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Abstract—The prime motivation of our work is to balance the inherent trade-off between the resource consumption and the accuracy

of the target tracking in wireless sensor networks. Toward this objective, the study goes through three phases. First, a cluster-based

scheme is exploited. At every sampling instant, only one cluster of sensors that located in the proximity of the target is activated,

whereas the other sensors are inactive. To activate the most appropriate cluster, we propose a nonmyopic rule, which is based on not

only the target state prediction but also its future tendency. Second, the variational filtering algorithm is capable of precise tracking

even in the highly nonlinear case. Furthermore, since the measurement incorporation and the approximation of the filtering distribution

are jointly performed by variational calculus, an effective and lossless compression is achieved. The intercluster information exchange

is thus reduced to one single Gaussian statistic, dramatically cutting down the resource consumption. Third, a binary proximity

observation model is employed by the activated slave sensors to reduce the energy consumption and to minimize the intracluster

communication. Finally, the effectiveness of the proposed approach is evaluated and compared with the state-of-the-art algorithms in

terms of tracking accuracy, internode communication, and computation complexity.

Index Terms—Variational methods, Bayesian inference, sensor networks, Monte Carlo methods.

Ç

1 INTRODUCTION

WIRELESS sensor networks (WSNs) represent an entirely
new way of looking at signal collecting and proces-

sing. Hundreds or thousands of sensor nodes are deployed
in a large geographical area to form a dense wireless ad hoc
network, which provides access to information anytime,
anywhere by performing high-level distributed sensing,
processing, and disseminating data. Because of the relia-
bility, flexibility, cost-effectiveness, and ease of deployment,
WSNs promise to revolutionize our life in a wide range of
application domains, includingmilitary, civil, and ecological
areas, etc., [1], [2]. In spite of the diverse applications, WSNs
face a number of unique technical challenges due to their
inherent energy and bandwidth limitations, ad hoc deploy-
ment, and unattended operation, etc., [3], [4]. Unfortunately,
very little previous works on distributed systems can be
applied to WSNs, since the underlying assumptions have
changed dramatically. Therefore, innovative energy-aware,
scalable, and robust algorithms for distributed signal
processing in WSNs are highly required. In this paper, we
examine the design of an energy-aware decentralized
Bayesian inference method, which is applied to the target
tracking, one of the most basic issues of ad hoc WSNs.

Considering the temporal states of a target as the complex
dynamics of a random variable, we can thus treat the target
tracking as an optimal filtering problem [5], which consists of
recursive updating the posterior distribution of an unob-
served target state xxt 2 IRnx of dimension nx, given the
sequence of observed data zz1:t. The dynamical system is
characterized by a Markov state evolution model xxt �
pðxxt j xxt�1Þ and an observation model pðzzt j xxtÞ. In the
Bayesian context, the task of target tracking can be formu-
lated as recursive calculating the predictive distribution
pðxxtjzz1:t�1Þ and the posterior distribution pðxxtjzz1:tÞ as follows:

Prediction :

pðxxtjzz1:t�1Þ ¼

Z

IRnx

pðxxtjxxt�1Þpðxxt�1jzz1:t�1Þdxxt�1;

Update :

pðxxtjzz1:tÞ ¼
pðzztjxxtÞpðxxtjzz1:t�1Þ

pðzztjzz1:t�1Þ
:

ð1Þ

One can note from the filtering scheme, shown in Fig. 1, that
based on the state evolution model pðxxtjxxt�1Þ, the estimation
of the target state is updated by incorporating the
observation model pðzztjxxtÞ. Therefore, the modeling of the
state evolution pðxxtjxxt�1Þ and the observation pðzztjxxtÞ has
great impact on the accuracy and the energy efficiency of
target tracking solution.

If the transition dynamics and the observation model are
both Gaussian, the classic Kalman Filter (KF) provides an
optimal Bayesian solution [6]. Hasu and Koivo [7] proved
the feasibility of applying the decentralized KF in WSNs. KF
is computationally efficient, but its performance is limited
by the nonuniversal Gaussian modeling assumptions. The
Extended Kalman Filtering (EKF) and the Unscented
Kalman Filtering (UKF) [8] have been proposed to improve
the KF flexibility. However, deviation of the transition
dynamics and the linear/Gaussian modeling assumptions
cause severe degradation in its tracking performances.
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As for most nonlinear even non-Gaussian models, the
closed-form analytic expression of the posterior distribution
pðxxtjzz1:tÞ is untractable [9]. To overcome this obstacle, a
nonparametric Monte Carlo sampling-based method, called
Particle Filtering (PF) [10], has gained popularity recently.
The PF approximates the probability distribution by a set of
weighted samples. It has the flexibility to accommodate
nonlinear dynamics and multimodal observation models,
but at the cost of more computation and storage require-
ments. In addition, the huge amount of the involved particles
impeded its implementation in WSNs. Different methods to
approximate the particles distributionwere thus proposed in
the literature [9], [11], [12], [13], in order to make the
application of PF in WSNs possible. In [13], a message
approximation scheme based on the greedy KD-tree was
proposed. In [12], a full collaborative strategy for multiple
targets tracking in wireless sensor networks, based on a
Gaussian Mixture Model (GMM) message approximation
scheme, was proposed. Kotecha and Djuric [9], [11]
described the Gaussian Particle Filtering (GPF) algorithm
[9] and the Gaussian Sum Particle Filtering (GSPF) algorithm
[11],which approximate the posterior distribution by a single
Gaussian distribution and a weighted sum of Gaussian
distributions, respectively. The main drawback of these
methods is the error propagation through the sensor net-
work, when approximating the particle representation by a
few number of Gaussian statistics. Recently, a variational
approach that respects the communication constraints of
sensor networks has been proposed in [14], which reduces
the temporal dependence to a single Gaussian distribution.
Contrary to the approximation methods mentioned above,
the efficiency of the variational approximation relies on the
fact that the online update of the filtering distribution and its
compression are simultaneously performed. In addition, the
variational approach has the nice property to be model-free,
ensuring the robustness of data processing.

As the key impediments to successful WSN applications
are the stringent energy constraints of sensor nodes, we
extend the application of the variational approach to the
context of Binary Sensor Networks (BSNs). A coarse but
energy-efficient binary proximity observation model is
employed by the sensors to detect the target. Besides, a
cluster-based scheme is proposed, where sensors are
statically divided into clusters, and each cluster consists of
a single Cluster Head (CH) and a bunch of slave sensors. At
every sampling instant, only one cluster of sensors is
triggered to track the target. Resource consumption of the
network is thus restricted to the activated cluster, where
intracluster communication is dramatically reduced due to
the binary proximity observation model. Concerning the

intercluster information exchange, the belief estimate must
be communicated between successive clusters, namely the

handoff operation, when the activated cluster changes. By

adopting the variational filtering (VF) algorithm, the
intercluster communication is minimized, significantly

reducing the required communication bandwidth and the
energy consumption. Furthermore, based on the target

tendency predicted by the VF, a nonmyopic cluster activa-

tion rule minimizes the occurrence of handoff operations.
Therefore, the cluster-based VF algorithm for target tracking

in BSNs ensures tracking accuracy with a minimum
resource allocation.

