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ABSTRACT We _ddress deceptiveness, one of _t least four reasons genetic algorithms can fail to

converge to function optima. We construct fully deceptive functions and other functions of intermediate

deceptiveness. For the fully deceptive functions of our construction, we generate linear transformations

that induce changes of representation to render the functions fully easy. We further model genetic

_.lgorithm selection and recombination as the interleaving of linear and quadratic operators. Spectral

analysis of the underlying matrices al]ows us to draw preliminary conclusions about fixed points and

their stability. We also obtain an explicit formula relating the nonuniform Walsh transform to the

dynamics of genetic search.

INTRODUCTION

Designed to search irregular, poorly understood spaces, GAs are general purpose algorithms (akin to

simulated annealing in this sense) developed by Holland (1975) and based on ideas of Bledsoe (1961)

and others. Ho]]and's hopes were to develop powerful, broadly applicable techniques, to provide a

me_ns to attack problems resistant to other known methods. Inspired by the example of population

genetics, genetic search proceeds over a number of generations. The criteria of "_arvival of the fittest"

provides evolutionary pressure for populations to develop increaAngly fit individuals. Although there

are many variants, the basic mechanism of a GA consists of:

1. Evaluation of individual fitness and formation of a gene pool.

2. Recombination and mutation.
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Individuals resulting fro/-h these operations form the members of the next generation, and the process

is iterated until the system ceases to improve.

Fixed length binary strings are typically the members (genes) of the population. They contribute to

the gene pool in proportion to their relative fitness (determined by the objective function). There, they

are mutated and recombined by crossover. Mutation corresponds to flipping the bits of an individual

with some small probability (the mutation rate). The simplest implementation of crossover selects two

"parents" from the pool and, after choosing the same randorn position within each string, exchanges

their tails. Crossover is typically performed with some probability (the crossover rate), and parents

are otherwise cloned. The resulting "offspring" form the subsequent population. A thprough introduc-

tion and overview of GAs is provided in Goldberg (1989a), and public domain code is available from

Grefenstette (1984).

The most obvious factors affecting performance are the parameter settings for population size, crossover

rate, and mutation rate. Grefenstette (19.86) has considered the use of meta-level GAs for determining

pe.rameter settings, but perhaps the most systematic study of these parameters was undertaken by

DeJong (1975). For a survey of these a.nd related research, see Liepins and Hilliard (1989). Less

obvious factors related to performance involve the estimation of schemata utilities. In order to explain

the difficulties that arise, we first sketch the basics of schemata analysis.

A schema (Holland, 1975) describes a subset of strings with similarities at certain string positions. For

example, consider strings of length 3 over the alphabet {0, 1}. The two strings

011

111

are similar in the sense that they are identical when the first position is ignored. Regarding , as a

symbol which may be instanciated to either 0 or 1, these two strings may therefore be represented by

,11

Strings over the alphabet {,,0, 1} represent schemata, and play a central role in analyzing GAs.

Let P be a finite population drawn from some universe f_ of length n binary strings. Let f be a real

value fitness (objective) function

f " f_ ---, 7_

For any schema f/, define the utility of//with respect to P as_

1

lp(H) = lH n Pi _ f(p)p E PnH

' and define the utility of H as f_(H), l_egarding P as changing under the influence of a genetic

algorithm, let Pt denote the generation under consideration. The Schema Theorem is the inequality

lp(H) [1 - o_(H,t) - _(H, t)]
g'lHt3P,+_l >_.IIlnP, l fm(n)

lp is a multiset, and an element of P 13H is regarded ms having the multiplicity it had in P.



where $ is an expectation operator, and a' and/3 appro_mate ttl_ probabilities that an instance of H

willbe destroyedby crossoveror mutation(respectively).The functions_ and '_areusuallytakento

be constantsestimatedin termsofpropertiesprovidedby the concreterepresentationofH. A proof

ofthisinequMityisgiveninGoldberg(1989a).

In some sense,schemata representthe directionof the geneticsearch,ltfollowsfrom the schema

theorem that the number of instances of a schema H for which lp(H) > fR(fl) is expected so increase

in the next generation when a(H,t) and/5(H,t) are small. Therefore, such schemata indicate the area

within f'/which the GA explores. Hence it is important that, at some st,age, these schema contain the

object of search. Problems for which this is not true are called deceptive. \¥e provide formal defi_itions

of deceptiveness later in the paper.

