
1 

Decentralizing Control and Intelligence 
in Network Management1 

Kraig Meyer, Mike Edinger, Joe Betser, Carl Sunshine 

The Aerospace Corporation 

P.O. Box 92957, Los Angeles, CA, 90009, USA. Phone: +1 310-336-8114. Email: kmeyer@aero.org 

German Goldszmidt, Yechiam Yemini 

Computer Science Department, Columbia University 

450 Computer Science Building, Columbia University, New York, NY, 10027, USA. 

Phone: +1 212-939-7123. Email: german@cs.columbia.edu 

Abstract 

Device failures, performance inefficiencies, and security compromises are some of the problems as

sociated with the operations of networked systems. Effective management requires monitoring, 

interpreting, and controlling the behavior of the distributed resources. Current management sys

tems pursue a platform-centered paradigm, where agents monitor the system and collect data, which 

can be accessed by applications via management protocols. We contrast this centralized paradigm 

with a decentralized paradigm, in which some or all intelligence and control is distributed among 

the network entities. Network management examples show that the centralized paradigm has some 

fundamental limitations. We explain that centralized and decentralized paradigms can and should 

coexist, and define characteristics that can be used to determine the degree of decentralization that 

is appropriate for a given network management application. 

Keywords 

Network Architecture and Design, Management Model, Distributed Processing, Client-Server. 

1 INTRODUCTION 

Some experts in the field of network management have asserted that most, if not all, network 

management problems can be solved with the Simple Network Management Protocol (SNMP) 

[3). This stems in part from the belief that it is nearly always appropriate to centralize control 

and intelligence in network management, and that SNMP provides a good mechanism to manage 

networks using a fully centralized management paradigm. 

1This work was sponsored in part by ARPA Projects A661 and A662. The views expressed are those of the 

authors and do not represent the position of ARPA or the U.S. Government. This paper approved for public release

distribution unlimited. 

A. S. Sethi et al. (eds.), Integrated Network Management IV

© Springer Science+Business Media Dordrecht 1995



Decentralizing control and intelligence in network management 5 

In this paper, we explore a number of different applications currently being used or developed for 

network management. We show that there are real network management problems that cannot 

be adequately addressed by a fully centralized approach. In many cases, a decentralized approach 

is more appropriate or even necessary to meet application requirements. We describe such an 
approach and start to build a taxonomy for network management applications. We specifically 

identify those characteristics that can be used to determine whether an application is more suitably 

realized in a centralized or decentralized network management paradigm. From the outset, it 

should be noted that many, if not most, network management applications can be realized in either 

paradigm. However, each application has characteristics that make it more suitable to one of the 

two approaches, or in some cases to a combination of both. 

The remainder of this paper briefly lists what these characteristics are, discusses several categories 

of applications that have these differing characteristics, and analyzes some example applications. 

The next section describes two contrasting paradigms for network management: centralized and 

decentralized. Section 3 describes application characteristics that can be used to determine which 

paradigm is appropriate, along with some typical applications. Section 4 looks at four examples of 

decentralized applications in more depth. Finally, section 5 provides a conclusion and discussion of 

future work. 

2 NETWORK MANAGEMENT MODELS 

Basically, a network management system contains four types of components: Network Management 

Stations (NMSs), agents running on managed nodes, management protocols, and management 

information. An NMS uses the management protocol to communicate with agents running on the 

managed nodes. The information communicated between the NMS and agents is defined by a 

Management Information Base (MIB). 

2.1 Centralized SNMP Management 

The Internet-standard Network Management Framework is defined by four documents ([3], [6], [8], 

[9]). In the Internet community, SNMP has become the standard network management protocol. 

In fact, SNMP has become the accepted acronym for the entire Internet-standard Network Man

agement Framework. Despite this, it should be noted that SNMP itself need not be bound to the 

paradigm that has developed around it. SNMP can be used as a reasonably general and extensible 

data-moving protocol. 