In the following section, we will first formulate the
target tracking problem in Section 2, where an analysis of
the General State Evolution Model and the Binary
Proximity Observation Model is given. Section 3 is about
a detailed description of the variational filtering algorithm.
The new target tracking algorithm balances the trade-off
between the tracking accuracy and the resource consump-
tion in BSNs. In Section 4, performances of the proposed
algorithm are studied by computer simulations and are
compared with the state-of-the-art algorithms [9], [15],
[16]. Finally, in Section 5, we conclude and give some
perspectives of this work.

2 PROBLEM FORMULATION

As mentioned above, target tracking necessitates the
modeling of the state evolution pðxxtjxxt�1Þ and the observa-
tion pðzztjxxtÞ. In order to implement the VF algorithm in
BSNs, we define the two specific models to ensure the
estimation precision and the energy efficiency.

2.1 General State Evolution Model

Instead of the kinematic parametric model [17], [18], [2],
which is usually used in tracking problems, we employ a
General State Evolution Model (GSEM) [19], [14], [20]. This
model is more appropriate to practical nonlinear and non-
Gaussian situations, where no a priori information on the
target velocity or its acceleration is available. The target
temporal position xxt is assumed to follow a Gaussian
model, where the expectation ��t and the precision matrix ��t

are both random. The randomness of the expectation and
the precision is used here to further capture the uncertainty
of the target state distribution. A practical choice of these
distributions is a Gaussian distribution for the expectation
��t and a Wishart distribution for the precision matrix ��t. In
other words, the hidden state xxt is extended to an
augmented state ��t ¼ ðxxt; ��t; ��tÞ, yielding a hierarchical
model as follows:

xxt � Nðxxtj��t; ��tÞ;
��t � Nð��tj��t�1; ���Þ;
��t � Wnx

ð��tj �VV ; �nÞ;

8

<

:
ð2Þ

where the fixed hyperparameters ���, �n, and �VV are the
random walk precision matrix, the degrees of freedom, and
the precision of the Wishart distribution, respectively. The
dimension of the Wishart distribution equals that of the
target state nx. The GSEM is depicted in Fig. 2.

In fact, the marginal state distribution is obtained by

integrating over the mean and precision matrix as follows:
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Fig. 1. Bayesian filtering scheme.



pðxxtjxxt�1Þ ¼

Z Z

Nðxxtj��t; ��tÞpð��t; ��tjxxt�1Þd��td��t; ð3Þ

where the integration with respect to the precision matrix
leads to the known class of scale mixture distributions
introduced by Barndorff-Nielsen [21] for the scalar case.
Low values of the degrees of freedom �n reflect the heavy
tails of the marginal distribution pðxxtjxxt�1Þ. In fact, varying
the hyperparameters of model (2) yields a wide range of tail
behaviors, from Gaussian tails to the heavy tails of the
Student t-distributions. In order to illustrate the properties
of scale mixture distributions, also referred to as General-
ized Hyperbolic distributions, we take some examples of
one-dimensional distributions with different hyperpara-
meters. Fig. 3 represents the logarithm of Generalized
Hyperbolic distributions for different hyperparameters
values. One can note the model flexibility to cover a wide
range of tail behaviors, which allows discrete jumps in the
target trajectory.

2.2 Binary Proximity Observation Model

Considering the extremely constrained resource in theWSN,
the Received Signal Strength Indicator (RSSI) technology
[22], which has been proposed for hardware constrained
systems, is adopted in the sensors to detect the target. It
determines the distance between a receiver and a transmitter,
based on the knowledge of a path-loss model. However,
multipath reflections, nonline-of-sight conditions, and other

shadowing effects lead to erroneous distance estimates.
Therefore, a white Gaussian error �iy is introduced to model
the sensed observation yit at sensor i of instant t:

yit � N
�

yitj�
iðxxtÞ; �

�2
y

�

;

where �iðxxtÞ ¼ �0 � 10� log
k ssi � xxt k

d0
;

ð4Þ

where�2
y is the variance of �

i
y. The signal power �iðxxtÞ is a one-

to-one mapping to the distance kssi � xxtk traveled by the
signal, where ssi is the location of the sensor i. The other

denotations are, respectively, d0 the referencedistance,�0 the

knownreceived signal power indBmat d0, and � is the known
path-loss distance exponent, which takes value in the range

½2; 4� (� ¼ 2 for propagation in free space, � ¼ 4 for relatively
lossy environments and for the case of full specular reflection

from the earth surface [23]). To further reduce the commu-
nication burden, aminimalist approach, the binaryproximity

observation model (BPOM) [24], [25], [26], [27], is employed.
It makes a binary decision according to the strength of the

perceived signal yit, and only 1 bit is transmitted for further

processing. The observation model is presented in Fig. 4,
where the signal detection threshold 	s is defined according

to (4), namely 	s ¼ �0 � 10� logðrs=d0Þ, where rs is the sensor
detection range. If the observed signal yit at sensor i is above

the predefined threshold 	s, it transmits “1” back to the CH
that is responsible for signal processing; otherwise, no

information about the target is transmitted. Due to the noisy
wireless links, the signal received at the CH is assumed to be

corruptedbynormallydistributed error �iz. The realistic range

measurement is thus formulated as follows:

zit ¼

i þ �iz; if yit � 	s;
�iz; otherwise;

�

ð5Þ
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Fig. 2. Graphical model of the general state evolution model. Nodes
denoted by circles correspond to hidden random variables, while nodes
denoted by squares correspond to parameters of the model.

Fig. 3. Examples of the generalized hyperbolic distributions:
(a) hyperbolic case, (b) cauchy case, and (c) student case. Pdfs appear
on the top row and log densities on the bottom row. The dashed line
corresponds to the Gaussian distribution with same mean and variance.