The utility of H with respect to P may be though of as an estimate of the utility of H. Holland's

results (1975) regarding allocation of trials to k-armed bandit problems suggest that a GA optimally

allocates its resources so long as schemata utilities are correctly estimated. Other factors influencing

GA performance are the encoding of the search domain into bit strings and their manipulation by the

GA. Therefore, GAs may fail to locate a function optima for several reasons which include'

1. The chosen embedding (i.e., choice of domain) is inappropriate.

2. The problem is not deceptive, but schemata utilities cannot be reliably estimated because sam-

pling error is too large.

3. Schemata utilities can be reliably estimated, but crossover destroys individuals which represent

schemata of high utility.

4. The problem is deceptive.

The first failure mode has been partiMly addressed by Shaefer (1985, 1987) who has incorporated

dynamically changing embeddings into his AIIGOT code.

The second failure mode is virtually unstudied, although some results in Goldberg (1988a) might be

extended to shed some light on this issue.

The third failure mode is partially addressed by the schema theorem; adjusting crossover rate may

help overcome this problem. R,epresentational changes can also be useful. Early studies of inversion

(a permutation applied to string positions) were done by Bagley (1967), Cavicchio (1970) and Frantz

(1972). Holla.nd (1975) discusses inversion as a basic genetic operator. More recently, Whitley (1987)

has reported encouraging results with the use of inversion, and Goldberg and Bridges (]990) have

considered reordenng operators to prevent schemata disruption.

The fourth failure mode has been studied from the perspective of Walsh transforms by Bethke (1981)

and Goldberg (1988, 1989b). Although the WMsh transform approach a/lows the construction of

deceptive problems, the analysis is performed in the transform space, and lacks some degree of intuitive

accessibility. Holland (1989) investigated a (computationMly equivalent) hyperplane transform which

deals with schemata directly. Bridges and Goldberg (1990) have shown the computational equivalence

of the hyperplane transform and the Walsh transform, and extend schemata analysis to population

estimates.
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Our work follows and extends the themes developed in Liepins and Vose ('1990a) and V'ose and Liepins

(1990). We directly construct fully deceptive functions whenever the chromosome length n is greater

than two. For these same fully deceptive functions, we generate linear transformations that render

the functions fully e_y. "vVeintroduce the concept of basis sets and use it construct various classes of

problems of intermediate deceptiveness.

The second half of our paper goes beyond static schemata analysis and models the (expected) genetic

algorithm process as a dynamic system. What emerges from this model is a clearer understanding of

selection as a "focusing operator" and recombination a,s a "dispersion operator" i and a decomposition of

genetic search which makes explicit the transitions between populations, between selection probabilities,

and between nonuniform Wedsh transforms fl'om one generation to the next.

EMBEDDING, REPP_ESENTATION AND DECEPTIVENESS

A useful point of departure for understanding difficulties with genetic optimization is a commutative

diagram (figure 1) that makes explicit the steps .involved in their use. Frequently, the function f to

be optimized is defined on a real vector space S. Since genetic search explores a finite space of bit

strings, some finite subset D of oc needs to be selected for investigation. Thereafter, D is regarded as

the domain of f and is mapped into bit strings by an invertible map i. We refer to the injection d

which maps D into S as the embedding, and refer to i as the representation. The following diagram

induces functions fd and f_ defined on D and g/by commutativity.

S

d

D

i,I : /_

f_ . 7"e

Figure 1: Commutative Diagram for Genetic Optimization

Let _" E S be an optimum of f (i.e., a point which maximizes f). The objective of genetic optimization

is to determine a point x* E f_ such that the difference If(a')- f_(x*)l is acceptably small.

The success of genetic optimization depends oi, both the embedding and the representation. For real

valued optimization problems, it may be important, :hat the embedding is centered near a function

optimum and is of sufficient resolution to reflect the functions variation• One can attempt to achieve

this by dynamic',dly changing the embedding. Shaefer (1985, 1987) implements this idea in his ARGOT

code by varying the parameters of an affine mapping which defines the embedding.