To encourage the widespread implementation and use of network management, a minimalist ap

proach has driven SNMP based network management. As noted in [10], "The impact of adding net

work management to managed nodes must be minimal, reflecting a lowest common denominator." 

Adherence to this "axiom" has resulted in a network management paradigm that is centralized, 

usually around a single NMS. Agents tend to be simple and normally only communicate when 

responding to queries for MIB information. 

The centralized SNMP paradigm evolved for several reasons. First, the most essential functions of 



6 Part One Distributed Systems Management 

network management are well-realized in this paradigm. Agents are not capable of performing self

management when global knowledge is required. Second, all network entities need to be managed 

through a common interface. When many of these entities have limited computation power, it is 

necessary to pursue the "least common denominator" strategy mentioned above. Unfortunately, in 

many cases this strategy does not allow for data to be processed where and when it is most efficient 

to do so. 

Even when management data is brought to an NMS platform, it is frequently not processed by 

applications in a meaningful way. Network management protocols unify the syntax of managed 

data access, but leave semantic interpretation to applications. Since the semantic heterogeneity of 

managed data has grown explosively in recent years, the task of developing meaningful manage

ment applications has grown more onerous. In the absence of such applications, platform-centered 

management often provides little more than MIB browsers, which display larg!! amounts of cryptic 

device data on user screens. As first noted in the introduction to [7], it is still the case that "most 

network management systems are passive and offer little more than interfaces to raw or partly 

aggregated and/or correlated data in MIBs." 

The rapid growth in the size of networks has also brought into question the scalability of any 

centralized model. At the same time, the computational power of the managed entities has grown, 

making it possible to perform significant management functions in a distributed fashion. 

Contemporary management systems, based on the platform-centered paradigm, hinder users from 

realizing the full potential of the network infrastructure on which their applications run. This 

paradigm needs to be augmented to allow for decentralized control and intelligence, distributed 

processing, and local interpretation of data semantics. 

2.2 Decentralized Management by Delegation 

Management by Delegation (MBD) [13] utilizes a decentralized paradigm that takes advantage of 

the increased computational power in network agents and decreases pressure on centralized NMSs 

and network bandwidth. MBD supports both temporal distribution {distribution over time) and 

spatial distribution (distribution over different network devices). In this paradigm, agents that are 

capable of performing sophisticated management functions locally can take computing pressure off 

of centralized NMSs, and reduce the network overhead of management messages. 

At the highest level of abstraction, the Decentralized MBD paradigm and Centralized SNMP 

paradigm appear the same, as both have an NMS communicating with agents via a protocol. 

But the MBD model supports a more distributed management environment by increasing the man

agement autonomy of agents. MBD defines a type of distributed process, Elastic Process [4], that 

supports execution time extension and contraction of functionality. During its execution, an elastic 

process can absorb new functions that are delegated by other processes. Those functions can then 

be invoked by remote clients as either remote procedures or independent threads in the scope of 

the elastic process. 

MBD provides for efficient and scalable management systems by using delegation to elastic agents. 

Instead of moving data from the agent to the NMS where it is processed by applications, MBD moves 

the applications to the agents where they are delegated to an elastic process. Thus, management 



Decentralizing control and intelligence in network management 7 

responsibilities can be shifted to the devices themselves when it makes sense to do so. 

Decentralization makes sense for those types of management applications that require or can take 

advantage of spatial distribution. For example, spatial distribution may be used to minimize 

overhead and delay. There is also an entire class of management computations, particularly those 

that evaluate and react to transient events, that must be distributed to the devices, as they can not 

be effectively computed in an NMS. Decentralization also allows one to more effectively manage 

a network as performance changes over time. The ability to download functions to agents and 

then access those functions during stressed network conditions reduces the network bandwidth 

that would be consumed by a centralized paradigm. 

