payload contains:

XXX , VOL. XX, NO. XX, MONTH 2014 9

(i) three bytes where are stored common information to all the

neighbors; (ii) N-1 fields with 4 bytes each, required for the

PATTERN 1 scheduled neighbors; (iii) The last field which

can be 4, 5 or 7 bytes according to the particular PATTERN

scheduled for the last neighbor.

As a consequence, when a RES command frame is built

by a node, the common information useful to all neighbors

is appended at the beginning of the payload: (i) the DVN,

(ii) the number of neighbors that are notified in the command,

(iii) the channel reuse factor W (whose setting has been widely

described and analyzed in Sec. V), (iv) the schedule PATTERN

of the last neighbor, and (v), finally, the EO flag (which is

common to all children). The scheduling information related

to each child is then appended, making sure that, if a child has

to be scheduled according to PATTERN 2 or PATTERN 3, the

correspondent field will be appended as last. This technique

is used for a fast parsing of data on the receiving side. Note

that the length of the RES command frame depends on the

number of children and on the scheduling pattern related to

the last field appended.

B. DeTAS Signaling

The command frames described in the previous subsection

are sent by a node according to some triggering events and

trigger other events when received on a given neighbor. In the

following list we describe the protocol used to exchange such

command frames, thus making DeTAS a viable solution for

scheduling in large networks; in details:

• REQ transmission: the REQ command is sent from a

node ni to its preferred parent pi. This event is triggered:

(i) when the node has just joined the network and it has

not yet a DeTAS schedule; (ii) when traffic load of the

node has changed (i.e., Qi or qi) and, therefore, it requests

a new schedule; (iii) when the node has recognized

that it is using a DVN which is smaller than the one

advertised from the LLN sink. When ni sends a REQ,

it waits for receiving a RES command from pi. It may

happen that one between the REQ and RES commands

is lost. In order to cope with this issue, the node ni will

transmit periodically REQ commands until it receives a

RES command with the scheduling information required.

• REQ reception: a node ni receives this command from

one of its children ∈ ch(ni) in two cases: (i) when the

child is asking for a schedule; (ii) the child recognizes to

have an outdated schedule and sends a REQ command

to get an update. In the first case (i), if ni is not a

DODAGroot, it will update its own Qi parameter and

trigger a REQ transmission to its parent pi. Hence, at each

hop a new REQ will be created until the DODAGroot is

reached. When the DODAGroot receives a new request,

it calculates the new schedule with the updated data

and triggers a RES command transmission. In case (ii),

the node ni, will send a RES command containing the

information necessary to build the current schedule.

• RES transmission: the RES command is sent from

a node to all its children as a broadcast frame. Four

condition can trigger the transmission of a RES com-

mand: (i) the DODAGroot has just (re)computed the

schedule after receiving a REQ; (ii) a non-DODAGroot
node has just processed a RES command frame and has

(re)computed the schedule for its children; (iii) an update

request has been received; (iv) a node recognizes that one

of its children has not received a schedule belonging to

the current DVN, thus it sends an update with the right

schedule.

• RES reception: When receiving a RES command a node

ni firstly checks if it has a new DVN, than it checks the

payload to find if there is any scheduling information to

be consumed. If both conditions are verified the node

builds its schedule according to the information received,

and it calculates and sends the schedule to its children (if

any).

Since a RES command is sent in broadcast, many chil-

dren will receive such information at the same time. As

they compute the schedule for their own children, they will

start sending RES commands simultaneously, with possible

collisions. In fact, RES commands are sent according to the

6TiSCH “minimal” schedule, which provides a set of shared

cells known by all nodes in the network and used in Slotted

Aloha mode. If the network is dense, collisions among RES

commands could happen. To encompass this problem, the RES

command transmission is delayed by a random time period4.

Fig. 6: IE format that contains the DVN information.

Another important facet related to the DeTAS signaling is

that related to the DVN. A DVN is communicated into a RES

command and used by the receiving nodes to determine its

validity: only RES commands which contain a DVN greater

than the current one will be accepted. In addition, the DVN is

inserted into the IEs of data and EB frames. Fig. 6 illustrates

the IE that contains the DVN and the termination IE. A node

can check in each received frame the DVN and recognize if

there is any action to be taken. For example if the node ni

receives a frame with a DVN bigger than the one it is using,

then it recognizes it has to send a REQ. If it receives a frame

from a child with DVN smaller than the one it is using, it

recognizes it has to send a RES.