The role of representation is perhaps not _ clear. Its importance can be explained in terms of the

"building block hypothesis." This hypothesis asserts that GA search proceeds not from individual
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chromosome to individual Chromosome, but rather from high utility schemata with few fixed bits to ....

high utility schemata with many fixed bits. If in the chosen representation tile function optima does

not lie in the schemata estimated to be of high utility, genetic search may be mislead.

. The first published study of deceptiveness was undertaken by Bethke (1981). His analysis made use of

the Walsh functions as a basis for the set of real valued functions on ft. Define the j th Wa.lsh function

wj for j = <jl,...,jn> E g/by

= (- 1/":
where

n

j. k=j,k;
i=l

Given a fianction f :f2 ---+_., define the j th Walsh coefficient fj by

,

fij --2-'#2 ___ f(k)wj(k)
kEf2

The inversion formula

= ]jwj(k)
jen

is a specia] case of the relationship between a function defined on a group and the set of group characters

(Rudin, 1967). The utility of the schema H with respect to the function f can be expressed in terms
of the Walsh coefficients:

1 1_12_,# _
fn(//) = _ _ f(p) - IH E E .fjwj(p) = IHl-'2-"/2 fj wjtv)

pel-I pEH jEn jell pert

Let the order o(j) of a bit string j be the number of l's in j, and let the order o(H) of a schema H be

the number of fixed positions in H.

Bethke's results rest on the observations that:

2. _veH wj(p) = l {x e H : z . j is even} [ - [{x e H • x . j is odd} [

3. If j contains a 1 in a position where H contains a ,, then fi does not influence fn(H).

4. If o(j) > o(H), then ]j does not influence la(H).

Let H and H _ be two competing schemata such that for all fixed positions i, HI = 0 _ Hi = 0. It

follows from these observations that if ]j = 0 when 1 < o(j) < o(H) and if ]j > 0 when o(j) = 1, then

fn(H) > fn(S').

Definition 1: Let f be a function with global optima at {x',...). Then f is deceptive of order rn ifr

thereex.ists z _ {z',...} such that when H and H _are competing schemata of order not greater than
m_

zeH ==_ fa(H)>fa(H')
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We are now ready to provide Bethke's construction. Let. 2 _< d = 2b < n be the desired order of "

deceptiveness. The previous discussion implies the existence of a constant cd < 0 (depending on d) such

that the function f defined below in terms of its Walsh coefficients has maximum at z, --- < 1,,.., 1 >

and is deceptive of order d (lower order schema containing < 0,..., 0 > have greater utility):
, i

d

1 if o(j)=
/j = if o(j)= d + 1

0 otherwise

This construction begs several related questions. Do functions exist wtfich are deceptive of all orders

d < n? Do functions exist which are deceptive of order d < n - 1, but whose schemata are correctly

aligned thereafter? The combinatorics of the Walsh transform analysis quickly become unwieldy, and

these questions are better answered in other ways.

Definition 2: Let f ben real vaJued function on fl with unique g!obal maximum at z', and let z = be

the binary complement of z'. The function f is fully deceptive ifr whenever H and H' are competing

schemata of order less than n,

xce H ==_ fa(H)> fa(H')

The opposite of fully deceptive functions are fully easy functions.

Definition 3: Let/be a real valued function on f_ with unique optimum at x'. Then f is fully easy

ifr whenever H and H' are competing schemata,

Goldberg (1989) constructed an example of a fully deceptive function for n = 3. Liepins and Vose

(1990) showed that all fully deceptive functions can be expressed as the sum of a fully easy function

and a spike function at the optimum point. Furthermore, they constructed fully deceptive functions of

all order3 d > 2 (for string lengths n > 2):

1 - 2-'_ if o(x) = 0

f(x) = 1-(1+o(x))/n ifO< o(x)< n

1 if o(:) = n

Liepins and Vose reported that this class of fully deceptive functions could be transformed into fully

easy functions through the transformation g(k) = f o M(k), where M is an invertible linearmap over

Z=. Regarding binary strings as Column vectors, the,_r n x n matrix M is

Ofori=jCn
m_y = 1 otherwise

Holland (1989) noted that neither the original function nor the Waish transform readily promote

schemata analysis. Instead, he proposed the hyperplane transform which depends directly on schemata

utilities. Holland's hyperplane transforms are related to a general method of representation based on

what we call basis sets. Let X = {xi,..., x,} be a finite space. To each subset s of X corresponds an

incidence vector v defined by

1 ifxiEs
v_ = 0 otherwise
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D_finition 4: A collection S of subsets of X is a bn[iS for X irl"the associated inclde1_ce vectors form
a basis for for T_'_,

, i , r
p

L

Lemma 1: The collection of M1schema containing < 1 ... l > lr: a basis for fl.
t

i

Proof: For any schema s, replace the ",_'s la swlth "0"s and interpret the result as a binary integer.

