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Abstract—Cloud computing has become pervasive due to
attractive features such as on-demand resource provisioning
and elasticity. Most cloud providers are centralized entities that
employ massive data centers. However, in recent times, due
to increasing concerns about privacy and data control, many
small data centers (SDCs) established by different providers are
emerging in an attempt to meet demand locally. However, SDCs
can suffer from resource in-elasticity due to their relatively scarce
resources, resulting in a loss of performance and revenue. In
this paper we propose a decentralized cloud model in which
a group of SDCs can cooperate with each other to improve
performance. Moreover, we design a general strategy function
for the SDCs to evaluate the performance of cooperation based
on different dimensions of resource sharing. Through extensive
simulations using a realistic data center model, we show that
the strategies based on reciprocity are more effective than other
involved strategies, e.g., those using prediction on historical data.
Our results show that the reciprocity-based strategy can thrive
in a heterogeneous environment with competing strategies.

I. INTRODUCTION

Cloud computing has become hugely popular in the IT
marketplace because of its on-demand resource provisioning,
high availability and elasticity. These features allow cloud end-
users to access resources in a pay-as-you-go manner and to
meet varying demands without upfront resource commitments
[1]. Currently, many small data centers (SDCs) are springing
up in order to avoid severe issues (e.g., legal, privacy, and
data control [2]) that can arise with the adoption of massive
centralized data centers. According to recent news reports [3],
many European countries are now concerned about their data
leaving European borders and are also stressing on the need for
local small data centers to serve local needs. For instance, in a
country like Switzerland with various autonomous cantons, one
could imagine the emergence of multiple small data centers in
various government institutions to obviate the reliance on big
enterprise data centers and to maintain control over local data.

However, these small data centers, due to their size, are
likely to suffer from resource under-provisioning thus failing
to meet peak demand. We term this the Resource Provisioning
Dilemma faced by SDCs in that they have to make the tradeoff
between request loss and the cost of over-provisioning. One
way out of this dilemma is for such small data centers to
cooperate with each other to help meet each others’ user
demand, thereby increasing their resources without having to
invest in more. Such cooperation is analogous to Business
Clusters described in mainstream economics which emerge
due to, among other factors, shared interests and geographical
proximity [4]. We note here that since one of the key benefits
of SDCs is the avoidance of legal and privacy issues, it

is apparent that SDCs much like Business Clusters would
prefer to cooperate with those SDCs which lie under one
legislative control, thereby alleviating any of their own or their
customers’ privacy concerns. An alternative could be a big data
center under one legislative control, however in practice due
to bureaucratic obstacles and lack of centralized coordination,
most local enterprises such as universities, research centers,
hospitals, and govt. offices, etc., often resort to employing their
own SDCs. Hurdles in centralizing data control in general due
to organizational mismatches and lack of incentives have been
formalized in [5].

Some previous works [6], [7] have focused on platform
design for cooperation between cloud providers. Other works
have focused on prices and revenue maximization for incen-
tivizing data centers to cooperate [8]. However, in a dynamic
setting of data centers with varying workload patterns and
changing sociopolitical and legal realities, prices and revenue
maximization are not the sole (or at times even relevant) crite-
rion that can determine cooperation. Factors such as location
proximity, workload similarity, privacy concerns etc., can be
equally, if not more, important considerations for resource
exchange and allocation between small data centers.

In this paper, we propose a decentralized cloud with a
swarm of networked SDCs which cooperate with each other
under varying workloads, and which employ various strategies
in order to cooperate with others. Our analysis aims to answer
the following questions: i) what are the incentives of SDCs
for cooperation within the decentralized cloud; ii) how is the
performance of cooperation affected due to different strategies
adopted by SDCs; iii) what type of strategy can thrive in a het-
erogeneous environment. Specifically, the main contributions
of this paper are summarized as follows:

(1) We propose a model for decentralized cloud with a
swarm of networked SDCs. Three workload arrival models are
introduced to simulate different levels of workload burstiness
in the SDCs.

(2) A general strategy function that can be employed by
SDCs is proposed to evaluate the performance of cooperation
between the SDCs. Moreover, we design four specific strategy
functions based on different dimensions: capacity, history,
prediction and reciprocity, to model conditions under which
SDCs can choose to cooperate with each other.

(3) Through extensive simulations of realistic models of
data centers, we analyze the performance of various strategies
from the perspective of both the decentralized cloud as a
whole, and individual SDCs. We discover that the strategy
with the best performance is the simplest strategy which is
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based on reciprocity. Furthermore, we design a new adaptive
approach for SDCs to learn how to select a strategy effectively
in a heterogeneous environment. The results reveal that most
of the SDCs will eventually converge on the same strategy in
order to achieve the state of stable mutual cooperation.

II. RELATED WORK

Work focusing on decentralizing the cloud includes [6],
which proposed decentralized cloud that uses volunteer edge
resources. Wang et al. [9] study a cloud platform built on
customer-provided resources called SpotCloud, which allows
customers to sell their idle resources to offer cloud services
collaboratively. Other approaches [7] design and implement a
decentralized cloud computing platform in an Infrastructure-
as-a-Service level, based on P2P technologies, while our work
focuses on studying the incentives and strategies of resource
sharing among the SDCs and on how the SDCs can cooperate
in a decentralized manner.

Our work is not alone in exploring the resource sharing
models in the multi-cloud environment. However, most of the
previous studies are based on the federated cloud environment
which often relies on centralized coordination with limited
number of cloud providers [8], [10]. Samaan [8] presents an
economical resource sharing model, which is based on Marko-
vian model, in a federation of selfish cloud providers (CPs).
However, her model relies on a centralized federation broker
which performs the VM allocations among the cloud providers.
The policies in [10] focus on helping providers to make the
decisions on executing a job locally or remotely to improve
providers’ profit. On the other hand, [11] propose resource
sharing models based on brokerage services, which assume
a centralized broker to aggregate the resource demands and
to bridge the gap between the cloud providers and users. Our
work is distinct from these in that we do not assume a federated
cloud of selfish cloud providers with full rationality and where
resource sharing is only based on monetary payment.