C. Implementation in OpenWSN

Fig. 7 describes the software architecture of the OpenWSN

project. Each protocol in the stack is depicted as a horizontal

layer whereas the vertical module implements some common

functions which are used from all the different layers of the

stack.

In order to implement the algorithm the “DeTAS” compo-

nent has been added to the OpenWSN stack. The relations

4In our implementation we have considered a delay which varies in the
range from [1:5] slotframes with a uniform distribution of probability.

XXX , VOL. XX, NO. XX, MONTH 2014 10

of the “DeTAS” component with the existing modules of

OpenWSN are also described in Fig. 7.

In particular the new component is positioned inside the

MAChigh module. The “DeTAS” component in its own is

divided in three logical parts. (i) “Signaling” is the component

that handles the reception and the transmission of REQ and

RES command messages described in the previous subsec-

tion. (ii) “Scheduling” implements the scheduling functions.

It has access to the existing “SCHEDULE” component in

order to execute the schedule calculated according to DeTAS

algorithm, and at the same time, it is accessed from the

“Signaling” component to create the RES command payload.

(iii) The last part, “Attributes” implements the data structures

which are necessary to store all the DeTAS related information

and the functions to handle them.

The relations of the “DeTAS” components with the existing

OpenWSN components, as it can be verified from the Fig.7,

are mainly unidirectional and the existing modules are ac-

cessed without any need to modify them. The only exception

is the relation with the “RES” component. In this case the

existing ‘‘RES” component which handles the forwarding of

the packets from the lower layer to the upper ones and vice

versa, is modified in order to handle the command packets

defined for DeTAS. In addition it accesses the “Signaling”

component for two reasons. First, when it needs to create the

DVN IE in the data packets that are transmitted from the mote.

And second, to notify the “Signaling” component in the case

there is a mismatch between the DVN of the mote and the

DVN of a received packet.

As the rest of the existing module, DeTAS will have access

to the cross layer functions. Among other functions accessed,

from the “IDMANAGER” it will retrieve the rank, which is

obtained originally from the RPL protocol.

V. EXPERIMENTAL EVALUATION

The performance of the DeTAS implementation in the

OpenWSN protocol stack (described in Sec. IV) has been

evaluated over some network topologies deployed with TelosB

motes [34].

OpenWSN by default provides a very basic schedule for all

nodes in a network. In details, it implements the “minimal”

configuration schedule [11] over a slotframe structure long

exactly 101 timeslots. Each timeslot can be configured as one

among the following possibilities:

• advertisement (ADV): slot reserved for the transmission

of EBs;

• transmission (TX) or receive (RX): slots respectively

scheduled for data transmission or reception;

• TX/RX: shared slots used for both transmissions and

receptions of all kinds of frames with Slotted Aloha

contention access;

• serial receive (SERIALRX): slots reserved for the com-

munication with the serial port.

At bootstrap, each node is preconfigured to run an initial

schedule formed by an ADV slot followed by 5 shared TX/RX

slots (with an associated channel offset equal to 0). Such slots

are positioned at the very beginning of the slotframe structure.

Fig. 7: DeTAS module inside OpenWSN stack.

Fig. 8: Slotframe structure used in the experiments.

In addition, 3 SERIALRX slots positioned in the end of the

slotframe are reserved for serial communication. Fig. 8 shows

such basic schedule. This configuration could be exploited for

maintenance operations and data exchange as well.

However, in very dense networks with huge traffic require-

ments, such setting is not sufficient in terms of bandwidth.

Some dedicated cells (i.e., TX or RX) could be installed to

XXX , VOL. XX, NO. XX, MONTH 2014 11

avoid collisions and increase the network bandwidth. Hence,

the remaining 93 slots, as pictured in Fig. 8, are scheduled

by DeTAS, which provides indeed a technique for configuring

dedicated cells. Although the example shows a DeTAS sched-

ule using 3 channel offsets (i.e., W = 3), we have explored the

adoption of several values for W . The impact of this setting

on the network performance has been thoroughly evaluated

and will be discussed in the remaining part of this section.