3 DISTRIBUTING NETWORK MANAGEMENT APPLICA

TIONS 

The two paradigms of network management presented in the previous section might be viewed 

as contrasting, competing, possibly even incompatible models. The reality is that the SNMP (or 

centralized) paradigm and the MBD (or decentralized) paradigm are really just two points on a 

variety of continuous scales. An ideal network management system should be able to handle a full 

range of network management functions, for example using MBD's elastic processes to distribute 

management functionality in those cases where distribution is more efficient, but using SNMP's 

centralized computation and decision making when required. In this way, MBD should be seen as 

augmenting, rather than competing with, SNMP efforts. In fact, the SNMP community has already 

recognized the value of distributable management, with a manager-to-manager MIB [2] and some 

preliminary work on NMS-to-agent communications via scripts. 

As previously mentioned, most of the early network management applications were well-suited to 

centralized control, which explains the success that the centralized SNMP paradigm has had to 

date. Some newer and evolving applications require a decentralized approach. A good example 

of an application that requires decentralization is the use of RMON (remote monitoring) probes 

[12]. RMON probes collect large amounts of information from their local Ethernet segment, and 

provide an NMS with detailed information about traffic activity on the segment. These probes 

perform extensive sorting and processing locally, and provide summary and table information via 

SNMP through a specially formatted MIB. Although this application uses SNMP for data transfer, 

in actuality, RMON is a realization of an application in the decentralized paradigm. 

The question remains, how does one characterize network management applications in such a way 

that one can determine whether they should be distributed? There are a number of metrics that 

can be used to judge whether a network management application is more appropriately realized in 

a centralized or decentralized paradigm. These metrics are illustrated in figure 1 and include the 

following: 

• Need for distributed intelligence, control and processing. This scale runs from a 

low need for distribution (corresponding with centralized intelligence) to a high need for 

distribution, or decentralized intelligence. An application that requires fast decisions based 

on local information will need decentralized control and intelligence. Applications that utilize 



8 Part One Distributed Systems Management 

Most Suitable Management Paradigm 

Centralized/SNMP Decentralized/MBD 

Need for Distributed Intelligence, Control, and Processing 

Low Need 
for Distribution 

... 

Required Frequency of Polling 

Low Frequency 

High Need 
for Distribution 

.. 
High Frequency 

Ratio of Network Throughput to Amount of Managment Information 

High Throughput/ 
Low Information 

Low Throughput/ 
High Information 

... Need for Semantically Rich or Frequent Conversation .., 

Semantically Simple/ Semantically Rich/ 
Infrequent Frequent 

Figure 1: Metrics used to determine decentralization 

large amounts of data may find it advantageous, though not always necessary, to perform 

decentralized processing. A specific example of this is an application that may need to use 

many pieces of data that can only be obtained by computing database views over large 

numbers of MIB variables. In this case, the application output may be very small, but the 

input to it may be an entire MIB. 

• Required frequency of polling. The need for proximity to information and frequency of 

polling may dictate that computations be performed in local agents. This scale runs from a 

low frequency of polling to a high frequency of polling. An example of an application that 

requires a high frequency of polling is a health function that depends on an ability to detect 

high frequency deltas on variables. 

• Ratio of network throughput to the amount of management information. At one 

end of this scale, the network in question has plenty of capacity relative to the amount of 

management information that needs to be sent through it. At the other end of the scale, there 

is a large amount of management information-so much that it conceivably could saturate 

the lower throughput network. An example of an application with a low throughput/high 

information ratio is the management of a large remote site via a low bandwidth link. Note 

that network throughput is affected not only by the amount of bandwidth available but also 

by the reliability of that bandwidth. 

• Need for a semantically rich andjor frequent conversation between manager and 

agent. One end of this scale represents those applications that require only semantically 

simple and infrequent conversations, meaning that access to data is infrequent and simple 



Decentralizing control and intelligence in network management 9 

data types are all that need to be accessed. At the other end of this scale are applications that 

require frequent conversations and/or semantically rich interactions, meaning that complex 

data structures, scripts, or actual executables need to be passed to a remote server. An 

application that needs to download diagnostic code to agents on demand is an example of 

one that would require a semantically rich and frequent conversation. 