Fig. 4. The binary proximity observation model is described by a simple
example. With respect to the first sensor, the target is within its sensing
range at instant t. Observation “1” is thus transmitted to the CH. The
same principle holds true for the second sensor. Concerning the third
and fourth sensors, they keep silence at instant t. The CH then assigns
“0” to the observation of them after waiting a given time slot. The
situation at instant tþ 1 can be similarly deduced.



where �iz � N
�

�izj0; �
�2
z

�

;

and 
i is the attenuation coefficient associated with the
sensor i. The Bayesian filtering framework for target tracking
requires the construction of the distribution pðzztjxxtÞ. To track
the target xx, the available temporal observation at the
activated CH is denoted by zzt ¼ fzitg

mt

i¼1, where mt is the
number of slave sensors in the activated cluster, which is not
constant during the tracking process. Assuming that the
noise samples �iz and the observed measurements yit are
independently distributed, we have

pðzztjxxtÞ ¼
Ymt

i¼1

�

N
�

zitj

i; ��2

z

�

P
�

yit � 	s
�

þN
�

zitj0; �
�2
z

�

P
�

yit < 	s
��

;

where P
�

yit � 	s
�

¼

Z 1

	s

N
�

yitj�
iðxxtÞ; �

�2
y

�

dyit;

and P
�

yit < 	s
�

¼ 1� P
�

yit � 	s
�

:

ð6Þ

An important problem introduced by the definition of the
observation model pðzztjxxtÞ is the false alarm. One can note
fromthe formulation (4) that themappingbetweenxxt andyit is
not deterministic, due to the shadowing effect of �iy. That is, if
�iðxxtÞ, the one-to-one mapping to the true distance
k ssi � xxt k , is greater than the threshold 	s, the observed
measurement yit is not necessarily greater than 	s. In fact,
P ðyit � 	sÞ can also be formulated by

P
�

yit � 	s
�

¼
�

p
�

yit � 	sj�
iðxxtÞ � 	s

�

P
�

�iðxxtÞ � 	s
�

þ p
�

yit � 	sj�
iðxxtÞ < 	s

�

P
�

�iðxxtÞ < 	s
��

;

as shown in Fig. 5. According to (6), the probability of false
alarm pðyit � 	sj�iðxxtÞ < 	sÞ has already been naturally
incorporated during the integral. Similarly, the symmetric
probability of false alarm pðyit < 	sj�

iðxxtÞ � 	sÞ is incorpo-
rated in the calculation of P ðyit < 	sÞ.

Despite of the energy efficiency, tracking in BSNs suffers
from poor estimation performances [24], [28], [29] because of
the coarse information exploited. In recent years, substantial
efforts have been dedicated to this problem. Djuri�c et al. [30],
[16] apply the particle filtering method in the context of BSN,
using a centralized manner, which yields acceptable track-
ing performance. Ribeiro and Giannakis [31], [32] condensed
the observation down to a single bit. Instead of simply
sensing the presence of the target, sensors still need to
estimate their distances to the target, and then compare the

timely observation with the estimation of the previous
instant. A binary decision is thus made to denote the target
moving manner, and transmitted to the central fusion unit
for further processing. An implementation of the Sign of
Innovation extended Kalman Filtering (SOI-KF) algorithm in
WSN was proposed in [15]. The two algorithms using the
binary observation model will be compared with our
proposed algorithm in Section 4.

2.3 Problem Statement

To sum up, the hidden state xxt of the target is extended by
the GSEM (2) to an augmented state ��t ¼ fxxt; ��t; ��tg. Based
on the BPOM (6) introduced above, our purpose consists of
recursive computing the predictive distribution pð��tjzz1:t�1Þ
and updating the marginal posterior distribution pð��tjzz1:tÞ
according to (1). Then, any quantity of interest, denoted by
fð��0:tÞ, could be estimated by its a posteriori expectation:

IðfÞ ¼

Z

fð��0:tÞpð��0:tjzz1:tÞd��0:t

¼ EEpð��0:tjzz1:tÞ½fð��0:tÞ�;

where zz1:t � fzz1; zz2; . . . ; zztg denotes the collection of ob-

servations gathered until time t.

3 TRACKING IN BINARY SENSOR NETWORKS

3.1 Variational Approach

The nonlinear and the non-Gaussian aspect of the GSEM (2)
and the BPOM (6) lead to intractable integrals when
evaluating the marginals pð��tjzz1:tÞ and pð��tjzz1:t�1Þ. An
interesting solution is to resort to the Monte Carlo method,
using a point-mass distribution of a set of weighted samples
(called particles) to approximate the posterior distribution.
Whereas the key contribution of this paper is the use of the
variational filtering instead of the classical PF. The advantage
of the variational approach will be naturally revealed after
the following technical description. The variational approach
consists of approximating the marginal posterior distribu-
tion pð��tjzz1:tÞ by a separable distribution qð��tÞ ¼

Q

i qð��
i
tÞ

that minimizes the Kullback-Leibler (KL) divergence error:

DKLðqkpÞ ¼

Z

qð��tÞ log
qð��tÞ

pð��tjzz1:tÞ

� �

d��t;

where qð��tÞ ¼
Y

i

q
�

��i
t

�

¼ qðxxtÞqð��tÞqð��tÞ:

To minimize the KL divergence subject to the constraint
R

qð��tÞd��t ¼
Q

i

R

qð��i
tÞd��

i
t ¼ 1, the Lagrange multiplier

method is used:

DKLðqkpÞ ¼

Z
Y

i

q
�

��i
t

� X

i

log q
�

��i
t

�

� log pð��tjzz1:tÞ

" #

d��t;

differentiating it with respect to qð��i
tÞ,

@DKLðqkpÞ

@qð��i
tÞ

¼ log q
�

��i
t

�

� hlog pðzz1:t; ��tÞiQ
j 6¼i

þ 1þ �i;

where �i is a Lagrange multiplier introduced to ensure that

qð��i
tÞ is normalized. The approximate distribution is thus

yielded [33] as follows:
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Fig. 5. Probability model of the sensed observation yit with false alarms,
where the dashed lines with arrows denote the false alarms.



q
�

��i
t

�

/ exphlog pðzz1:t; ��tÞiQ
j6¼i

qð��j
tÞ;

ð7Þ

where h�iqð��j
tÞ
denotes the expectation operator relative to the

distribution qð��j
tÞ. Therefore, these dependent parameters

can be jointly and iteratively updated.