The decentralized cloud model introduced in our work
combines the advantages of both cloud federation model [12]
and peer-to-peer (P2P) model. It is similar to P2P in that
it is decentralized and self-organizing for the aggregation of
resources to meet user demands. Instead of using monetary
payment, our model uses reciprocity-based scheme as an in-
centive for sharing resources, which is similar to the Tit-for-Tat
strategy in file swarming systems [13]. The strategies designed
in our paper are inspired by Axelrod’s work on the conditions
for the emergence of cooperation [14]. Nevertheless, compared
to normal P2P systems, the number of SDCs is much smaller
and the computing environment of our model is not so highly
dynamic as a P2P environment. Thus, in contrast to P2P, we
do not face the problem of churn, and the participation of
SDCs is more stable. Also, other factors such as legal concerns
for choice of partners can be of importance, which is not the
case in P2P. We can design a general strategy function, which
incorporates various factors of resource sharing, to evaluate the
performance of cooperation. Finally, we are not aware of other
works that study the effect of different cooperation strategies
on service satisfaction in the decentralized cloud.

III. MODEL DESCRIPTION

A decentralized cloud computing system consists of a
swarm of networked small datacenters (SDCs). Each of the

SDCs has different capacities, various workload arrival patterns
and diverse strategies for resource provisioning. In this section,
we will explain the models in our paper.

A. Small Data Center

We assume that an SDC has a certain number (hundreds)
of networked servers which can host multiple virtual machines
(VMs). Each VM requires a set of resources, including CPU,
memory and storage to serve the workloads which are submit-
ted by cloud end-users. A workload is defined as a resource
request from cloud end-users, with variable execution time.
The different SDCs have different levels of request burstiness,
which can be modeled with various workload arrival models.
We assume a discrete time horizon, t ∈ {0, 1, · · · , T}. After
receiving workload requests at time t, an SDC will find
available resources among all its physical servers, which will
be returned as VMs, to serve user requests. If all the servers
within a single SDC are busy, the SDC will reject the resource
requests, which results in revenue loss and user dissatisfaction.
In our cloud model, we assume that the performance, in terms
of satisfied requests, of each SDC depends on its workload
arrival and free capacity. From the perspective of resource
elasticity, the request loss of an SDC i is defined as the
accumulated amount of under-provisioned resources, which is
formulated as:

lossi =

T∑
t=0

max(di(t)− ci(t), 0) (1)

where di(t) is the number of resource requests and ci(t) is
the free capacity of the SDC i at time t. di(t) and ci(t)
vary with time t and the SDC i is under-provisioned when
di(t) > ci(t). To minimize the loss of request, the SDC is
forced to optimize its capacity and demand planning (e.g.,
buying more resources or shifting the demand). However,
we will later discuss how SDCs can alternatively reduce
their request loss through cooperation within the decentralized
cloud. It is noted that we do not consider the impact of quality
of service (QoS) on the request loss. We assume that VM
techniques provide good performance isolation so that the QoS
remains unaffected with the fluctuation of requests.

B. Workload Arrival Models

In this section, we will discuss the workload arrival
models based on three types of stochastic arrival processes,
namely Poisson process, Markov-modulated Poisson process
and heavy-tailed process. These models have been extensively
used for modeling real world traces of job arrival in cloud
datacenters [15]-[16]. With three different arrival models, we
can simulate the SDCs with different levels of workload
burstiness and we assume the arrival of workloads at different
SDCs is independent from each other, i.e., they are indepen-
dently sampled. We believe that this is a fair assumption since
individual SDCs are independent of each other and can have
different sets of customers with different demand patterns.

1) Poisson Arrival: The Poisson arrival process [15], [16]
is a counting process which counts the number of events in
a given time interval. In our cloud scenario, an event is the
request of a VM from the SDC. Thus, the workload arrival
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process of an SDC, {D(t), t ≥ 0} , is a Poisson process with
the mean rate λ if:

P [D(t+ τ)−D(t) = k] =
e−λτ (λτ)k

k!
, k = 0, 1, ...,

where k is the number of requests in the time interval (t, t+τ ].
The Poisson arrival has a low level of burstiness due to the
independent increments property, i.e., the number of requests
arriving into the system after time t is independent of the
number of requests arriving into the system before time t.

2) Markov-modulated Poisson Process: A Markov-
modulated Poisson Process (MMPP) [15]-[16] is a doubly
Poisson process whose rate varies according to a Markov
process. It is particularly useful in modeling the process
with the time-varying arrival rate. We consider a Markov
process with state space {1, ..., r} where each of the r states
corresponds to an arrival rate λi, i.e., when the Markov process
is in state i, the rate of MMPP is λi. In our model, we consider
a simple MMPP with two states, namely high (λh) and low
(λl). The transition probabilities between high and low state
are denoted as ph and pl. Thus, the expected rate of D(t) is
λ = ph

pl+ph
λh+ pl

pl+ph
λl. We can control the level of burstiness

through adjusting the transition probabilities between the high
and low rates.

3) Heavy-tailed Arrival: We consider the case of heavy-
tailed arrival [15], [16] in which we model the burstiness of
requests as Bounded Pareto distribution. A Bounded Pareto
Distribution (BP(L, H, α)) is characterized by 3 parameters L,
H and α, where L and H are the low and the upper bound for
the number of service requests respectively. The probability
density function is defined as:

f(x|L,H, α) =
αLα

1− ( LH )α
x−(α+1), L < x < H

where α > 0 is a shape parameter which is inversely
proportional to the variance of the distribution. In our cloud
scenario, H,L can simulate the high peak and low peak of the
service requests. The expected request rate is λ = E(X) =

Lα

1−(L/H)α ∗
α
α−1 ∗ (1/Lα−1 − 1/Hα−1), α 6= 1.