In order to evaluate the efficiency of DeTAS in managing

multipoint-to-point traffic flows, each source node runs an

application to send dummy data toward the DODAGroot.
In details, at the network bootstrap, whereas nodes join the

network, DeTAS updates the network schedule through some

signaling packets (those described in Sec. IV). When a node

joins the network, signaling packets are conveyed in both

“minimal” shared slots (i.e., for TSCH joining, RPL DIO

exchange, and DeTAS RES command frames) and dedicated

slots just allocated by DeTAS (i.e., for DeTAS REQ command

frames). Once the network is formed, source nodes starts

sending periodically data according to the aforementioned

application.5 Specifically, a node generates a packet every 2
slotframe cycles, i.e., 1 packet every 3.03 seconds.

Since packets can be lost due to the mutual interference

among nodes using the same cell, we have overprovisioned

the number of cells installed by DeTAS in order to allow for

retransmission. In details, the local packet number related to

each node ni in the network has been configured as qi = 2.

In other words, a source node will install at least 2 cells

per slotframe to deliver the data it has generated toward the

DODAGroot. Since the traffic generation rate is equal to 0.5
packet per slotframe, the available cells for the transmission

of a single packet are 4. In general, a data packet can be

retransmitted several times until either it is acknowledged

at the MAC layer (i.e., it has been correctly received by

a neighbor) or the number of maximum retries has been

reached [8]. In the experiments, we have varied also this

parameter, in order to understand the tuning rule of thumb

to be used in industrial deployments.

For testing the efficiency of DeTAS, the network topologies

deployed are described in the following list:

1) A double chain topology is able to characterize the

network depth and complies with DeTAS. In fact, at

each instant, only a single node per DAGrank is

allowed to transmit. Among these, nodes with an odd

DAGrank belong to the sub-tree related to a child of

the DODAGroot, while nodes with an even DAGrank
belong to the sub-tree related to another child of the

DODAGroot. Both sub-trees can be represented with

a chain topology without loss of generality. Fig. 9(a)

pictures an example of double-chain topology.

2) A binary tree topology is able to characterize the

network width. Hence, this topology (sketched in

Fig. 10(a)) permit us to assess the DeTAS performance

when used in almost realistic dense networks.

With the double chain topology it is possible to investigate how

5We have used the DVN field to let nodes know that the network is
completely formed.

1 3 5 2321

0

DODAG root

2 4 6 2422

. . .

r=1 r=2 r=3 r=4 r=12 r=13

. . .

(a) Topology.

(b) Testbed (the first five hops).

Fig. 9: Double-Chain (a) Topology and (b) Testbed.

the performance of DeTAS changes by increasing the diameter

of the network. On the other side, the binary tree topology

allows to investigate the sensitivity of DeTAS to the density

of nodes. As a such, the findings of this experimental campaign

can be also used to approximately characterize DeTAS also in

different scenarios, based on the network diameter and node

density. For the sake of clarity, Table II summarizes the list

TABLE II: Set of parameters used for experiments

Binary Tree (%) Double Chain (%)

Freq. Reuse (W) 3, 4 3, 4, 6, 12

Retransmissions 1, 2, 4 1, 2, 3, 4

Nr. Source Nodes 30 24

Max Rank 4 12

of parameters used in the experiments.

Nodes with the same DAGrank have been positioned as

close as possible, in order to increase the effect of mutual

interference. In fact, we have investigated the effect of channel

reuse. Furthermore, the transmission power of the cc2420

radio present in the TelosB mote has been reduced in order

to position the motes in a closer distance (between 25-

30cm) and to have complete control of the deployed network.

The experiments have been conducted without interference

from other wireless technologies, since we are interested in

evaluating the effect of the mutual interference among nodes

in the same network. As a consequence, the reduction of

the transmission power is acceptable for this experimental

environment. Fig. 9(b) and Fig. 10(b) show some pictures of

the actual testbed deployed.

For each experimental scenario, we have collected 5 40-

minutes long traces. In the remaining part of this section, we

present the plot related to some performance indices, specify-

ing also the 95% confidence interval. In particular, we have

evaluated: (i) the end-to-end delay, i.e., the latency between

the data generation and its reception at the DODAGroot; (ii)

XXX , VOL. XX, NO. XX, MONTH 2014 12

(a) Topology.

(b) Testbed.