3.1.1 Update

Taking into account the separable approximate distribution
qð��t�1Þ at time t� 1, the filtering distribution pð��tjzz1:tÞ is
sequentially approximated according to the following
scheme: (see Appendix A for details):

p̂ð��tjzz1:tÞ / pðzztjxxtÞpðxxt; ��tj��tÞqpð��tÞ;

where qpð��tÞ ¼

Z

pð��tj��t�1Þqð��t�1Þd��t�1:
ð8Þ

Therefore, through a simple integral with respect to ��t�1, the
filtering distribution pð��tjzz1:tÞ can be sequentially updated.
Considering the GSEM proposed in (2), the evolution of ��t�1

is Gaussian, namely pð��tj��t�1Þ � N ð��t�1;
���Þ. Defining

qð��t�1Þ � N ð���
t�1; ��

�
t�1Þ, qpð��tÞ is also Gaussian (see Appen-

dix B.1 for details), with the following parameters:

qpð��tÞ � N
�

��p
t ; ��

p
t

�

;

where ��p
t ¼ ���

t�1 and ��p
t ¼ ð���

t�1
�1 þ ���

�1
Þ
�1
:

ð9Þ

The temporal dependence is, hence, reduced to the incor-
poration of only one Gaussian component approximation
qð��t�1Þ. The update and the approximation of the filtering
distribution pð��tjzz1:tÞ are jointly performed, yielding a
natural and adaptive compression [14], [20]. According to
(7), variational calculus leads to closed-form expressions of
qð��tÞ and qð��tÞ (see Appendices B.1 and B.2), by substituting
the deduction (9) into (8):

qð��tÞ � N ð���
t ; ��

�
t Þ; qð��tÞ � Wnx

ðVV �; n�Þ;

where the parameters are iteratively updated until conver-
gence, according to the following scheme:

���
t ¼ ����1

t

�

h��tihxxti þ ��p
t��

p
t

�

;

���
t ¼ h��ti þ ��p

t ;

n� ¼ �nþ 1;

VV � ¼
�	

xxtxx
T
t




� hxxtih��ti
T � h��tihxxti

T

þ
	

��t��
T
t




þ �VV
�1
Þ�1:

ð10Þ

Note that h�i denotes the expectation relative to the
distribution qð�Þ. The expectations and the precision
matrices of qð��tÞ and qð��tÞ have closed forms, which are
easily derived as follows:

h��ti ¼ ���
t ; h��ti ¼ n�VV �;

	

��t��
T
t




¼ ����1
t þ ���

t��
�T
t : ð11Þ

However, the state xxt does not have a tractable form
approximate distribution. By combining (7) and (8) (see
Appendix B.3), we have the following form:

qðxxtÞ / pðzztjxxtÞN ðh��ti; h��tiÞ: ð12Þ

Thus, the GSEM (2) and the BPOM (6) are naturally
incorporated to update qðxxtÞ. This form immediately
suggests an importance sampling (IS) procedure, where
samples are drawn from the Gaussian distribution

Nðh��ti; h��tiÞ, and areweighted according to their likelihoods
(taking into account the binary quantization in the BPOM):

xx
ðiÞ
t � Nðh��ti; h��tiÞ; w

ðiÞ
t /

Ym

j¼1

p
�

zjt jxx
ðiÞ
t

�

: ð13Þ

Then, the expectations relative to qðxxtÞ can be approximated
by the Monte Carlo method:

hxxti ¼
XN

i¼1

w
ðiÞ
t xx

ðiÞ
t ;
	

xxtxx
T
t




¼
XN

i¼1

w
ðiÞ
t xx

ðiÞ
t xx

ðiÞT
t : ð14Þ

3.1.2 Prediction

According to the Bayesian inference framework shown in
Fig. 1, besides updating the filtering distribution pðxxtjzz1:tÞ,
the predictive distribution pðxxtjzz1:t�1Þ also needs to be
calculated. In addition, the variational filtering algorithm is
executed on a distributed cluster base, where only one
cluster of sensors in the network is activated at each instant
to detect and process the target data. If the sensors chosen to
be activated are the closer to the target, the more information
could be obtained, leading to the more precise estimation
in return. Therefore, the predictive target distribution
pðxxtjzz1:t�1Þ performs a crucial role in activating sensors for
the next instant. In fact, pðxxtjzz1:t�1Þ can be efficiently updated
by variational inference. Taking into account the separable
approximate distribution qð��t�1Þ / pð��t�1jzz1:t�1Þ, the pre-
dictive distribution is written as

pð��tjzz1:t�1Þ / pðxxt; ��tj��tÞqpð��tÞ: ð15Þ

The exponential form solution, which minimizes the KL
divergence between the predictive distribution pð��t j zz1:t�1Þ
and the separable approximate distribution qtjt�1ð��tÞ, yields
Gaussian distributions for the target state and its mean,
while a Wishart distribution for the precision matrix:

qtjt�1ðxxtÞ / N ðh��tiqtjt�1
; h��tiqtjt�1

Þ;

qtjt�1ð��tÞ / N ð���
tjt�1; ��

�
tjt�1Þ;

qtjt�1ð��tÞ / Wnx
ðVV �

tjt�1; n
�
tjt�1Þ;

where the parameters are updated according to the same
iterative scheme (10), except that the expectations of the
predictive target state are now evaluated by the following
expressions:

hxxtiqtjt�1
¼ h��tiqtjt�1

;
	

xxtxx
T
t




qtjt�1
¼ h��ti

�1
qtjt�1

þ h��tiqtjt�1
h��ti

T
qtjt�1

:
ð16Þ

Compared to the classical PF, the computational cost and
the memory requirements are dramatically reduced by the
variational approximation in the prediction phase. In fact,
the expectations involved in the computation of the
predictive distribution have closed forms, avoiding the
use of the Monte Carlo integration.

3.2 Cluster-Based VF Algorithm

The main advantage of the variational approach is the
compression of the statistics required to update the filtering
distribution between two successive instants. This implicit
compression makes the VF algorithm much more adapted
to distributed implementation in WSNs. In fact, the VF
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algorithm is executed on a cluster base in our work, where
clusters are statically formed in advance. Instead of an
identical hardware configuration for all sensors, a hier-
archical BSN is formed by the following:

. Slave sensors of identical sensing range rs are
randomly and densely deployed through the span of
the networkwith a density �s (sensors=m

2). Each slave
sensor belongs to only one cluster and is able to
directly communicatewith its cluster headvia a single
hop. By employing the BPOM (6), they identify
themselves and report their one-bit observations to
the corresponding cluster heads.

. CHs are sparsely placed with a density �CH

(CHs=m2) (�CH 	 �s). The configuration and the
deployment of the CHs guarantee the communica-
tion among neighboring CHs in one hop. Further-
more, each CH is capable of routing and forwarding
the messages. Therefore, all the CHs can commu-
nicate with each other in multihop. CHs also have
sufficient memory and computational resources to
update the target belief by the VF algorithm using
the observations collected by their slaves.

Fig. 6 describes such an initialization scenario of a sensor
field. Initially, there is no target in the monitored area. To
minimize energy consumption, all slave sensors are set to
“Sleeping” mode. In contrast to the passive state of slave
sensors, CHs are set to “Sensing” mode to detect the
appearance of unidentified objects. Once an unidentified
object is detected, the corresponding CH activates its slave
sensors immediately to track the target, while the remaining
sensors are kept in the “Sleeping” state. In particular, other
noninvoked CHs are kept in the “Sensing” mode to cope
with exceptions or any possible intrusions.