3.1 Centralized Applications 

From the discussion of these metrics, we can see that centralization is generally appropriate for 

those applications that have little inherent need for distributed control, do not require frequent 

polling or high frequency computation of MIB deltas, have high throughput resources connecting 

the manager and agent, pass around a small amount of information, and do not have a need for 

frequent and semantically rich conversations between the manager and agent. 

Most network management applications that are currently being used fall into this category. One 

may argue that this is because the centralized (SNMP) paradigm is the only one that is realized in 

most commercial products, but in actuality this centralized paradigm was built because the most 

important network management needs fit these characteristics. The classic example of this is the 

display of simple MIB variables. Monitoring a router's interface status, or a link's up/down status, 

involves querying and displaying the value of a single or small number of (MIB) variables, and is 

well suited to centralized management. 

The NMS network map is another example of a tool that requires input from a number of devices to 

establish current connectivity. Thus a decentralized approach would not provide the connectivity 

map that a centralized approach can quickly establish via an activity like ping. 

3.2 Partially Decentralized Applications 

"Partial Decentralization" is appropriate for applications that are bandwidth-constrained, but still 

require some degree of centralized administrative control. An example of a bandwidth-constrained 

application is the management of a west coast network by an east coast manager. If the networks 

are linked by a relatively low bandwidth link, it is desirable for all information about the west coast 

network to be collected locally by an agent on the west coast, and only summary information be 

passed back to the east coast. Another case of a "partially decentralized" application is when local 

networks are autonomous. A department administrator may manage a local network, passing only 

summary information up to the higher level network manager. 

This category of applications also includes those that can be decentralized for the purpose of band

width and processor conservation. It may be possible to greatly reduce the amount of bandwidth or 

centralized processing required by having an agent perform a local calculation over a large amount 

of data, then reporting the result-a small amount of data-back to the centralized manager. This 

algorithm may be repeated on each subnet of a large network, effectively breaking one large cal

culation into many small calculations. Some applications of RMON and health functions fit this 

profile. Some applications for the management of stressed networks also fit this profile. 

Some degree of decentralization is highly desirable for the applications in this category. This may 



10 Part One Distributed Systems Management 

be accomplished by building a midlevel SNMP manager local to the variables being monitored, or 

by using elastic processes in the MBD paradigm. The SNMP solution is less general in that each 

midlevel manager must include both agent and NMS capabilities. 

3.3 Decentralized Applications 

Further analysis of the aforementioned metrics shows that decentralization is most appropriate for 

those applications that have an inherent need for distributed control, may require frequent polling or 

computation of high frequency MIB deltas, include networks with throughput constraints, perform 

computations over large amounts of information, or have a need for semantically rich conversations 

between manager and agent. 

An example in this class is a health function that requires an ability to detect high frequency deltas 

on a set of MIB variables. A second example may be the management of a satellite or disconnected 

subnet, where a subnet manager is required to obtain data, make decisions, and change application 

or network characteristics even when that manager is isolated from the central, controlling manager. 

Finally, an application may have a need to download diagnostics and control information into a 

network element dynamically, in an attempt to isolate a problem. 

Depending on the generality required, the SNMP manager-to-manager MIB may not be sufficiently 

general to allow for adequate delegated control for these applications. If frequent reprogrammability 

is a requirement, decentralization is the logical choice. 

4 EXAMPLES OF DECENTRALIZED APPLICATIONS 

We have identified four examples of network management applications that should be realized in a 

decentralized network management paradigm. These include Distributed Intrusion Detection, Sub

net Remote Monitoring, Subnet Health Management, and Stressed Domain Management. What is 

presented below is a description of the activity and an analysis of its requirement for a decentralized 

approach. Current research efforts are involved in determining quantitative values for centralized 

and decentralized approaches to these applications. 