This defines amap h'from those schema containing <i...1> to the set of integers {0,....,2 n- 1}.

Form a matrix having as rows the incidence vectors corresponding to schema of S, and order the rows

according to increasing vMues of h. This matrix is upper diagonal and hence of full rank.
' d

P

Theorem 1: Let z E al. The collection of M1 schema containing z is a basis fbr ,Q.
J

Proof: Let a be the matrix corresponding to that permutation which sends the j th component of a

binary vector to the j @x th position, where x 6 fl is fixed and @ denotes componentwise exclusive-or.

If v is the incidence vector for a schemata s, it follows that uv is the incidence vector for the schemata

z @ s. Therefore the incidence vectors associated with a translation (by z in fl) of a basis are obtained

by mapping the incidence vectors associated with that basis by a. Since permutation matrices are

! invertible, they preserve linear independence, and since x was arbitrary, it can translate the basis of
Lemma 1 to any point of fl.

Theorem 2: Let 5' be a basis for X, and f a rea/vMued function defined on 5'. There exists a unique

function g :X --, 7i. such that

1

=Es

Proof: let M be the matrix having a_ rows the incidence vectors corresponding to elements of S, let g

be the column vector of required function values, and let f be the column vector of given vMues. The
condition to be satisfied is

DMg = f

where D is a diagonM matrix containing [z [-1 for x 6 5'. Hence g is uniquely determined by g =
M-lD-lr

Definition 5: Let ¢ be a point in fl. A schemata path at x is a. nested sequence of schemata

H0 C '._ C H,_ contairfing z such that o(H_) = i

Let us now return to the concept of deceptiveness. Intuitively, deceptiveness occurs whenever a "good

path" leads to a "bad point" or a "bad path" leads to a "good point".

Definition 6: Let z 6 f_ and let J be a schemata path at x. Then f is decreasing a,t, z along J of

order (a, b) ifr whenever H and H' are two schemata in J,

a <_o(H) < o(H') _< b ==_ fn(H) >/n(H')

If a = 0, we shall use the term "decrea.sing Mona J of order b", The definitions for increasing a/ong J

are defined anMogously.

We can now turn our attention to the existence of classes of functions of intermediate deceptiveness.
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We asgume that the functions of interest have a unique optimal which wi_,hout loss of generality is a.t

< 0,...,0>. We prove each of the following classes are nonempty:

C1. Functions with several schemata paths at the optimali some of them increasing oi' order n, and

others decreasing of order n - 1.

C2 Functions all of whose schemata paths at the optimal are increasing for some order d < n- 1 and

decreasing thereafter (except at order n)

C3. Functions all of whose schemata paths at the optimal are decreasing for some order d< n- 1 and

increasing thereafter.

These classes are interesting because real problems' could presumably have some paths that are deceptive

and other paths that aren't, or could have some regions of deceptiveness either preceded or followed by

regions which are nondeceptive. Intuitively, one might expect that the density of non-deceptive p_ths

or the depth of deceptiveness is related to whether a GA discc_vers an optimum.

The proof that these classes are nonempty follows from the observation th_.t each' is defined in terms of

schemata paths at the single point < 0,..., 0 >. By Theorem 1, the collection of all schema at a point

forms a basis, hence the schema involved in the definitions of these classes are linearly independent. It

follows from Theorem 2 that assigning arbitrary values to any set of linearly independent schema will

induce a fitness function consistent with the given utilities.

GAs AS DYNAMIC SYSTEMS

In this section we sketch our development of GAs as dynamic systems. Since many of our results have

cumbersome proofs, we will report on our progress in this section and refer the re_der to Vose and

Liepins (1990) for technical details.