An overview of the VF process during consecutive
sampling instants is presented in Fig. 7. The efficiency of
the decentralized variational tracking algorithm depends on
the relevance of the selected clusters in charge of processing
the data and updating the filtering distribution. In the
following, a nonmyopic cluster activation protocol based on
the predictive distribution is described.

3.2.1 Nonmyopic Cluster Activation

The resource saving of cluster-based scheme lies in the fact
that only one cluster is activated at each sampling instant to
update the filtering distribution. Therefore, the cluster
activation phase has a great importance not only in
minimizing resource consumption but also in tracking
accuracy. Various sensor activation strategies have been
proposed in [34], [35]:

1. Naive activation, where all the sensors are active.
2. Randomized activation, where a random subset of

the sensors is active.
3. Selective activation, where a subset of the sensors is

activated according to some performance metric.
4. Duty-cycled activation, where sensors are active for

some duty cycle.

By carefully choosing the activation parameters, selective
activation strategy can provide great improvements in
energy usage with quasi-optimal tracking quality [34]. Also,
a commonly used solution is to activate the CH that is
nearest to the target [36]. This strategy would incur
unnecessary energy expenditure. First, all the CHs need
to measure the distances between the target and themselves
at every sampling instant; then, a comparison among them
is required to choose the nearest one. The possibility of
distributed signal processing is thus prevented and
excessive communication is required. Second, when the
target passes among the overlap of several clusters,
frequent changes of the activated cluster occur, resulting
in excessive communication of the temporal dependence
information and leading to unacceptable additional energy
and bandwidth consumption. To reduce the unnecessary
energy expenditure, we propose to activate cluster based on
the prediction of the target xxtjt�1 ¼ hxxtiqtjt�1

. If the predicted
target position xxtjt�1 remains in the vicinity of CHt�1, then
CHt ¼ CHt�1. Otherwise, if xxtjt�1 is going beyond the range
of the current cluster, a new CHt is activated based on the
target position prediction xxtjt�1 and its future tendency:

CHt ¼ arg max
j¼1;...;k

cos �jt

djt

 !

;

where djt ¼ kxxtjt�1 � ppjCHk;

and �jt � angle
�

hxxt�1ixxtjt�1

�������!
; hxxt�1ipp

j
CH

������!�
;

ð17Þ

where k is the number of CHs in the neighborhood of CHt�1

and ppjCH is the position of the jth neighboring CH. It is
shown in Fig. 8 that when the angle �jt between the
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predictive target and the CH is small, which corresponds to
a large value of cosð�jtÞ, it indicates that the target will move
toward this CH. Thus, the rule in (17) combines two kinds
of information related to

. the actual distance between the predictive target
position xxtjt�1 and the CH position ppjCH, via the
distance djt and

. the future tendency of the target moving manner
toward the CH, via the angle �jt .

Furthermore, a handoff operation is triggered to transfer the
temporal dependence information qð��t�1Þ from the CHt�1 to
the CHt. As illustrated in Fig. 8, traditional cluster activation
rule activates CH2 for updating the filtering distribution at
time t, since it is the closest CH to the target prediction xxtjt�1.
But according to the tendency, the target is very likely to go
out of its vicinity in a short time, causing excessive handoff
operations. However, based on the decision rule (17), it is
CH1 that is activated, as the target ismost likely detected by it
and would stay in its vicinity for a comparative longer
period. Taking into consideration the future tendency of the
target, the nonmyopic decision rule (17) avoids unnecessary
handoff operations compared to the traditional one. There-
fore, the target tracking accuracy is ensured and the energy
consumption is minimized as well. Due to the variational
calculus, communication between CHt�1 and CHt is limited
to simply sending the mean and the precision of qð��t�1Þ.
Therefore, the cluster-based VF algorithm outperforms the
classical PF algorithm in resource (energy, bandwidth, and
memory) saving, as a large number of particles and
corresponding weights are maintained and propagated in
the latter case. With respect to the tracking accuracy, the VF
and the PF algorithms approximate the true state distribu-
tion in different ways. When calculating the integral
involved in the Bayesian filtering, the PF uses a large
amount of particles whereas the VF introduces hidden
variables to bypass the difficulty. These random variables
introduced by the VF act as links that connect the

observations to the unknown parameters via Bayes law.

Furthermore, the error propagation problem is dramatically

reduced as approximation of the filtering distribution is

performed during observation incorporation.
Pseudocode of the cluster-based VF algorithm for target

tracking in the BSN is summarized in Algorithm 1.

Algorithm 1. Variational Filterting algorithm

Input: zzt, ��� , �SS, �n, ���
0, ��

�
0

Output: hxxti
1 for t ¼ 1; 2; . . . , do

2 ��p
t ¼ ���

t�1, ��
p
t ¼ ð���

t�1
�1 þ ���

�1
Þ�1, qpð��tÞ ¼ N ð��p

t ; ��
p
t Þ;

3 Predict pð��tjzz1:t�1Þ according to (15);

4 The predicted expectation hxxtjt�1i is calculated as (16);

5 if hand-off then
6 Select the new CHt according to the decision

rule (17);

7 Communicate qð��t�1Þ � N ð���
t�1; ��

�
t�1Þ to the

new CHt;

8 else

9 Replace the storage of particles in the CHt by ���
t�1

and ���
t�1;

10 end

11 Initiate ���
t ¼ ��p

t , ��
�
t ¼ 2��p

t , n
� ¼ �nþ 1,

SS� ¼ ð2��p
t
�1 þ �SS

�1
Þ�1

;

12 Calculate the initial expectations h��ti and h��ti as (11);
13 while not converge do

14 Generate N samples fxx
ðiÞ
t ; w

ðiÞ
t gNi¼1 from qðxxtÞ,

where qðxxtÞ / pðzztjxxtÞN ðh��ti; h��tiÞ;
15 Compute the expectation hxxti and corresponding

precision matrix as (14);
16 Update the variational parameters ���

t , ��
�
t , n

�, SS�

according to (10);

17 Re-update the expectations h��ti and h��ti by (11);

18 end

19 Return the target position estimation hxxti;
20 end

4 EVALUATION AND SIMULATION

The performance of the tracking algorithm can be quanti-
fied by the following three criteria:

. Tracking accuracy: evaluated by the Root Mean
Square Error (RMSE) between the estimated and the
true target trajectory.

. Internode communication: quantified by the amount
of bits exchanged during a sampling interval.

. Computation complexity: evaluated by the execution
time of the algorithm.