4.1 Management of Distributed Intrusion Detection 

Intrusion detection refers to the ability of a computer system to automatically determine that a 

security breach is in the process of occurring, or has occurred at some time in the past. It is built 

upon the premise that an attack consists of some number of detectable security-relevant system 

events, such as attempted logons, file accesses, and so forth, and that these events can be collected 

and analyzed to reach meaningful conclusions. These events are typically collected in an audit log, 

which is processed either in real time or off-line at a later time. 

Intrusion detection requires that many potentially security-relevant events be recorded, and thus 

enormous amounts of audit data are a necessary prerequisite to successful detection, Simply record

ing all of the audit records results in a large amount of Input/Output (I/0) and storage overhead. 



Decentralizing control and intelligence in network management 11 

For example, if all audit events are enabled on a Sun Microsystems workstation running Multilevel 

Secure Sun OS, it is possible for· a single machine to generate as much as 20 megabytes of raw data 

per hour, although 1-3 megabytes is more typical (11]. Once the audit records are recorded, they 

must all be read and analyzed, increasing I/0 overhead further and requiring a large amount of 

CPU processing. Audit data generally scales linearly with the number of users. As a consequence, 

expanding intrusion detection to a distributed system is likely to result in network congestion if all 

audit data must be sent to a central location. The CPU requirements scale in a: worse than linear 

fashion: Not only must analysis be performed on each machine's local audit log, but correlation 

analysis must be performed on events in different machines' local logs. As a result, there is a high 

motivation to keep processing distributed as much as possible, and to keep the audit record format 

as standardized as possible. 

Historically, the management of distributed intrusion detection has not been addressed in any 

standardized way. Banning (1] suggests that a list of an audit agent's managed objects should be 

stored in a MIB, a.nd a.n audit agent should be managed using a standardized protocol such a.s 

CMIP (5]. However, to-date, no intrusion detection systems have been widely fielded that perform 

this function. 

Intrusion detection is an excellent candidate application for decentralized management. There is a 

high motivation for decentralized intelligence and processing because it is very clear that centralized 

processing won't scale, and that network bandwidth won't accommodate all audit data being sent 

to a centralized point. Further, there may be a need for a semantically rich conversation between 

distributed monitors, as they may need to pass relatively complicated structures that are hard t'a 

predefine in a MIB. 

4.2 Subnet Remote Monitoring (RMON) 

As previously mentioned, RMON (12] provides a framework in which remote monitoring probes 

collect information from local Ethernet segments, and provide this data to NMSs. RMON has 

in fact taken a hybrid centralized/decentralized approach to management. The RMON agent is 

responsible for collecting data from the local segment and performing calculations over that data 

(e.g., determining which stations are generating the largest amount oftraffic). On a busy network, 

this may include maintaining a station table of over 3000 nodes along with packet counts. It is 

impractical, and inefficient, to download this entire station table to the management station for 

centralized processing. The entire transaction could easily take minutes, which is likely too slow to 
be meaningful. 

In the RMON MIB a form of distributed processing was used in the creation of the Host Top N 

function. The Host Top N MIB group provides sorted host statistics, such as the top 20 nodes 

sending packets, or an ordered list of all hosts according to the number of errors they sent over 

the last 24 hours. Both the data selected and the duration of the study is defined by the user via 

the NMS. Once the requested function is setup in the agent, the NMS then only queries for the 

requested statistics. 

Using a pure centralized approach for the Top N transmitting stations,2 the NMS would have to 
/ 

2 Assume that a. sort will be performed ba.sed on the number of packets transmitted by each station. 



12 Part One Distributed Systems Management 

request statistics for all the hosts that have been seen on that subnet. Two such sets of requests 

would have to be made to determine the Top N: one to get a baseline count for each station and 

one to get the count for each station after a time, t. The difference between the two sets of requests 

would then be sorted by the NMS for the Top N display. 

Assuming that statistics for only one station can be requested in each SNMP message, the total 

number of SNMP messages is 2 times the number of stations (ns) with a total SNMP cost of: 

2 * ns * SC, where SC is the cost of an SNMP message. 