Discussion: To compare the three different types of work-
load arrivals, we set the parameters to have the same mean
workload arrival rate. As is shown in Figure 1(a), the mean
arrival rate of all three workload arrivals is around 100, but
they evidence different levels of burstiness. The Poisson arrival
with λ = 100 is the most stable which fluctuates around the
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Fig. 1: Characteristics of the three workload arrival models

average rate while the Heavy-tailed workload varies drastically
between the low rate (L = 40) and the high rate (H = 500).
Figure 1(b) shows the cumulative distribution of arrival rate. In
this Figure, we can see that MMPP has about 50% of arrival
rates around high rate (λh = 150) and the remaining half
around low rate (λl = 50) since the transition probabilities are
the same (pl = ph = 0.5). We set α = 1.2 which results in
about 20% of request rates greater than the average.

Queueing theory has been traditionally used in request
arrival and service problems. However, in our three workload
models, the service times do not follow the exponential dis-
tribution. Thus, we should consider MMPP and Heavy-tailed
as two renewal processes while Poisson arrival process in our
case is a special case of M/G/n queue. Although some limited
analytical derivation for such queue models has been proposed
in the literature, their solutions are often mathematically chal-
lenging [17]. Taking inspiration from [18], we use a simulation
based approach (as opposed to an analytical approach) to
evaluate the impact of different workload arrivals.

C. Decentralized Cloud

We consider a decentralized cloud with n networked SDCs.
By participating in the decentralized cloud, SDCs can work
collaboratively and support each other, i.e., share their un-
used capacities during low-demand periods or borrow spare
capacities during peaks. In other words, all the SDCs in the
decentralized cloud form a resource sharing network which can
be represented as a weighted directed graph G = 〈V,E〉. Let
P be the set of all SDCs as the vertices (i.e. P = V ) and the
edges are represented as the cooperation between the SDCs.
For example, an edge eij ∈ E connects two SDCs pi, pj ∈ P
in the direction i→ j. In addition, the weights w on the edges
e ∈ E are given by a strategy function ve(·) which evaluates
the cooperation between two SDCs in an edge. Therefore,
the weight of an edge connecting two SDCs indicates how
well they cooperate together. We do not assume that all
the SDCs share the same strategy function since different
SDCs may have different ways to evaluate the cooperation
with their partners. Instead, we define the strategy function
ve(·) as a black-box function which can evaluate cooperation
in terms of different dimensions of resource sharing. For
example, the strategy function can take factors such as location
proximity, network latency and workload arrival patterns into
consideration. We will further discuss the strategy function in
the next section.

Furthermore, we define the partners Γ(p) of an SDC p ∈
P = V as the set of SDCs who can share the resource with
p. In our model, we assume the partnership is symmetric (i.e.,
if pj ∈ Γ(pi), then pi ∈ Γ(pj)) and non-transitive (i.e., if
pi ∈ Γ(pj) and pj ∈ Γ(pk), it does not mean pi ∈ Γ(pk)). In
other words, an SDC cannot share the resources with a partner
of its partners. We also assume that resource sharing among the
SDCs in the decentralized cloud is free of charge rather than
based on monetary payment scheme [19]. All SDCs maintain
their local history of the interactions with their partners and use
this information to evaluate the performance of cooperation.
Furthermore, each SDC makes its own decision independently
based on its strategy function and there is no central authority
to monitor their behaviors. In the following, we discuss three
modes of decentralized cloud:
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1) Non-cooperative: In this extreme case, there is no coop-
eration among different SDCs, i.e., E = {∅}. Thus, given any
SDC pi, it will not share its resource with anyone else since its
partners set Γ(pi) will be empty. Therefore, the total capacity
of pi at any time t remains the same as its initial capacity at
the time 0. Due to the lack of cooperation, SDCs in this mode
cannot borrow resources from others. They will suffer losses
because of failure to increase their limited capacity through
cooperation.

2) Fully-cooperative: In the fully-cooperative decentral-
ized cloud, all the SDCs share their resources and support
each other. In this case, given any SDC pi at any time t, it can
share the resources with any other SDCs in the decentralized
cloud, i.e., partners set Γ(pi) = {pj ∈ P |j 6= i}. Thus, the
total capacity of each SDC can change over the time. However,
an SDC in the decentralized cloud can still suffer a loss but
only when there are no other SDCs with enough free capacity
to support it, i.e., ∀pj ∈ P,@cj(t) > di(t), where j 6= i.

3) Cooperative: In this mode, each SDC has a limited
number of partners (i.e., Γ(p) 6= {∅}) and they can share
unused resources and support each other. Moreover, each
SDC pi will evaluate the performance of cooperation with
its partners via the strategy function, i.e., v(eij), pj ∈ Γ(pi).
Through evaluation, pi can manage its partners set (e.g.,
replacing current partners with better ones) in order to achieve
different goals, varying from minimizing the request loss to
improving the service response time. In this paper, we assume
the SDCs initially build the set of partners based on location.
We also set the maximum number of partners for each SDC.
Thus, the SDC pi will be under-provisioned only when all
the partners in Γ(pi) do not have enough resources, i.e.,
∀pj ∈ Γ(pi),@cj(t) > di(t).

IV. EVALUATING COOPERATION WITH STRATEGY
FUNCTION

In this section, we discuss the strategy function which
evaluates the performance of cooperation between two SDCs.
It is a black-box function since no SDC has knowledge
of the others’ strategy functions. Nevertheless, the strategy
function accounts for whatever optimization the SDCs can do
on dimensions of the resource sharing. We define a finite set
X of resource sharing factors. In addition, given the resource
sharing network G = 〈V,E〉 with edge weights w, the strategy
function that is associated with an edge e can be formulated
as:

w = ve(x), e ∈ E,x ∈ X (2)

where the analytic form of ve(x) : X → R is unknown
and x represents the different factors associated with SDCs.
For example, x can be a vector of factors such as capacity,
workload pattern and network latency. The weight w measured
by strategy function indicates the performance of cooperation,
which serves two purposes: resource sharing evaluation (RSE)
and partnership management (PM). In turn, RSE can be used
for two purposes: lending and borrowing. The objective of
lending evaluation is to decide if an SDC agrees to lend
resources to others while that of borrowing evaluation is to
decide from whom an SDC should borrow. For example, if
an SDC pi needs resources, it will send resource requests
to all its partners Γ(pi). Each partner in Γ(pi) will evaluate

the performance of potential cooperation with the strategy
function veji(x) and send the results of evaluation to pi.
After receiving all the responses from its partners, pi will also
evaluate the cooperation with veij (x) and select the best one to
work collaboratively. Second, as for PM, the strategy function
provides the results on the performance of cooperation, which
helps the SDCs replace less cooperative partners with more
cooperative ones. In the following, we will study four types
of strategytfunctions:

1) General Strategy: The general strategy is the basic
one which takes the SDC’s capacity into consideration. This
strategy only guarantees that an SDC has enough available
capacity to offer its help to others. The SDC with the general
strategy is too short-sighted or unconcerned to have second
thoughts on the impact of its sharing behavior, which makes
it more generous than other strategies. Thus, the strategy
takes the user generosity into consideration and has been
inspired by [19]. Meanwhile, this strategy is the base one for
other strategies since having enough resources is the base for
cooperation among the SDCs.

2) History-based: In the history-based strategy, the SDCs
need to save the history of past interactions. The reliance
on history to make cooperation decisions has been utilized
extensively in the P2P literature where they are usually de-
scribed as indirect reciprocity schemes or reputation systems
or community level incentives [20], [21]. We denote the inter-
action as r(pi, pj , t) which indicates the accumulated number
of resources that pi has lent to pj at time t. Let the global
history H be the set of the interactions of all SDCs and Hi is
the history saved by SDC pi. Thus, pi can assess the behavior
of pj at time t based on

Ht
i (pj) = {r ∈ Hi|r = r(pi, pj , t) or r = r(pj , pi, t)} (3)

We assume that no SDC can access the global history. Each
individual SDC maintains its own history to evaluate its
partnership. For example, an SDC may prefer to lend its
resource to the SDCs which gave it the maximum support
in the past. In addition, given that resource sharing is free (in
terms of money), each SDC in the decentralized cloud has an
incentive to be selfish, e.g., borrowing more resources than
lending. We define the altruism level as the ratio of resources
borrowed to the amount lent. For the History-based strategy
function, an SDC pi can evaluate its altruism level with other
SDC pj based on its partner set:

alji =
r(pj , pi, t)

r(pi, pj , t)
, pj ∈ Γ(pi), r ∈ Hi (4)

An altruism level of 1.0 means that pi has borrowed as much
resources as it has lent. A selfish SDC, which has borrowed
more than what it has lent, has an altruism level greater than
1 while a selfless SDC has an altruism level less than 1. It
should be noted that each SDC evaluates its altruism level
based on its private history, which is thus a local value rather
than a global one. Based on the evaluation results, the SDCs
can decide whether to lend the resource to their partners (for
RSE), or to replace their partner with a new one (for PM).

3) Prediction-based: Another key determinant to lend
resources to others is the arrival of future workload. The
strategy function based on prediction will evaluate the impact
of resource sharing in a probabilistic way since all three
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workload arrival models are based on a stochastic process. For
this strategy, we have taken inspiration from predictive models
for the arrival of workload in cloud which have been studied to
allow elastic resource provisioning [1], [11]. At any given time
t, after receiving a borrow request, an SDC pi will evaluate
the probability of incoming demand at time t+ 1 greater than
its available capacity, i.e., P (di(t+ 1) > ci(t+ 1)), to decide
if it should lend resources. Moreover, we define risk indicator
as a threshold value to evaluate the risk of prediction. If the
probability is greater than risk indicator, the SDC will not lend
its resources and reject the requests from its partners. Different
SDCs will set different values for risk indicator. For example,
if an SDC is risk-averse, it will set indicator as low as possible,
in order to minimize the risk of resource under-provisioning.

4) Reciprocity-based : In real cloud scenarios, one SDC
usually will likely have a limited number of partners. This
can happen due to geographical and legal constraints. The
problem is to find out partners with high performance of
cooperation. In our decentralized cloud, we initially build a
partner set for each SDC merely based on the location. There
is the possibility that the workload arrival patterns of two
geographically neighboring SDCs are not compatible, e.g.,
both might reach their demand peaks at the same time, thus
leading to poor performance. Since each of the SDCs has
limited number of idle resources, it is ideal to develop a
cooperative partnership such that the amount of resources lent
to their partners can be exchanged for borrowing the same
amount of resources. In our decentralized cloud scenario, the
SDC with reciprocity-based strategy will replace the partners
which reject its requests, with other new partners, which is
similar to the Tit-for-Tat strategy in the BitTorrent protocol. It
was in their book, Prisoners Dilemma, that A. Rapoport and
A. Chammah, first introduced the Tit-for-Tat Strategy [22].
This fact often remains unmentioned in the literature. Later on
it gained popularity through Axelord’s tournament [14]. And
finally, it inspired BitTorrent and other P2P systems [13], [23].
We define tolerance (τ ) as the maximum number of rejections
that an SDC can accept from its partners. When the number of
rejections of one partner reaches the tolerance threshold, the
SDC will replace this partner with a new one. Thus, at any
time t, reciprocity-based strategy only depends on the history
of last τ moments Ht−τ , and thus it is unnecessary to keep
all the history.

Name (Abbr.) x Factors RSE PM
General (Gen) ci(t), di(t), location

√

History (Hist) ci(t), di(t), location,H
√ √

Prediction (Pred) ci(t), di(t), location, workload
√

Reciprocity (Recip) Ht−τ , Location
√

TABLE I: Strategy function and its usage

All the above four strategies take location into account.
In our decentralized cloud, we assume that each SDC prefers
to collaborate with the nearest ones, which can improve the
service response time. We conjecture that in practice this is
how things will turn out since most SDCs would prefer not to
cooperate with SDCs in distant geographical locations due to
several issues including legal concerns and service response
time. Table I summarizes four strategy functions and their
main purpose. Furthermore, through combination of 3 RSE
strategies and 2 PM strategies, we can have 6 more strategies.
In summary, we will discuss the following 9 strategies in terms

of three groups ( the abbreviation of each strategy is listed
in table I ): 1) Strategies without PM: Gen, Hist, Pred; 2)
Reciprocity-based strategies for PM: Gen-Recip, Hist-Recip,
Pred-Recip; 3) History-based strategies for PM: Gen-Hist,
Pred-Hist, Hist-Hist.