4.1 Initialization

We evaluate the cluster-based VF algorithm on a synthetic
example. The purpose of the synthetic example is to establish
a baseline performance evaluation. In fact, the deployment of
sensors must ensure a high probability of detecting the
appearance of a target. In order to generate enough informa-
tion for target tracking, at least three slave sensors are
required to detect the target and to report their observations
for further processing. According to the network properties
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describedabove, theprobabilitydistributionof thenumberof
slave sensors in any given area A is Poisson with rate �sA.
Therefore, theprobability foranyarbitrarypoint in the field to
be sensed by at least three slave sensors [36] is

ps ¼
X1

i¼3

e��sr
2
s

�

�sr
2
s

�i

i!
:

Similarly, the deployment of CHs should guarantee that at
least one cluster is activated to track the target, the
corresponding probability is

pCH ¼
X1

i¼1

e��CHr
2
CH

�

�CHr
2
CH

�i

i!
:

Therefore, in the region under surveillance, 400 slave
sensors were randomly deployed in a two-dimensional
field of 100
 100 m2 (�s ¼ 0:04 sensors=m2). The detection
radius rs was identically set to 10 m to ensure that ps � 1.
All these sensors belonged to 25 sparsely and uniformly
positioned CHs. The cluster radius rCH was 15 m for the
one-coverage (pCH � 1) requirement. The shadowing �iy and
the communication noise �iz involved in the BPOM defined
by (6) were assumed to be white Gaussian distributed, with
variance �2

y ¼ �2z ¼ 0:01. The parameters involved in the
general state evolution model (2) were set as follows:

��� ¼
1=100 0

0 1=100

� �

; �n ¼ 1; �VV ¼
10 0

0 10

� �

:

The low state precision ��� and the low degree of freedom �n
allow a general noninformative prior. All the simulations
shown in this section were implemented by Matlab
version 7.1, using an Intel Pentium D CPU 3.4 GHz,
1.0 GB RAM PC.

4.2 Cluster-Based VF for BSNs

Fig. 9 demonstrates the tracking performance of the
proposed cluster-based VF algorithm using the binary
proximity observation model. Accordingly, the RMSEs are
depicted in Fig. 10. The simulation results confirm that
despite of the abrupt changes in the target trajectory, the

general state evolution model succeeds in describing the
target state evolution.

Monte Carlo simulations of 100 runs were performed in
order to evaluate the performance of the proposed
algorithm in terms of the criteria mentioned above. To
prove the efficiency of the nonmyopic cluster activation
rule defined by (17), the conventional cluster activation
strategy, which activates the closest cluster to the predic-
tion, is also evaluated and compared with ours in Table 1.
Note that both of them are executed on the same
configuration using the VF algorithm despite of different
cluster activation rule. The expected qualitative perfor-
mance of the proposed algorithm has been confirmed. With
respect to the RMSE, both of them can ensure the desired
tracking accuracy even with the coarse binary observation
model, which proves the efficient approximation of the VF
algorithm. The estimation precision, reflected by the RMSE,
of the conventional strategy is slightly better than that of
the nonmyopic one, as the conventional one chooses the
closest cluster, which is the most informative. The average
handoff occurrences are reduced from 16.1 times in the Re-
CM strategy to 11.3 times, due to the nonmyopic selective
cluster activation rule. Accordingly, the intercluster com-
munication of the nonmyopic rule among the CHs is
minimized compared to that of the conventional one.
Finally, compared to the sampling instant (1 second), both
the strategies succeed in real-time target tracking.

4.3 Comparison with State-of-the-Art Algorithms

To further demonstrate the efficiency of the proposed
cluster-based variational filter (VF) algorithm, we compared
it with the decentralized Gaussian particle filter (GPF) [9],
the binary particle filter (BPF) [30], [16], and the decen-
tralized version of the SOI-KF proposed in [15]. The BPOM,
formulated in (6), was adopted, except for the SOI-KF
algorithm. As have been mentioned above, the observation
model of the SOI-KF algorithm is much more informative.
Slave sensors of the SOI-KF also just transfer 1 bit
information, which is not related to the presence or absence
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TABLE 1
Monte Carlo Evaluation of the Cluster Activation Rules



of the target, but to the sign of difference between the range
estimation and its prediction.

Concerning the state evolution model, instead of the
GSEM model used in the VF algorithm, the other
considered algorithms adopted the traditional kinematic
parameter model:

xxt

vvt

� 

¼

1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1

0

B
B
B
@

1

C
C
C
A

xxt�1

vvt�1

� 

þ

T 2
s =2 0

0 T 2
s =2

Ts 0

0 Ts

0

B
B
B
@

1

C
C
C
A
uut;

where xxt and vvt denote the position and the velocity of the
target at instant t, respectively. The sampling interval is
Ts ¼ 1s and uut 2 IR2 is zero-mean white Gaussian noise. To
establish a baseline performance comparison on a relatively
difficult problem, the target motion was simulated by a
random walk mobility (RWM) model [37], which mimics
the erratic movement of a target in extremely unpredictable
ways. This characteristic can generate unrealistic move-
ments such as sudden stops and sharp turns. Whereas, it
happens to depict the nonlinear and non-Gaussian dy-
namics in WSN. Due to the instability of wireless commu-
nication and detection failure of sensors, the probability of
lost trace of the target increases consequently, which is then
reflected as sharp turns or sudden stops in the target
trajectory. Fig. 11 shows an example of target movement in
a 2D field. The target begins its movement at the point
½50; 50�. At each sampling instant, the target chooses an
arbitrary direction between 0 and 2 and a random velocity.
The target in Fig. 11 travels for 100 sampling time intervals.

The tracking performances of the VF algorithm are

compared with those of the three representative state-of-

the-art algorithms in Fig. 12, where the target follows the

trajectory of Fig. 11. The tracking precision is represented by

the RMSE. One can note that, even with abrupt changes at

instant t ¼ 69 and t ¼ 90 in target trajectory, desired

tracking quality is ensured by the VF algorithm with RMSE

of 1.851 and maximum error of 5.648. The GPF and the BPF

algorithms achieve comparable precisions, demonstrating

their effectiveness in the nonlinear context. The RMSE of

them is 2.103 and 2.087, respectively. However, at the instant

of abrupt changes, the two algorithms fail to track the target;

accordingly, the maximum errors are 9.852 for the GPF and

17.420 for the BPF. The precision of the particle filtering

depends on the choice of the importance sampling distribu-

tion. In the VF algorithm, we also resort to the IS method to

estimate the target position xxt, where an optimal choice of

the sampling distribution is yielded by minimizing the KL

divergence. In fact, variational calculus leads to a simple

Gaussian distribution whose parameters are iteratively

optimized. Unlike the VF algorithm, the temporal depen-

dence of the BPF is a huge amount of particles. The GPF

algorithm then approximates the particle distribution by a

Gaussian distribution. Similar to the VF algorithm, the GPF

also only propagates the mean and the precision matrix of

the single Gaussian distribution. However, the Gaussian

distribution of GPF is based on the classical PF, where the

mean and the precision are generated from the weighted

average value and the inverse of the variance of the point-

mass posterior distribution, respectively. Therefore, besides

the approximation of the true posterior pdf by the particles

fxx
ðiÞ
t ; w

ðiÞ
t gNi¼1, a second approximation is performed in GPF,

resulting the problem of error propagation. Consequently,

the RMSE of the GPF is bigger than that of the BPF

algorithm. The smaller RMSE of the VF in comparison with

the two approximation methods confirms once again the

effectiveness of the VF algorithm in terms of tracking

accuracy. However, because of essential limitation of the KF

algorithm in nonlinear environment, the SOI-KF cannot

TENG ET AL.: DECENTRALIZED VARIATIONAL FILTERING FOR TARGET TRACKING IN BINARY SENSOR NETWORKS 1473

Fig. 11. Target trajectory generated by the RWM model.