If instead, the RMON approach is taken, the Top N function is distributed to the agent and the 

costs are greatly decreased. In this situation there are two costs. The first cost corresponds to the 

request that a Top N function be performed for some number of stations N < ns over some period 

t; the second is the cost of gathering the sorted statistics. Assuming that the set up costs (selection 

criteria and time period) can be established in two SNMP messages, the cost for a distributed top 

N function is: 2 * SC + N * SC. In the worst case, N = ns, decentralization costs (2 + ns) * SC. 

Thus whenever NS > 2, the decentralized approach of RMON is superior-costs less-than the usual 

centralized approach. 

4.3 Management of Subnet Health Applications 

Subnet health management is another application that requires some degree of decentralization. 

One of the difficult problems in a large network is the determination of the health of a subnet, 

where health is a dynamic function of a number of network traffic parameters. RMON is designed 

to provide data for the management of subnets. In a network of many subnets, e.g., a corporate 

network, the SNMP centralized paradigm puts a processing burden on the NMS and a data transfer 

burden on the network. 

Subnet health can be determined using either the centralized or distributed paradigm. In a lightly 

loaded network, it is acceptable for the NMS to query all the subnets for information. The returned 

information can then be filtered by the management station to determine subnet health. The 

problem with this centralized paradigm arises in a loaded or congested network, especially when 

the amount of information being returned is large. When the network is loaded, the additional 

traffic generated by querying the subnets for large volumes of data can be significant. Thus the 

decentralized approach becomes necessary. This is a case where a large amount of information is 

needed relative to the throughput or bandwidth available on the network. 

In the centralized approach the management station has the requirement to make some evaluation of 

subnet health by first gathering data and second, correlating that data. The. decentralized approach 

localizes the gathering and correlation activities, so the local subnet then has the responsibility only 

to report its health based on some known health function. 

The determination of whether subnet health is a. centralized or decentralized activity is made not by 

the activity itself, but by variables affecting that activity. Thus, it is not the activity of gathering 

data and evaluating health that determines centralization. Rather, the effects of the network traffic 

on such gathering and the effects of such gathering on network traffic determine the choice between 

centralized and decentralized paradigms. This determination should be made dynamically by the 

NMS, which is able to determine and modify the balance of centralized versus decentralized activity. 



Decentralizing control and intelligence in network management 13 

The following steps might be taken: 

• Using ping or a predefined health function, the NMS determines whether a centralized or 

decentralized approach should be used. 

• If conditions favor a centralized approach, the NMS would request from the RMON agent 

all data that might be needed for various application tools. This is essentially the current 

approach. 

• If a decentralized approach is determined to be needed, the NMS would request results from 

predefined RMON agent health functions. 

• Based on these health functions, additional health data may be requested and/or new health 

functions downloaded to the agent. Each health function would put additional emphasis on 

agent health evaluation. 

In some ways the above is a dynamic escalation from the centralized paradigm to the decentralized 

paradigm based on health functions. The goal of the NMS is to determine subnet health with 

minimal impact on the network as a whole. 

4.4 Management of Stressed Networks 

An additional application that is well-suited towards distributed management is the management 

of stressed networks. Networks in stressed conditions have a number of properties that require 

different management strategies from unstressed networks. For the purpose of this paper, network 

stress is defined as sustained operation at high utilization, and includes highly saturated network 

segments or devices. Related characteristics of such networks include longer delays, reduced ef

fective connectivity, and less predictable responses. Network stress may be caused by failure of 

network components, causing phenomena such as loss of connectivity, increased packet traffic, and 

unexpected routing. A common characteristic of stress is that if left unattended, problems tend 

to escalate, and network resources become less available. The unstable stress phenomena are the 

most critical to address. Algorithms used for stressed region management must have the following 

characteristics: 

• Local Autonomy of Algorithm. The algorithm must have good distributivity, provide 

most information locally, and only require low management bandwidth outside of the local 

domain. 

• Stress Containment using Routing. Routing must be able to bypass problematic regions. 