Fig. 10: Binary tree (a) Topology and (b) Testbed.

the end-to-end and link Packet Loss Ratio (PLR); (iii) the node

duty cycle, calculated considering for each active slot only the

time when the radio is on (i.e., TX or RX mode).

A. Experiments results: double chain topology

The results related to the experiments on a double chain

topology are shown in Figs. 11–18.

Fig. 11 shows the average duty cycle as a function of

the DAGrank, for any value of channel offsets used and

retransmissions allowed. As a general expected behavior, it can

be seen that the average duty cycle linearly decreases as the

DAGrank increases. In fact, nodes with smaller DAGrank
are those closer to the DODAGroot, hence bottlenecks for

the traffic directed to the DODAGroot.
In Fig. 12, the average duty cycle (regardless of DAGrank)

has been plotted with histograms. In details, we have grouped

results according to the value W of the number of channel

offsets used. As it can be seen, as the W increases, the duty

Fig. 11: Duty cycle as a function of the DAGrank a node

has inside the network in the Double Chain Topology.

Fig. 12: Average network duty cycle as a function of W in

the Double Chain Topology.

cycle decreases, because with more channel offsets available

there will be less mutual interference. For instance, with

W = 3, 4 couple of nodes in the double chain topology

will be allowed to interfere in the same cell. Although some

of these couples will not be exchanging data (1 cell every

4 will be used for data packet exchange), the receiving side

of each couple will detect a transmission and will continue

receiving the packet. Therefore, some nodes will increase their

duty cycle because overhearing the radio medium, even though

they will later realize that the packet was not addressed to

themselves.

In addition, it can be also noticed that for lower values

of W , the duty cycle increases as the maximum number of

retransmissions increases. For higher values of W , results are

almost identical when varying the retransmissions number.

This behavior was expected too, since with higher W values,

the mutual interference is lower, thus making the retransmis-

sion mechanism useless.

The end-to-end average delay as a function of the

DAGrank is shown in Fig. 13. As expected, the delay linearly

XXX , VOL. XX, NO. XX, MONTH 2014 13

Fig. 13: Network Delay as a function of the DAGrank that

a node has inside the network in the Double Chain Topology.

increases as the number of hops (which is directly correlated to

the DAGrank) augments. It is also worth noting that the av-

erage maximum delay is lower than 1.5 seconds. On average,

a data packet will reach the DODAGroot in less than half

of the slotframe duration.6 This feature is inherent to DeTAS:

given a path between a source node and the DODAGroot, the

transmission on a link belonging to that path will be always

scheduled before the transmission on the following link in the

same path toward the DODAGroot. In other words, if a node

has to relay packet toward the DODAGroot, a given receiving

cell in the schedule of that node will be always followed by a

transmitting cell. This feature is very important with reference

to time-critical monitoring application in industrial plants.

Fig. 14 clearly shows that augmenting the number W of

channel offsets available, the number of maximum retrans-

mission has a lower effect. With W = 3, more collision can

happen, so more allowed retransmissions give more reliability

to the network at the cost of bigger delays.

Obviously, the end-to-end PLR increases as the hop distance

between a node and the DODAGroot augments. This is

confirmed by the results plotted in Fig. 15. Such increase

depends on the link PLR measured at each hop, which is also

plotted in Fig. 16. The average link PLR does not depend

on the DAGrank, and the not aligned values for the link

PLR (e.g., the average link PLR at DAGrank = 10) can be

explained as due to device misbehavior.

Finally, in Fig. 17 it can be seen that the end-to-end PLR

is significantly reduced with at least a re-transmission (RTX)

allowed then a regular transmission (RTX≥ 2). Increasing

the number of available channel offsets there is an additional

improvement of the reliability. Similar arguments can be used

when considering the link PLR (as pictured in Fig. 18).

B. Experiments results: binary tree topology

The performance results related to the experiments per-

formed for exploring the efficiency of DeTAS on a binary

6In OpenWSN a timeslot is 15 milliseconds long, therefore a 101-sized
slotframe is 1.515 seconds long).

Fig. 14: Average network Delay as a function of W in the

Double Chain Topology.

Fig. 15: End-to-end PLR as a function of the DAGrank that

a node has inside the network in the Double Chain Topology.

Fig. 16: Link PLR as a function of the DAGrank that a node

has inside the network in the Double Chain Topology.