We represent recombin_tion (1-point, 2-point, or uniform crossover followed by mutation) as a quMratic

operator determined by a fixed non-negative symmetric matrix M in conjunction with a group of

permutations on chromosome strings. The matrix M has special properties, many of which result

from the commutativity of crossover and mutation with group translation. We formalize selection as

multiplication by a diagonal matrix F. Spectral analysis of M and F allows us to draw preliminary

conclusions about fixed points and their stability. We also obtain an explicit formula relating the

nonuniform Walsh transform to the dynamics of genetic search.

Let f_ be the set of all length n binary strings, and let N = 2n. Thinking of elements of f/as binary

numbers, we identify D. with the interval of integers [O,N - 1]. We also regard fl as the product group

Z2 x .... x Z2

where Z2 denotes the additive group of integers modulo 2. The group operation @ acts on integers in

[0, N -1] via these identifications, and we use ® to represent componentwise multiplication.

The _th generation of the genetic algorithm is modeled by a vector s t E 7ZN, where the ith component

of s_ is the probability that i is selected for the gene pool. Populations excluding members of f_ are

8
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modeled by vectors s_ having corresponding coordifiates zero,

Let p_e 7_ N be a vector with ith component equal to the proportion of i in the t th generation, and let.

r;,j(k) be the probability that k results from the recombination process based on parents i and j, l.f C

denotes expectation, then

evl - " (k)-- sisjri,j
i,j

Let C(i,j) represent the possible results of crossing i and j_ and note that lc@ t E C(i,j)if and only if

k E C(iet,j_). LfX(i) represents the result of mutating i for some fixed mutation, then k_t = X(i)

if and only if k - X(i _ t). Since recombination is a combination of operations which commute with

group translation, it follows that

Tiffs allows recombination to be expressed via the matrix M defined by mi.j = rl,j(0), Let F be

the nonnegative diagonal m_trix with ii th entry f(i), where f is the objective function, and let aj be
permutations on TdN given by

aj < Yo,..., YN-1 >T = < Yj_o ..... Yj$(N-1) >T

where T denotes transpose. Define operators .hd, _', and _ by

.hd(s) = < (O'os)Td_IO'oS,. . ., (CrN_lS)TJl_O'N_18 >T

=

g=_oM

and let _ represent the equivalence relation on 7_N defined by x ,,_ y if and only if _A > 0 . z = Ay.
It follows that

&,+l~

The expected behavior of a simple GA ts therefore determined by matrices M and F. Fitness tnforma..

tion appropriate for the selection operator ,Jr is contained in F, while M encodes mixing information

appropriate for the recombination operator 34. Moreover, the relatton

g(st)

is a_ exact representation of the limiting behavior as population size _. oo. _ ae natural geometric

interpretation of this formalization is to regard F and 34 as maps from ,9, the nonnegattve points of

the unit sphere in T4N, to ,9 (since apart from the origin, each equivalence class of ,., has a unique

member of norm 1). An inittal population then corresponds to a point on $, the progression from one

generation to the next is given by the iterations of _, and convergence (of the GA) corresponds to a
fixed potnt of _.

The properties of the operator I" are straightforward to analyze, l_egarding _" as a map on S, its fixed

points correspond to the eigenvectors of F, i.e., the unit basis vectors uo,..., ut¢.-1, If f(i) = f(j), then

by passing to a quotient space (moding out by the linear span of ul and 'ud), the subspace corresponding

to i and j is collapsed to a single dimension. Hence we may assume that dr Is injective by considering a
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suitable homomorphic ima_ge, The basin of atti'actlon of the fixed polnt uj is given by t'he intersection

of $ with the (solid) ellipsoid

f(i)_2
I

Only the fixed points corresponding to the maximal value of theobjectlve i'ul_ction f are in the interior

of their basins of attraction. Hence all other fixed points are unstable. This follows from the observation

that when f(j) is ma.x.imal, no point of $ moves away from uj since

f(i) _1' i

Intuitively, Theorem 1 is not surprising. Selection is a focusing operator which moves the population

towards one conta,trfing only the maximally fit individuals which are initiaAly present. "]:'he properties

of A/I are less immediate.