V. METHODOLOGY
A. Simulator

We developed our simulator based on CloudSim [24] which
is a simulation toolkit that enables modeling and simulation
of cloud computing systems based on discrete events. The
simulator consists of three modules, namely Decentralized-
Cloud, WorkloadManager and CloudBroker. The Decentral-
izedCloud module implements the networked SDCs, VM
allocation and resource sharing protocols among the SDCs.
WorkloadManager implements three different workloads and
generates workload arrivals for cloud end-users. CloudBroker
acts on behalf of cloud end-users, and is responsible for
sending resource requests and submitting the workloads to the
VMs. The simulator reads a configuration file based on XML
format which contains specific values for the various Xi factors
of the strategy functions, workload information and network
topologies of the SDCs.

B. Experimental Setup

To simulate the decentralized cloud, we set up the basic
configurations for the workload arrival models, workload exe-
cution time and the SDCs.

Workload Arrival Models: By default, we use the same
configuration as discussed in section III-B.

Workload Execution Time: To model the variability in
workload execution time, we assume the execution time is
distributed as follows: when a workload is generated with
probability 0.8, the execution time is uniformly distributed in
[0.5, 10] time units; with probability of 0.18, it is uniformly
distributed in the interval [10, 50] and finally with probability
of 0.02, it is uniformly distributed from 90 to 100 time
units. Thus, the average execution time is about 11.5 and the
maximum execution time is 100.

Small Data Center: All the SDCs have homogeneous
physical server machines (with 6 cores, 24GB memory and
1TB disk space) and each of them can host three VMs (with
2 cores, 8GB memory and 300GB disk space). The total
capacity of an SDC is the number of server machines which
is uniformly distributed in [370,420]. The distance between
two neighboring SDCs is also uniformly distributed from 10
kilometers to 30 kilometers. We note that the network latency
between two SDCs depends on the distance since we ignore
the cost of data transfer.

C. Metrics

We use the following metrics to evaluate the performance
of the decentralized cloud:

Request Loss is the accumulated amount of under-
provisioned resources in the decentralized cloud, i.e.,∑n
i=1 lossi.

Resource Over-provisioning is the accumulated amount of
over-provisioned resources in the decentralized cloud, which
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is computed as the total number of the hours when the VMs
in the decentralized cloud are in the idle status.

Service Response Time describes the performance of the
decentralized cloud from the perspective of cloud end-users
and evaluates how long the cloud-user must wait for a response
to a resource request.

VI. RESULTS AND DISCUSSION

A. Incentive Analysis

1) Resource provisioning dilemma: We firstly simulate a
single SDC to find out the impact of different workloads on
resource provisioning. We vary the total capacity of an SDC
with three different workloads which are shown in Figure 1.
It can be clearly seen in Figure 2 that the increase in the total
capacity of an SDC leads to a slow decline in the amount of
request losses (Figure 2 (a)) but fast growth in the accumulated
amount of idle resources (Figure 2 (b)). From the perspective
of resource over-provisioning, we can see all three workload
models show similar performance. It is because all three
workload arrivals have the same mean arrival rate and therefore
the total amount of workloads throughout the simulation is
almost the same. The difference between the amount of idle
resources under different workload arrivals is caused by the
different levels of request burstiness of the three workload
arrivals. On the other hand, we can observe in Figure 2 (a)
from the perspective of request loss, resource provisioning of
an SDC with heavy-tailed arrival also presents a heavy-tailed
characteristic. It can be also observed that if an SDC wants
to achieve zero-loss of requests, the SDC with heavy-tailed
arrival has to increase its capacity to at least 650 while in case
of the Poisson arrival, an SDC only needs 450. This implies
that in order to accommodate the peak of workload arrival,
the SDC with heavy-tailed arrival has to over-provision nearly
0.5 times more than that of the Poisson arrival. Thus, in the
real cloud scenarios, the SDCs with large variance in their
workload arrivals have to confront the dilemma of resource
provisioning. They should consider the tradeoffs between the
request loss and the cost of resource over-provisioning. For
example, the SDC with heavy-tailed arrival in Figure 2 (a)
may only provision for 500 capacity and incur the loss of about
150 resource requests, while saving the cost of maintaining an
additional 150 more server machines required to achieve zero
loss (at 650 capacity in the Figure 2 (a)).
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Fig. 2: Resource provisioning with different capacity

Figure 2 can also help us in analyzing the incentives of
cooperation in the decentralized cloud. On one hand, there
are surplus resources, which is the necessary condition of
enabling resource sharing. We can see this in Figure 2 (b),

that no matter how the capacity and workload model change,
the SDCs on the whole always have a considerable amount of
idle resources. On the other hand, there is a great demand of
resource sharing to avoid both the loss of resource requests and
the monetary cost of buying more resources. Resource sharing
in the decentralized cloud provides a fast way to provision
additional resources, thereby avoiding the delay in meeting
user demand and revenue generation. In fact, in the real
world cloud scenario, we believe there are more incentives for
cooperation other other revenue growth. For example, finding
the resources in specific location improves service response
time and/or suitably addresses legal and privacy issues.

2) The Impact of Cooperation: From Figure 2 (a), we
can conclude that with capacities in the range [370,420], all
the SDCs will suffer request losses if they run individually.
In order to avoid these losses, the SDCs can cooperate with
each other. To further analyze the impact of cooperation, we
do another set of experiments. We simulate a decentralized
cloud with 25 SDCs in three different modes to evaluate the
impact of cooperation among the SDCs. We randomly assign
the workload arrival model and capacity to each SDC. We
assume the utilization of each SDC is uniformly distributed
in the interval [0.8, 0.9]. With the mean workload arrival rate
λ = 100 and the average workload execution time, we generate
the capacities of 25 SDCs which are uniformly distributed from
370 to 420.