XXX , VOL. XX, NO. XX, MONTH 2014 14

Fig. 17: Average end-to-end PLR of the network as a function

of W in the Double Chain Topology.

Fig. 18: Average link PLR of the network as a function of W
in the Double Chain Topology.

Fig. 19: Average network duty cycle as a function of W in

the Binary Tree Topology.

Fig. 20: Average network Delay as a function of W in the

Binary Tree Topology.

Fig. 21: Average end-to-end PLR of the network as a function

of W in the Binary Tree Topology.

Fig. 22: Average link PLR of the network as a function of the

W in the Binary Tree Topology.

XXX , VOL. XX, NO. XX, MONTH 2014 15

tree topology are shown in Figs. 19–22.

In this topology, a number of available channel offset equal

to 4 is sufficient for avoiding collisions and radio overhearing.

In fact, the maximum DAGrank is 4 with a binary tree topol-

ogy made by 30 source nodes (as in our experiments). The

results clearly confirm that DeTAS has the same performance

independently from the network topology. This is what we

expected, since DeTAS has been designed to manage all kinds

of topology and to be scalable in all scenarios.

VI. CONCLUSION

In this paper, we have described in more details the very first

implementation of the Decentralized Traffic Aware Scheduling

algorithm in the OpenWSN protocol stack. Some experimental

results related to real network deployments have been as-

sessed confirming the effectiveness of DeTAS in time-critical

applications especially needed in industrial environment for

monitoring and control purposes.

In details, we have described the efforts being spent within

the IETF 6TiSCH working group to the aim of standardizing

an adaptation layer which can let IETF standards be employed

on top of the novel IEEE802.15.4e Timeslotted Channel

Hopping MAC protocol.

Then, we have described the DeTAS scheduling technique,

highlighting its theoretical effectiveness in building a multi-

hop schedule in a distributed fashion.

We have also reported details of the real implementation

of DeTAS, by picturing the signaling required and explaining

how it can be integrated into 6TiSCH-enabled networks.

The experimental results confirm what we already expected

for the DeTAS performance in terms of duty cycle, end-to-end

delay, end-to-end and link Packet Loss Ratio.

We strongly believe that the strength of DeTAS relies

in its design: it enables a fast communication between the

DODAGroot and any node in the network; it avoids queues

being congested; and it reduces the packet loss ratio through

a proper scheduling of resources.

In future work, we will extend DeTAS to manage topologies

where each node can route traffic to more than one parent.

VII. ACKNOWLEDGMENTS

This work was supported by the PON projec RES NOVAE

funded by the Italian MIUR and by the European Union

(European Social Fund).

REFERENCES

[1] M. R. Palattella, P. Thubert, X. Vilajosana, T. Watteyne, Q. Wang, and
T. Engel, “6TiSCH Wireless Industrial Networks: Determinism Meets
IPv6,” in Internet of Things: Challenges and Opportunities. Lecture

series of Smart Sensors, Measurement, and Instrumentation, S. C.
Mukhopadhyay, Ed. Springer-Verlag, 2014, vol. 9.

[2] S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6) Specifi-

cation, IETF RFC 2460, Dec. 1998.
[3] M. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. Grieco,

G. Boggia, and M. Dohler, “Standardized protocol stack for the internet
of (important) things,” IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp.
1389–1406, Third 2013.

[4] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. P. Vasseur, and R. Alexander, RPL: IPv6 Routing Protocol

for Low-Power and Lossy Networks, IETF RFC 6550, Mar. 2012.

[5] Z. Shelby, K. Hartke, and C. Bormann, The Constrained Application

Protocol (CoAP), IETF RFC 7252, June 2014. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7252.txt

[6] 6tisch mailing list. [Online]. Available:
https://www.ietf.org/mailman/listinfo/6tsch

[7] 6tisch homepage. [Online]. Available: https://bitbucket.org/6tsch/

[8] 802.15.4e-2012: IEEE Standard for Local and Metropolitan Area Net-

works – Part 15.4: Low-Rate Wireless Personal Area Networks (LR-

WPANs) Amendment 1: MAC Sublayer, IEEE Std., 16 Apr. 2012.