Fig. 12. Tracking performance comparison.



provide accurate tracking even with more informative

observations, the RMSE of which is 11.010 and maximum

error of which is 44.359.
Further extensive Monte Carlo simulations of 100 runs

were performed on the same hardware configuration.
Diverse target trajectories were generated at each run
using the RWM model to get the universal results. During
the Monte Carlo simulations, the GPF and the BPF
demonstrated similar tracking performance, where the
BPF slightly outperformed the GPF. However, when
abrupt changes occurred in the target trajectory, the
traditional kinematic model adopted in the GPF and the
BPF failed to describe the state evolution, leading to
serious estimation errors. Furthermore, such cases always
resulted in exceptional interrupt of the execution of the
GPF, when calculating the inverse of the particle variance.
It clearly appears in Table 2 that the VF algorithm achieves
the most accurate tracking performances, while the SOI-KF
is the most computationally efficient. In fact, the VF, the
BPF, and the GPF algorithms are essentially based on the
importance sampling. Their space complexities during a
time slot are thus proportional to the number of involved
particles. Obviously, the SOI-KF appears as the most space-
efficient algorithm, since it only involves simple matrix
transformations at every sampling instant. Concerning the
storage occupation rate during successive sampling in-
stants, the VF and the GPF algorithms maintain only one
Gaussian statistic, whereas the BPF algorithm stores a large
number of particles.

Tracking performances of VF, GPF, and BPF versus the
number of particles are shown in Fig. 13. Similarly, the
computation time of them versus the number of particles is
reported in Fig. 14. As can be expected, with the amount of

particles increasing, the algorithms demonstrate much more
accurate tracking at the cost of a higher computation
complexity. In particular, the computation time grows
almost proportionally to the increment of the number of
particles. It clearly shows that the amount of 200 particles
outperforms the others with respect to the trade-off
between tracking accuracy and computation complexity.
Therefore, 200 particles were used in the simulations
demonstrated above.

We shall now consider the internode communication in
Table 3. Let Nas denote the number of activated sensors that
detect the target, Ns the total amount of sensors (Ns � Nas),
Np the number of particles, and Nw the number of
corresponding weights (Nw ¼ Np). The intercluster commu-
nications of these algorithms were compared when a
handoff operation occurred. One can note in Table 3 that
the components Nas are equal for all the four algorithms,
since each activated sensor that detects the target transmits
1 bit of information to the CH. By approximating the
filtering distribution with a single Gaussian statistic, the VF
and the GPF just have to transfer the expectation and the
precision matrix. In the SOI-KF, all sensors need to be
updated with the target prediction to make binary
decisions, thus, requiring additional 32Ns bits. Internode
communication of the BPF mainly lies in communicating
the particles and their corresponding weights, which is
much greater than that of the VF and GPF algorithms.

5 CONCLUSION

A cluster-based VF algorithmwas proposed in the context of
WSNs for single target tracking. The use of the general state
evolution model to describe the target state with no a priori
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Monte Carlo Simulation Results of the Algorithms

Fig. 13. RMSE versus the number of particles.

Fig. 14. Computation time versus the number of particles.

TABLE 3
Internode Communication Comparison



information on the target motion is more appropriate to
practical nonlinear and even non-Gaussian situations. By
adopting the VF algorithm, the update and the approxima-
tion of filtering distribution are jointly performed, allowing a
lossless compression through the sensor network. As the
temporal dependence is reduced to only one single Gaussian
statistic, the VF algorithm outperforms the classical PF
algorithm in terms of resource consumption. Aiming at
conserving resource of the network, a nonmyopic CH
activation rule is proposed to reduce the occurrence of the
handoff operations, furtherminimizing energy consumption
and intercluster communication. Based on the reliable
prediction of theVF algorithm, effective clustering is ensured
not only in terms of tracking accuracy but also in terms of
energy efficiency. Furthermore, the binary proximity ob-
servation model quantifies the detected information to a
single bit, dramatically reducing the energy consumption of
sensors and also the intracluster communication cost.

We are currently working on the clustering protocols to
serve different requirements of sensor networks. Besides
minimizing the resource consumption over the whole
network, an efficient clustering protocol should also
maximize the lifetime of WSN by evenly distributing
energy consumption over all sensors. The relationship
between the prediction accuracy and the cluster activation
strategy remains an open issue.

APPENDIX A

THE PROOF OF THE INFERENCE (8)

The filtering distribution pð��tjzz1:tÞ, at instant t, could be
written with respect to the previous filtering distribution
pð��t�1jzz1:t�1Þ as follows:

pð��tjzz1:tÞ / pðzztj��t; zz1:t�1Þ

Z

pð��tj��t�1; zz1:t�1Þd��t�1

Z

pð��t�1jzz1:t�1Þd��t�1

/ pðzztj��tÞ

Z

pð��tj��t�1Þpð��t�1jzz1:t�1Þd��t�1:

ðA:1Þ

Taking into account the approximate variational filtering
distribution qð��t�1Þ at time t� 1, the above filtering
distribution is rewritten as follows:

p̂ð��tjzz1:tÞ / pðzztj��tÞ

Z

qð��t�1Þd��t�1

Z

pðxxt; ��t; ��tjxxt�1; ��t�1; ��t�1Þd��t�1:

ðA:2Þ

The a priori Markovian model GSEM (2) could be further
simplified as follows:

pðxxt; ��t; ��tjxxt�1; ��t�1; ��t�1Þ ¼ pðxxtj��t; ��t; xxt�1; ��t�1; ��t�1Þ

pð��tj��t; xxt�1; ��t�1; ��t�1Þ

pð��tjxxt�1; ��t�1; ��t�1Þ

¼ pðxxtj��t; ��tÞpð��tj��t�1Þpð��tÞ:

Expression (A.2) can be simplified by noticing that
R

qð��t�1Þd��t�1 ¼
Q

i

R

qð��i
t�1Þd��

i
t�1 ¼ 1, and pðzztj��tÞ ¼

pðzztjxxt; ��t; ��tÞ ¼ pðzztjxxtÞ, according to the GSEM (2) and
the BPOM (6). Therefore,

p̂ð��tjzz1:tÞ / pðzztj��tÞ

Z

qð��t�1Þd��t�1

Z

pðxxtj��t; ��tÞpð��tj��t�1Þpð��tÞd��t�1

¼ pðzztjxxtÞpðxxt; ��tj��tÞ
Z

pð��tj��t�1Þqð��t�1Þd��t�1

¼ pðzztjxxtÞpðxxt; ��tj��tÞqpð��tÞ:

APPENDIX B

VARIATIONAL CALCULUS

Appendix B.1 qð��tÞ

Assuming the Gaussianity of the approximate distribution
for the mean ��t�1 (qð��t�1Þ � N ð���

t�1; ��
�
t�1Þ) and taking into

account the Gaussian transition of the mean (pð��tj��t�1Þ �
N ð��t�1; ���Þ), we have

qpð��tÞ ¼

Z

pð��tj��t�1Þqð��t�1Þd��t�1

� N
�

���
t�1;

�

���
t�1

�1 þ ���
�1��1�

:

To simplify notations, let ��p
t and ��p

t denote, respectively, the
mean and the precision of the Gaussian distribution qpð��tÞ:
qpð��tÞ � N ð��p

t ; ��
p
t Þ. According to (7), the approximate

distribution qð��tÞ has the following expression:

qð��tÞ / exphlog pðzz1:t; ��tÞiqðxxtÞqð��tÞ

/ exphlog pð��tjzztÞiqðxxtÞqð��tÞ

/ exphlog pðzztjxxtÞ þ log pðxxtj��t; ��tÞ

þ log pð��tÞ þ log qpð��tÞiqðxxtÞqð��tÞ
:

ðB:1Þ

For any qðxxtÞ and qð��tÞ integrable function fðxxt; ��tÞ,
R

fðxxt; ��tÞdqðxxtÞqð��tÞ is constantwith respect to��t. Therefore,

qð��tÞ / qpð��tÞ exphlog pðxxtj��t; ��tÞiqðxxtÞqð��tÞ

/ qpð��tÞ exp �
1

2
ðxxt � ��tÞ

T��tðxxt � ��tÞ

� �

/ qpð��tÞ exp�
1

2
ftr½h��tihðxxt � ��tÞ

T ðxxt � ��tÞi�g

/ exp�
1

2

��

��t � ��p
t

�T
��t

�

��t � ��p
t

�

� 2��T
t h��tihxxti þ ��t

T h��ti��t�;

ðB:2Þ

yielding a Gaussian distribution qð��tÞ ¼ N ð���
t ; ��

�
t Þ. Comput-

ing the first and second derivatives of the logarithm of qð��tÞ:

@logðqð��tÞÞ

@��t

¼ �
1

2

�

2��p
t

�

��t � ��p
t

�

� 2h��tihxxti þ 2h��ti��t

�

;

@2logðqð��tÞÞ

@��t@��t
T

¼ ���p
t � h��ti;
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the precision ���
t and the mean ���

t of qð��tÞ are obtained as
follows:

���
t ¼ h��ti þ ��p

t ;
���
t ¼ ����1

t

�

h��tihxxti þ ��p
t��

p
t

�

:

�

ðB:3Þ

Appendix B.2 qð��tÞ

The component of the approximate separable distribution
corresponding to ��t can be obtained following the same
reasoning as above:

qð��tÞ / exphlog pð��tjzztÞiqðxxtÞqð��tÞ

/ exphlog pðzztjxxtÞ þ log pðxxtj��t; ��tÞ

þ log pð��tÞ þ log qpð��tÞi

/ pð��tÞ exphlog pðxxtj��t; ��tÞi

/ Wnx
ð�VV ; �nÞj��tj

1
2

exp�
1

2
ftr½��thðxxt � ��tÞ

T ðxxt � ��tÞi�g

/ j��tj
�nþ1�ðnxþ1Þ

2 exp�
1

2

�

tr
�

��t

�	

xxtxx
T
t




� hxxtih��ti
T

� h��tihxxti
T þ

	

��t��
T
t




þ �VV
�1���

;

ðB:4Þ

which yields a Wishart distribution Wnx
ðVV �; n�Þ for the

precision matrix ��t with the following parameters:

n� ¼ �nþ 1;
VV � ¼

�	

xxtxx
T
t




� hxxtih��ti
T � h��tihxxti

T

þ
	

��t��
T
t




þ �VV
�1
Þ�1:
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<

:
ðB:5Þ

Appendix B.3 qðxxtÞ

Finally, the approximate distribution qðxxtÞ has the following
expression:

qðxxtÞ / exphlog pð��tjzztÞiqð��tÞqð��tÞ

/ exphlog pðzztjxxtÞ þ log pðxxtj��t; ��tÞ

þ log pð��tÞ þ log qpð��tÞi

/ pðzztjxxtÞ exphlog pðxxtj��t; ��tÞi

/ pðzztjxxtÞ exp�
1

2
ftr½h��tihðxxt � ��tÞ

T ðxxt � ��tÞi�g

/ pðzztjxxtÞN ðh��ti; h��tiÞ;

ðB:6Þ

which does not have a closed form. Therefore, contrary to
the cases of the mean ��t and the precision ��t, in order to
compute the expectations relative to the distribution qðxxtÞ,
one has to resort to the importance sampling method,
where samples are generated according to the Gaussian
Nðh��ti; h��tiÞ and then weighted according to the like-
lihood pðzztjxxtÞ.
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d’Electricité (Supélec), Gif-sur-Yvette, France, in
2000, and the DEA and PhD degrees in signal
processing from the University of Paris-Sud,
Orsay, France, in 2000 and 2003, respectively.
Since 2005, he has been an associate professor
at the University of Technology of Troyes,
France. Between 2003 and 2004, he was a
postdoctoral researcher at IRCCyN, Institut de

Recherches en Communications et Cybernétiques de Nantes. He has
spent short periods as a visiting scientist at the Brain Science Institute,
RIKEN, Japan, and Olin Neuropsychiatry Research Center at the
Institute of Living in the US. Since January 2008, he has been leading
the research group “Surveillance” of LM2S Laboratory. He is in charge
of the regional research program System Security and Safety (S3) of
CPER 2007-2013 and the CapSec platform (wireless embedded
sensors for security). He is the principal investigator of an ANR-Blanc
project (mv-EMD), a CRCA project (new partnership and new
technologies), and a GDR-ISIS young researcher project. He is a
partner of many ANR projects, GIS, strategic UTT programs. He
obtained the National Doctoral and Research Supervising Award PEDR
2008-2012. He is a member of the IEEE.

Cédric Richard received the Dipl-Ing and MS
degrees in 1994 and the PhD degree in 1998
from the University of Technology of Com-
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