Firstly, we simulate the decentralized cloud in a non-
cooperative way which means no cooperation exists among the
SDCs (|Γ(p)| = {∅}). This will serve as the worst case sce-
nario. In Figure 3 we can observe that in the non-cooperative
case, the total request loss is as high as about 15,000. Now,
we introduce cooperation to the decentralized cloud where all
of the SDCs adopt the general strategy to decide whether
they share the resource or not. If the decentralized cloud is
fully cooperative, i.e., all the SDCs can share resources with
each other, the loss will decrease drastically to about 1200,
only 8% of the request loss in the non-cooperative mode as
can be seen in the Figure. This will serve as the best case
scenario. We argue that in the real cloud scenario, cooperating
SDCs would not be cooperating with a great number of
partners due to geographical and legal constraints, among other
factors. Therefore, the performance of cooperation between
SDCs would be somewhere between the worst-case and best-
case scenarios. As a validation of the above point, it can be
seen from Figure 3 that with each SDC having 2 resource
sharing partners, the request loss of the decentralized cloud
will decrease to about 10,000. Moreover, the loss will fall by
nearly 40% (of that with 2 partners) if the number of partners
increases to 5, i.e., |Γ(p)| = 5. Both these values are between
the worst case and best case scenarios.

Therefore, from the Figure 3, we can find that the coop-
eration among the SDCs in the decentralized cloud greatly
reduces the loss of resource requests. In addition, the more
partners an SDC has, the more the resource requests are
served in the decentralized cloud. However, there are new
problems that emerge. Since different SDCs have different
workload arrival patterns, capacities and strategies for resource
allocation, the following issues need to be addressed: How can
we determine the performance of different strategies? How to
form partnerships based on good sharing behaviors and shared
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Fig. 3: Impact of cooperation
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Fig. 4: Varying altruism level

interests and needs? Moreover, does there exist a strategy that
outperforms others in a heterogeneous environment, and thus is
robust? In the following, we will try to answer these questions
with extensive evaluations.

B. The Impact of Strategies

In this section, we will evaluate the three groups of
strategies described in Section IV.

1) History-based strategy: An SDC with history-based
strategy will evaluate the performance of cooperation based on
the past interaction history. Specifically, every SDC will save
the borrowing/lending interactions for future decision making.
When the SDC (pi) receives borrow request from the other
SDC (pj ∈ Γ(pi)), it will firstly compute its altruism level
(alji ) with pj , which is the ratio of total amount of resources
borrowed from pj to the amount of resources lent to pj . If
alji > 1, it means pi has borrowed more resources than it has
lent to pj . Therefore, the higher the altruism level is, the more
selfish pi is. After computing the alji , it will compare the value
with a threshold altruism level. Only if the altruism level is
greater than the threshold, pi will lend its resource to pj . The
effects of varying this threshold value are shown in Figure 4.
It is interesting to observe that the smaller the threshold is,
the better the performance is. Put another way, this strategy
encourages the SDCs to be selfless so that they can suffer less
request loss.

2) Prediction-based: Prediction-based strategy enables an
SDC to predict future demand. Suppose an SDC pi receives
a borrow request of m resources, it will firstly compute the
moving average of workload finishing rate fi(t) based on
history. Then the predicted free capacity of pi at the time
t+ 1 is ci(t+ 1) = ci(t) + fi(t)−m. Then pi will compute
the probability that the next demand di(t + 1) is greater
than the future free capacity, i.e. P (di(t + 1) > ci(t + 1)),
based on cumulative distribution function. The probability
approximating to 1 means that the risk that pi cannot serve
the demand at time t + 1 is high. Therefore, if the SDC is
risk-averse, it will set a risk indicator as low as possible to
minimize the risk. We vary the risk indicator in the interval
(0,1) and the results are shown in the Figure 5. We can see
that the SDCs with the risk indicator 0.6 have the minimal
loss while those with the risk either too small (0.2) or too
large (0.8) will suffer more request loss. Thus we discover
a tradeoff between being risk-averse and risk-seeking. On the
one hand, if all the SDCs are risk-averse, they will be reluctant
to cooperate so that the prediction-based strategy will reduce
to a non-cooperative model. On the other hand, if all of them
are risk-seeking, they will accept the borrowing requests even
when the risk is high, due to which the performance reduces
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Fig. 5: Varying risk indicator
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to that of the general strategy. Therefore, we argue that it is
important to have moderate risk estimation to prevent future
loss of requests.

3) Reciprocity-based: Reciprocity-based strategy is em-
ployed to manage the partner set. At the beginning, we
assume each SDC finds its partners based on the location
proximity. The maximum number of partners is 5 for each
SDC in the decentralized cloud. The SDCs will select new
partners based on location if they want to replace the less
cooperative partners. However, if no new partners are found,
the SDCs will simply remove the less cooperative partners
from the set. Meanwhile, each SDC maintains a block list
which helps it avoid the selection of removed partners in
the future. To improve the forgiveness of the strategy, the
block list will be emptied at regular intervals. We vary the
tolerance from 1 to 3, respectively. It can be clearly seen
in Figure 6 that strategy with the tolerance equaling 1 has
the best performance in avoiding request loss. The other two
strategies are more forgiving versions in that they do not punish
isolated rejections. However, the results show that an excess
of forgiveness is costly. The precise level of forgiveness that is
optimal depends upon the environment. Though, results show
that in our decentralized cloud setting, it is better for the SDCs
to set the tolerance as 1 for partnership management.
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Fig. 7: Performance of combined strategies

4) Strategy combination: Through the evaluation of each
strategy, we derive the near-optimal parameter values for each
strategy. In the following simulation, we will set the altruism
level as 0.1 for history-based strategy, risk indicator as 0.6 for
prediction-based strategy and the tolerance as 1 for reciprocity-
based strategy. We apply those strategies into RSE and PM
with combination and the results are shown the Figure 7.