For 1-point crossover with mutation, we exp'. c!tly calculate the mi,,w.ingmatrix M for crossover rate X

and mutation rate # as

: "- { + -'l'-
+(,--e)';'

Here integers are to be regarded as bit vectors when occurring in I' I, division by zero when # E {0,1}

is to be removed by continuity, and

_<,.s,k=1(2_''- 1)®_1-1 (2_'--1)®j I

Our results concerning 'fixed points and their stlibility derive from general properties of M. The most

obvious of which are that M is nonnegative, symmetric, arid for all/,j satisfies

k k k

Associated with the matrix M is a matrix M, related to the differential of .Ad whose i,j th entry in

rnlt_j,i. _,Vehave shown that if M, is positive and its second largest eigenvalue is less than 1/2, then

every fixed point of recombination is asymptotically stable. Several computer runs calculating the

spectrum oi' M, show that for one point crossover with mutation, tf 0 _<# < 0.5 then

• The second largest elgenvalue of M. is ] - #

largest eigenvalue of M, is2-(1- n--_-l)(½- #)2-
,The third

Thus, when the mutation rate is between 0 and 1/2, the fixed population distrlbutions under 1.point

crossover followed by mutation _re asymptotically stable. A conjecture of G. It. Belitskii and Yu. I.

Lyubich relating to discrete dynamlcal systems further implies that fixed popul_tlon would therefore

10
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be unique, Using symmetry p.oper_tes, we can showy the uniform population (t,e., all chromSsomes

represented equally) ts fixed by recombination, Hence the uniform population is the only fixed point

of recombina.tion, This supports our view of recombination _s a "dispersion" operator,

A much less obvious property of M is that conjugation by the matrix FV representing the Walsh trans-

form triangulates M., Moreover, conjugation by 14) also simultaneously diagonalizes the permutation

matrices aj to :hl along the diagonal, and makes the matrix M sparse,

Let Q represent the sparse matrix PVMFV, let D_' represent the 5:1 dlagon_d matrix Wcr_FV, let Qj=

DjQD], and de'he the operator 7f by

7_(s) < JQ0_,,,,,_rQN-ls> r

Note that _ has relatively simple structure; it is a system of quadratic forms having sparse coefficient

matrices which differ only in their signs, Moreover, G is representable in terms of 7Y:

_(_) = Fo_oW(_)

Let v t be defined by v t = Wst = )_Fp _ = the nonuniform Walsh transform of f at generation t.

Therefore

_'+_~ _(st) _ ws '+_ ~ WoG(_') _ v_+_~ Wo_oW(_ _)

Hence the operator )4; o G o 14; maps the nonuniform Walsh transform from one generation to the next.

Moreover we have the simple representation

WogoW = WoFo_

The operators _', 7"[, and FV may be interpreted as selection, mi'zing and transform respectively. More-

over, their interleaving models the progression of genetic search

FV 7-t >"
... _ st .._.., Vt ...._., pt +l _.._, st+l _ ...

The transition from one generation to the next may therefore be equivalently regarded as proceeding

through selection vectors, population vectors, or nonuniform Walsh transforms.

SUMMARY

In this paper we have addressed both static and dynamic properties of the genetic algorithm. The

static analysis addressed problem deceptiveness. The dynamic analysis addressed the time evolution

of the expected population distribution.

' We began our discussion of deceptiveness by explica,ting four failure modes for the genetic algorithm.

Next, we summarized Bethke's results regarding difficult functions. We exhibited fully deceptive func-

tions and invertible linear transformations which transform these functions into fully easy functions.

11
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We further introduced basis sets and used them to prove the eMstence of fun "colons having various

intermediate degrees of deceptiveness,

Our modeling of GAs as dynamical systems focused on the expressibility of recombination as quadratic

forms in terms of a single, fixed mixing matrix M. We have discovered several special properties

of this matrix and have related the spectrum of an associated matrix M, to the stability of fixed

points of recombination, Computer calculations indtcate a simple relation between the spectrum of

M. and the crossover and mutation rate which leads to the conclusion that that the only stable fixed

population dlstributlon for recombination is uniform. Our model leads to a decomposition of genetic

search which makes explicit the transitions between populations, between selection probabillgles, and

between nonuniform \¥alsh transforms from one generation to the next.
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