[9] P. Thubert, T. Watteyne, M. Palattella, X. Vilajosana, and Q. Wang, “Ietf
6tsch: Combining ipv6 connectivity with industrial performance,” in 7th

Int. Conf. on Innovative Mobile and Internet Services in Ubiquitous

Computing (IMIS), July 2013, pp. 541–546.

[10] T. Watteyne, M. Palattella, and L. A. Grieco, “Using IEEE802.15.4e
TSCH in an IoT context: Overview, Problem Statement and Goals draft-
ietf-6tisch-tsch-05 (work in progress),” IETF, Internet Draft, Jan. 2015.
[Online]. Available: http://tools.ietf.org/html/draft-ietf-6tisch-tsch-05

[11] X. Vilajosana and K. Pister, “Minimal 6TiSCH Configuration draft-ietf-
6tisch-minimal-05(work in progress),” IETF, Internet Draft, Jan. 2015.
[Online]. Available: http://tools.ietf.org/html/draft-ietf-6tisch-minimal-
05

[12] D. Dujovne, L. A. Grieco, M. Palattella, and N. Accettura, “6TiSCH
On-the-Fly Scheduling draft-dujovne-6tisch-on-the-fly-04 (work in
progress),” IETF, Internet Draft, Jan. 2015. [Online]. Available:
http://tools.ietf.org/html/draft-dujovne-6tisch-on-the-fly-04

[13] M. Palattella, N. Accettura, M. Dohler, L. Grieco, and G. Boggia,
“Traffic aware scheduling algorithm for reliable low-power multi-hop
ieee 802.15.4e networks,” in IEEE 23rd Int. Symp. on Personal Indoor

and Mobile Radio Commun. (PIMRC), Sept 2012, pp. 327–332.

[14] M. Palattella, N. Accettura, L. Grieco, G. Boggia, M. Dohler, and T. En-
gel, “On optimal scheduling in duty-cycled industrial iot applications
using ieee802.15.4e tsch,” IEEE Sensors J., vol. 13, no. 10, pp. 3655–
3666, Oct 2013.

[15] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wank,
S. Glaser, and K. Pister, “OpenWSN: a standards-based low-power wire-
less development environment,” Trans. on Emerg. Telecommunications

Technol., vol. 23, no. 5, p. 480493, 2012.

[16] ures. [Online]. Available: https://openwsn.atlassian.net/wiki/display/OW/
uRES

[17] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, Resource

ReSerVation Protocol (RSVP) – Version 1 Functional Specification, IETF
RFC 2205, Sept. 1997.

[18] N. Accettura, M. R. Palattella, G. Boggia, L. A. Grieco, and M. Dohler,
“Decentralized traffic aware scheduling for multi-hop low power lossy
networks in the internet of things,” in Proc. of IEEE Int. Symp. on a

World of Wireless Mobile and Multimedia Netw., WoWMoM, Madrid,
Spain, Jun. 2013.

[19] A. Morell, X. Vilajosana, J. L. Vicario, and T. Watteyne,
“Label switching over ieee802.15.4e networks,” Trans. on Emerg.

Telecommunications Technol., vol. 24, no. 5, pp. 458–475, 2013.
[Online]. Available: http://dx.doi.org/10.1002/ett.2650

[20] IEEE std. 802.15.4, IEEE Standard for Local and metropolitan area

networks –Part 15.4: Low-Rate Wireless Personal Area Networks (LR-

WPANs), Standard for Information Technology Std., Sept. 2011.

[21] N. Kushalnagar, G. Montenegro, and C. Schumacher, IPv6 over Low-

Power Wireless Personal Area Networks (6LoWPANs): Overview, As-

sumptions, Problem Statement, and Goals, IETF RFC 4919, Aug. 2007.

[22] B. C., 6LoWPAN-GHC: Generic Header Compression for IPv6 over

Low-Power Wireless Personal Area Networks (6LoWPANs), IETF RFC
7400, Nov. 2014.

[23] Highway addressable remote transducer, a group of specifications
for industrial process and control devices administered by the hart
foundation. [Online]. Available: www.hartcomm.org

[24] Isa, isa100, wireless systems for automation, may
2008. [Online]. Available: http://www.isa.org/Community/
SP100WirelessSystemsforAutomation

[25] M. Nixon, “A Comparison of WirelessHART and ISA100.11a,” Tech.
Rep., 2012.