In this set of experiments, we will vary the strategy of
the SDCs while keeping other parameters such as workload
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and capacity unchanged. We analyze the impact on request
loss and service response time. From Figure 7, we can safely
reach two conclusions: 1) the strategies with partnership man-
agement improve the performance greatly, which means that
it is important for the SDCs to find good partners. 2) The
various strategies based on reciprocity outperform the others.
This property enables the SDCs to manage their partnerships
effectively only relying on the last decisions of their partners,
rather than the large amount of past interaction histories.
Besides that, we also notice that prediction-based strategies for
RSE are better than the other two RSE strategies. The reason
is that, in decentralized cloud model, we have deterministic
workload arrival models. However, in the real cloud scenarios,
it is difficult to predict the future demand and therefore the
prediction-based strategy may not outperform the other two.
Nevertheless, we can still apply the reciprocity-based strategy
to achieve better performance.
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Fig. 8: Impact of Partnership Management (PM) on response time

On the other hand, with introduction of partnership man-
agement, the new selected partners may be located far away,
which exerts negative influence on the service response time. If
we view each discrete time unit as 1 hour, the network latency
between two neighboring SDCs is uniformly distributed in
[10ms,30ms] which is determined by the distance. In Figure
8, we explore the impact of different PM strategies on the
service response time. It shows three strategies with the same
Prediction-based strategy for RSE but different strategies for
PM. We can observe that compared to the strategy without PM
in which only about 8% requests have response time larger than
100ms, the response time of the strategies with PM increases
remarkably with about 20%-25% of requests having response
time larger than 100ms. In addition, we can observe the heavy-
tailed distribution in response time of the strategies with the
PM, where a proportion of the response time (about 1%) can
be as high as 250ms. Thus, SDCs have to find the tradeoffs
between the service response time and the request loss. For
example, if an SDC wants to guarantee the service response
time for its users, it shall consider the maximum distance that
its partners can be located. To put it bluntly, it is not advisable
for an SDC in Europe to cooperate with an SDC in Japan (the
assumption here being that an SDC and its users would be in
the same vicinity).

5) Individual performance evaluation: In the previous
discussion, we view the decentralized cloud as a society
and evaluate the performance from the perspective of so-
cial welfare. In this subsection, we evaluate the perfor-
mance from an individual SDC’s point of view. We randomly
assign the workload arrival models for each SDC. There
are 7 SDCs (1,3,4,7,11,17,22) with the Poisson arrival, 9

Fig. 9: Individual SDC performance

SDCs (2,6,8,9,10,13,14,21,24,25) with MMPP and 8 SDCs
(5,12,15,16,18,19,20,23) with heavy-tailed arrival. Figure 9
shows the performance of each individual SDC under different
strategies. The color of each grid, from black to white, in
Figure 9 represents the request loss of an SDC i.e., more black
means less loss. We can either compare the performance of
different strategies by column or compare the performance of
different SDCs by row. From the results, several interesting
observations can be made: 1) the first column represents the
performance in non-cooperative environment, which has the
worst performance due to no resource sharing. The columns
with reciprocity-based strategies are better than other columns
since the color is almost entirely covered by black. Especially
the column with Pred-Recip strategy performs generally well
no matter what the workload arrival. 2) With the adoption of
one appropriate strategy, any SDC in the decentralized cloud
can improve their performance. In the Figure 9, we can always
find a strategy for an SDC to suffer less loss than that in
the first column which is the worst performance due to non-
cooperation. For example, the best choice for SDC 21 is Hist-
Recip while that for SDC 16 is Gen-Recip. This means it
is necessary for the SDCs to learn that how to discover the
appropriate strategy under different conditions. 3) If we use
the difference between the best and the worst performance to
evaluate the incentives of the SDCs, we find out the incentives
of different SDCs for cooperation in decentralized cloud vary
a lot. For example, for SDCs 2 or 7, there is no striking
improvement for them to participate in the decentralized cloud.
Since they find little incentive to cooperate, they may leave
the decentralized cloud. While for SDC 17 and 21, there is
a strong incentive to cooperate with others since their request
loss can reduce dramatically through cooperation. If we take
a further step to correlate incentive with other features of
the SDC, we find that the variance in incentives has weak
correlation with the SDC’s capacity or workload type. This
is because we observe that most of the SDCs with weak
incentives have dissimilar workload type or capacity. Given
that both the arrival rate and the workload execution time also
have the same average, we infer that there is no predominant
factor to determine the incentives of the SDCs to participate in
the decentralized cloud. Therefore, there will be many SDCs,
regardless of capacity or workload type, which will join the
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Fig. 10: Performance with a simulation time of 1000

decentralized cloud and achieve better performance through
cooperation.

6) Long-scale simulation: In this part, we extend the simu-
lation to a duration of 1000 to observe long term performance
of different strategies. If 1 time unit is assumed to be 1 hour,
the duration of simulation is about 42 days. The results are
shown in Figure 10. Again, we observe that reciprocity-based
strategies outperform the others. Meanwhile, it is interesting to
see that the Gen-Recip is the best one rather than Pred-Recip
as in Figure 7. We infer that in the long run, the performance
of prediction-based strategy largely depends on the prediction
precision. As discussed earlier, in the real cloud scenario, it
could be very difficult to predict demand and therefore the
losses incurred through misprediction will accumulate as time
goes by. And this is exactly what our results show.