Routing algorithms must be very distributed, with routing tables at each domain, and must 

react to changes in traffic patterns. In stress, there should be alternate routes known locally, 

but remote verification of reachability is required. 

• Local Network Domain Stabilization. If the source of a problem is local, the local 

domain should be able to make decisions to contain and correct problems locally. If a stress 

source is external, outside consultation is required. 



14 Part One Distributed Systems Management 

• Gradual and Graceful Degradation. Management algorithms should function and net

work services should continue--albeit with worse performance--as network stress grows. This 

typically requires a distributed architecture, with low dependency on remote resources and 

high dependence on local autonomy. 

• Stress Prediction. Distributed health monitoring allows for local domains to anticipate 

stress conditions before they actually occur. Countermeasures may be taken locally or may 

require interaction between domains. 

A basic technique for stress monitoring involves the correlation of MIB variables reflecting local 

stress (such as retransmissions, packet lengths, and timeouts). These correlations should be done 

on a domain-by-domain basis, for efficient collection of data from neighboring nodes, and thus 

computations would be distributed. This may also naturally lead to distributed control and de

centralization. Local managers would conduct cross-correlations on a regular basis, and patterns 

of stress could be established and trigger stress alarms for that domain. Similarly, higher level 

managers would conduct cross-correlations of domain-manager information, to establish "regional" 

stress propagation, and devise policies and strategies to combat escalating stress. All these activities 

are very likely to be distributed in a hierarchical fashion among network domains. 

A need for distributed control, bandwidth limitations, and other characteristics of stress manage

ment indicate that decentralization may provide significant benefits in effectively managing network 

and system stress. 

5 CONCLUSIONS AND FUTURE WORK 

We have described two network management paradigms, SNMP and MBD, that have historically 

represented conflicting views of how networks should be managed. We have shown that the cen

tralized approach associated with SNMP and the decentralized approach of MBD are actually just 

two points on a continuous scale of network management approaches. We have started building a 

taxonomy for network management applications and identified a number of characteristics that can 

help to determine whether a given network management application should be realized in a cen

tralized paradigm, a decentralized paradigm, or some hybrid of the two. Finally, we have focused 

on four specific examples of p.etwork applications and explained why none of them is best realized 

in a strict, fully-centralized network management paradigm. 

We plan to continue to investigate network management approaches through a series of experiments 

directed at quantifying the choice of network management paradigm. We believe that the costs 

associated with the various paradigms can be used by applications to dynamically choose among 

centralized, decentralized, or hybrid approaches to network management. The experiments should 

also provide additional input to extend the list of characteristics that effect the choice of network 

management paradigm. 



Decentralizing control and intelligence in network management 15 

References 

[1) D. Banning, et. al. Auditing of Distributed Systems. Proceedings of the 14th National Computer 

Security Conference, pages 59-68, Washington, D.C., October 1991. 

[2) J. Case, K. McCloghrie, M. Rose, and S. Waldbusser. Manager-to-Manager Management 

Information Base. Request for Comments 1451, April 1993. 

(3) J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple Network Management Protocol 

(SNMP). Request for Comments 1157, May 1990. 

(4) G. Goldszmidt. Distributed System Management via Elastic Servers. Proceedings ofthe IEEE 

First International Workshop on Systems Management, pages 31-35, Los Angeles, California, 

April1993. 

[5) International Standards Organization (ISO). 9596 Information Technology, Open Systems In
terconnection, Common Management Information Protocol Specification, May 1990. 

(6] K. McCloghrie and M. Rose. Management Information Base for Network Management of 

TCP/IP-based internets: MIB-Il. Request for Comments 1213, March 1991. 

(7) B.N. Meandzija, K.W. Kappel, and P.J. Brusil. Introduction to Proceedings of the Second 

International Symposium on Integrated Network Management, Iyengar Krishnan and Wolfgang 

Zimmer, editors. Washington, DC, April1991. 

(8) M. Rose and K. McCloghrie. Structure and Identification of Management Information for 

TCP/IP-based Internets. Request for Comments 1155, May 1990. 