[26] P. Thubert, T. Watteyne, and R. A. Assimiti, “An Architecture for IPv6
over the TSCH mode of IEEE 802.15.4e draft-ietf-6tisch-architecture-
04 (work in progress),” IETF, Internet Draft, Oct. 2014. [Online].
Available: http://tools.ietf.org/html/draft-ietf-6tisch-architecture-04

[27] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, Neighbor

Discovery for IP version 6 (IPv6), IETF RFC 4861, Sept. 2007.
[Online]. Available: http://tools.ietf.org/html/rfc4861

XXX , VOL. XX, NO. XX, MONTH 2014 16

[28] M. Palattella, T. Watteyne, and Q. Wang, “Terminology in IPv6 over the
TSCH mode of IEEE 802.15.4e draft-ietf-6tisch-terminology-03 (work
in progress),” IETF, Internet Draft, Jan. 2015. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-6tisch-terminology-03

[29] J. Ben Slimane, Y.-Q. Song, and A. Koubaa, “Control and data channels
allocation for large-scale uwb-based wsns,” in 1st Int. Conf. on Commun.

and Networking, 2009. ComNet 2009., Nov 2009, pp. 1–8.
[30] P. Namboothiri and K. Sivalingam, “Capacity analysis of multi-hop

wireless sensor networks using multiple transmission channels: A case
study using ieee 802.15.4 based networks,” in IEEE 35th Conf. on Local

Comput. Networks (LCN), 2010, Oct 2010, pp. 168–171.
[31] V. Sarkar, Partitioning and scheduling parallel programs for multipro-

cessors. MIT press, 1989.
[32] R. E. Korf, “Multi-way number partitioning,” in Proc. of the 21st Int.

joint Conf. on Artifical Intell. Morgan Kaufmann Publishers Inc., 2009,
pp. 538–543.

[33] X. Wang, Q.and Vilajosana and T. Watteyne, “6TiSCH
Operation Sublayer (6top) draft-wang-6tisch-6top-sublayer-01 (work
in progress),” IETF, Internet Draft, July 2014. [Online]. Available:
https://tools.ietf.org/html/draft-wang-6tisch-6top-sublayer-01

[34] Telosb datasheet. [Online]. Available:
http://www.willow.co.uk/TelosB˙Datasheet.pdf

Nicola Accettura is a postdoctoral researcher at the
Berkeley Sensor & Actuator Center, University of
California Berkeley, USA. He received his Laurea
(Bachelor’s degree) in Computer Systems Engineer-
ing in 2004 and his Laurea Specialistica (Master’s
degree) in Telecommunications Engineering in 2007,
both with honors, from ”Politecnico di Bari,” Italy.
He obtained his Dottorato di Ricerca (PhD) in Elec-
tronics Engineering from ”Scuola Interpolitecnica di
Dottorato” (SIPD) and ”Politecnico di Bari,” Italy, in
February 2013. His main research interests include

Internet of Things protocol design and statistical modelling for communication
networks. He is currently working on the OpenWSN project, an open-
source implementation of a fully standards-based protocol stack for capillary
networks, rooted in the new IEEE802.15.4e Time Synchronized Channel
Hopping standard. He is also involved within the IETF 6TiSCH working
group in the standardization effort required for enabling IPv6 over the TSCH
mode of IEEE802.15.4e standard.

Elvis Vogli (S13)is currently a PhD student in
Electronics Engineering at Politecnico di Bari, Bari,
Italy. His main research interests are in Wireless
Sensor Networks architectures, Information Centric
Networking (ICN) and Machine to Machine (M2M)
communications. He has been visiting student at the
SARA team of LAAS-CNRS in Toulouse (France),
focusing on M2M interoperability issues. He ob-
tained his Bachelor Degree in Electronic Engineer-
ing and his Masters Degree in Telecommunications
Engineering, both from Politecnico di Bari. He re-

ceived a grant in from Apulia Region, Italia for attending a professional
master from Institute Universitaire Kurt Bosch where he graduated in (MBA)
Management of Information System.