However, it is worthwhile to note that Gen-Recip based
strategy has a good performance, which almost reduces the
request loss by over 55% as compared to the General strategy.
Moreover, it gives us two important implications: 1) We
observe that the Gen-Recip based strategy is better than those
based on history and prediction. That means it is better for
SDCs to be generous to their partners rather than to judge them
based on history or prediction. We believe that in the real world
cloud scenarios, most of the SDCs cannot be fully rational
since they do not have complete information to perform a
perfect evaluation of their partners’ requests based on history
or prediction. It is better to keep it simple, and to offer help
to their partners as long as they can. 2) We find out that
as time passes, the optimal strategy for SDCs will change.
In a decentralized cloud with high heterogeneity, the optimal
strategy for each SDC may vary. To derive the optimal strategy,
the SDCs have to employ an ongoing process of learning.
C. Competition of Strategies in a Heterogeneous Setting

In previous discussion, all the SDCs in the decentralized
cloud adopt the same strategies. In this subsection, we will
simulate a decentralized cloud of 25 SDCs with heterogeneous
strategies. The goal is to discover which strategy can thrive
in a heterogeneous environment. In this set of experiments,
we exclude three strategies without PM and only consider
six strategies based on reciprocity and history with PM. The
strategy of each SDC is assigned randomly but the parameters
of each type of strategy are the same, with risk indicator as
0.6, altruism level as 0.1 and tolerance as 1.

In this simulation, we design an adaptive strategy selec-
tion algorithm which is similar to the selection in genetic
algorithms. However, we do not do explicit population wide
selection, since in our case different SDCs can have different

resources (as in capacity) and different needs (location and
privacy concerns). Therefore, each SDC is interested in the
strategy that works best for it. Our selection algorithm has two
phases: training and testing. The time length of two phases are
the same. Moreover, for each SDC, we define a fitness function
to evaluate the performance of each strategy. Throughout the
training phase, each SDC will change its strategy to a new
random strategy at regular intervals. In other words, if we
set the length of training phase to be 300 time units, the
expected training time of each strategy is 50 time units in
each training phase. At the end of training phase, the fitness
function will compare the request loss of each strategy and
return a strategy with the minimal request loss. After that the
SDC will use this selected strategy without changing for the
entire testing phase. The SDC will compute the total loss in
the both training losstrain and testing phase losstest. It is
clear that if the selected strategy under testing is the optimal
one, the loss in the testing phrase must be less than that in the
training phrases. Thus, in the end of the testing phase, the SDC
will compare the loss of two phases. If losstest is greater than
losstrain, it will switch to training phase to find other potential
better strategies. Otherwise if losstest is less than losstrain, it
will proceed with the next testing phase to continuously verify
the selected strategy. This algorithm simulates the dynamics
in the decentralized cloud in a random way and learns the
performance of each strategy in a trial-and-error manner. This
process will iterate until the end of simulation. We set the
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Fig. 11: Competition of strategies

length of both training and testing phases as 200. During
the training phase, we change the strategy every 10 time
units, and the entire duration of simulation is 1800 time units.
Figure 11 shows that 60% of all 25 SDCs choose the Gen-
Recip strategy as their best choice while the total number of
Reciprocity-based strategies takes up 84% with only 4 SDCs
adopting Gen-Hist strategy. It is interesting to observe that the
experiment also simulates the survival of the fittest, which both
the Pred-Hist and Hist-Hist strategies cannot survive during the
competition since no SDC adopts those two strategies. We also
observe that three of the four SDCs that choose the Gen-Hist
strategy have heavy-tailed arrivals. We infer that history plays
a more positive role in finding better partners for the SDCs
with high burstiness (as in the case of heavy tail arrivals).
Combining those results with the ones in Figure 10, it is safe
to conclude that, in the long run the reciprocity-based strategy
is the most effective strategy under varying conditions. We also
increase the interval of changing a new strategy to 20 and 30
time units to observe the effect of longer running times on the
fitness of the strategies, and observe similar results.
D. Discussion

Based on our extensive simulation of realistic decentralized
cloud, we can answer the three questions raised in the begin-
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ning. To overcome the resource provisioning dilemma through
cooperation in the decentralized cloud, different SDCs can
employ a wide range of more or less sophisticated strategies.
We observe that the performance of history-based strategies
depends on the altruism level while that of prediction-based
strategies on the risk indicator. For history based strategies,
a strategy with high performance is the one that encourages
selfless behavior, while for the prediction based strategies,
the one with moderate risk evaluation is successful. Also,
we discovered that the reciprocity-based strategies are the
simplest yet the most effective way to develop cooperation in
a variegated decentralized cloud. Compared to other strategies,
the reciprocity-based strategies can immediately produce both
cooperation and retaliation for their partners, rather than rely-
ing on history or prediction. This is a counter-intuitive result
since on first thought, it would appear that prediction analysis
applied on historical data would allow for better performance.

Furthermore, in our competition setting, we observe that
the reciprocity-based strategies can also thrive in a dynamic
environment with different strategies. The competition models
the learning process of an SDC, through trial and error, to
reach the optimal strategy. Through many trials, the SDCs
can find the fittest strategy eventually. However, this process
of learning might take a long time to move slowly toward
mutually rewarding strategies. In the real world, the cost of
learning for SDCs is high and they may not have enough
patience to try. Thus, our results pave the way for the SDCs
to speed up the learning process.

Nevertheless, our model is not without its limitations.
First, validating our model with realistic workload dataset
rather than synthetic ones would give us more confidence in
our results. Second, even though we consider some intuitive
strategies, the design space of the strategies can be huge (e.g.,
strategies that capture time of day correlations or distribution
of request demand across multiple partners instead of rejecting
the request if one partner cannot satisfy it fully, as in our
current model). Thus we cannot be sure of the goodness of
our winning strategies in face of unknown strategy variants.
Finally, in our model, we mostly focus on the request loss of
the SDCs while a more general model shall incorporate other
factors related to the QoS.

VII. CONCLUSION AND FUTURE WORK

This paper has proposed a decentralized cloud model in
which a group of networked SDCs can work collaboratively
to overcome the limitations raised by massive centralized cloud
infrastructure. We also present a general strategy function to
evaluate the performance of cooperation based on different
dimensions of resource sharing. Our results show that the
reciprocity-based strategies are more effective than other strate-
gies, which can help the SDCs improve the performance of
cooperation. In the future, we are interested in comparing our
model with the one based on monetary payment. Furthermore,
we also plan on evaluating our approach using real workload
datasets.
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