(9) M. Rose and K. McCloghrie. Concise MIB Definitions. Request for Comments 1212, March 

1991. 

(10] M. Rose. The Simple Book, An Introduction to Management of TCP/IP-based Internets. 

Prentice Hall, 1991. 

(11] 0. Sibert. Auditing in a Distributed System: SunOS MLS Audit Trails. Proceedings of the 

11th National Computer Security Conference, Baltimore, MD, October 1988. 

(12] S. Waldbusser. Remote Network Monitoring Management Information Base. Request for 

Comments 1271, November 1991. 

(13) Y. Yemini, G. Goldszmidt, and S. Yemini. Network Management by Delegation. Second 

International Symposium on Integrated Network Management, pages 95-107, Washington, 
DC, April 1991. 



16 Part One Distributed Systems Management 

Kraig Meyer is a Member of the Technical Staff at The Aerospace Corporation in El Segundo, 

CA. He has previously worked as a lecturer and research assistant at the University of Southern 

California, and as a Systems Research Programmer on the NSFNET project at the Merit Computer 

Network. His research interests include computer network security, protocols, and management. 

Kraig holds a BSE in Computer Engineering from the University of Michigan and an MS in Com

puter Science from the University of Southern California. 

Mike Erlinger is a Professor of CS at Harvey Mudd College, and a member of the technical 

staff at The Aerospace Corporation. Mike has founded and chaired the CS department at Mudd, 

and has technical program support responsibilities at Aerospace, as well as a lead role in several 

of the research efforts, such as the Southern California ATM Network. He has also founded and 

chaired the RMON MIB WG within the IETF. Mike has worked for Micro Technology as Director 

of Network Products and previously for the Hughes Corporation. His interests are in the areas of 

network management, software engineering, system administration, and high speed networking. 

Joe Betser is the founder and head of the Network and System Management Laboratory at The 

Aerospace Corporation. Dr. Betser provides the national space programs with ongoing technical 

guidance and also serves as an ARPA Pl. Joe established research collaborations with Columbia 

University and several California centers active in high speed networking and ATM. His new work 

focuses on QOS for tele-medicine, tele-multi-media, and other imaging applications. Joe served on 

the program and organizing committees for NOMS, ISINM, MilCom, and other computer commu

nications events, and in particular, has chaired the vendor program at ISINM'93. Joe holds a PhD 

and MS in CS from UCLA, and a BS with Honors from Technion, Israel Inst. of Tech. 

Carl Sunshine has been involved in computer network research from the early development at 

Stanford University of the Internet protocols. He subsequently worked at The Rand Corporation, 

USC Information Sciences Institute, Sytek (now Hughes LAN Systems), and System Development 

Corporation (now Unisys). Dr. Sunshine's work encompassed a range of topics including network 

protocol design, formal specification and verification, network management, and computer security. 

Since 1988 he has been with The Aerospace Corporation, managing computer system research and 

development for a variety of space programs. 

German Goldszmidt is a PhD candidate in Computer Science at Columbia University, where he is 

completing his dissertation, entitled "Distributed Management by Delegation". He received his BA 

and MS degrees in Computer Science from the Technion. His Master's thesis topic was the design 

and implementation of an environment for debugging distributed programs. Since 1988 he worked at 

IBM Research, where he designs and develops software technologies for distributed applications. His 

current research interests include distributed programming technologies for heterogeneous systems, 

and network and distributed system management. 

Yechiam Yemini (YY) is a Professor of CS and the Director of the Distributed Computing 

and Communications Laboratory at Columbia University. YY is the Founder, Director, and Chief 

Scientific Advisor of Comverse Technologies, a public NY Company producing multimedia store

and-forward message computers. YY is also the Founder and Chief Scientific Advisor of System 

Management Arts (SMARTS), a NY startup specializing in novel management technologies for en

terprise systems. YY is frequently invited to speak in the areas of computing, networks, distributed 

systems, and the interplay among these areas, and is the author of over 100 publications. 