Dr. Maria Rita Palattella (S04,M07) is a Research
Associate at the Interdisciplinary centre for Security,
Reliability and Trust (SnT), at the Universtity of
Luxembourg. She obtained her PhD in Electronics
Engineering from “Scuola Interpolitecnica di Dot-
torato” (SIPD) and “Politecnico di Bari,” Italy, in
February 2011. She has been involved in several
EU FP7 projects, including OUTSMART, and IoT6,
which focused on: the development of secure and
smart Internet of Things (IoT) applications, the
exploitation of the potential of IPv6 and related

standards (IEEE802.15.4e, IETF RPL, etc.). She is an active member of
theIETF 6TiSCH WG, which aims at bonding the TimeSlotted Channel
Hopping (TSCH) MAC technology and IPv6 networking approaches to yield
a robust industrial IoT protocol stack. She is currently serving as expert for
the ETSI 6TiSCH Plugtests to define the Tests Specification. She sits on
the Editorial Board of the Transactions on Emerging Telecommunications
Technologies (ETT), she has been/is serving as a reviewer for several journals,
and conferences. She is also secretary of the IEEE 5G Mobile Wireless
Internet Technical Subcommitte.

Luigi Alfredo Grieco (S02-M04-SM12) is an Asso-
ciate Professor in Telecommunications at Politecnico
di Bari. Formerly he has been Visiting Researcher
with INRIA (Sophia Antipolis, France) in 2009
and with LAAS-CNRS (Toulouse, France) in 2013,
working on Internet measurements and M2M sys-
tems, respectively. He has authored more than 100
scientific papers published in international journals
and conference proceedings of great renown that
gained more than 1000 citations. His main research
interests include TCP congestion control, quality of

service in wireless networks, IoT, and Future Internet. He serves as editor
of the IEEE Transactions on Vehicular Technology (for which he has been
awarded as top associate editor in 2012) and as Executive Editor of the
Transactions on Emerging Telecommunications Technologies (Wiley). Within
the IETF and IRTF, he is actively contributing to the definition of new standard
protocols for industrial IoT applications and new standard architectures for
tomorrow ICN-IoT systems.

Gennaro Boggia (S’99 M’01 SM09) received,
with honors, the Dr. Eng. Degree in Electronics
Engineering in July 1997 and the Ph.D. degree in
Electronics Engineering in March 2001, both from
the “Politecnico di Bari”, Italy. Since September
2002, he has been with the Department of Electrical
and Information Engineering at the “Politecnico di
Bari”, Italy, where he is currently Associate Pro-
fessor. From May 1999 to December 1999, he was
visiting researcher at the “TILab”, TelecomItalia
Lab,Italy, where he was involved in the study of the

Core Network for the evolution of 3G cellular systems. In 2007, he was
visiting researcher at FTW (Vienna), where he was involved in activities
on passive and active traffic monitoring in 3G networks. He has authored
or co-authored more than 100 papers in international journals or conference
proceedings. His research interests span the fields of Wireless Networking,
Cellular Communication,Information Centric Networking, Internet of Things
(IoT),Protocol stacks for industrial applications and smart grids, Internet
measurements, Network Performance Evaluation. Currently, he serves as
Associate Editor for the Springer Wireless Networks journal.

XXX , VOL. XX, NO. XX, MONTH 2014 17

Mischa Dohler is full Professor in Wireless Com-
munications at Kings College London, Head of
the Centre for Telecommunications Research, co-
founder and member of the Board of Directors of the
smart city pioneer Worldsensing, Fellow and Distin-
guished Lecturer of the IEEE, and Editor-in-Chief of
the Transactions on Emerging Telecommunications
Technologiesand the Transactions on the Internet of
Things. He is a frequent keynote, panel and tutorial
speaker, and has received numerous awards. He
has pioneered several research fields, contributed to

numerous wireless broadband, IoT/M2M and cyber security standards, holds
a dozen patents, organized and chaired numerous conferences, has more than
200 publications, and authored several books. He has a citation h-index of
39 (top 1%). He acts as policy, technology and entrepreneurship adviser,
examples being Richard Bransons Carbon War Room, House of Parliament
UK, UK Ministry BIS, EPSRC ICT Strategy Advisory Team, European
Commission, Tech London Advocate, ISO Smart City working group, and
various start-ups. He is also an entrepreneur, angel investor, passionate pianist
and fluent in 6 languages. He has talked at TEDx. He had coverage by national
and international TV & radio; and his contributions have featured on BBC
News and the Wall Street Journal.

