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Center for Theoretical Study& Faculty of Mathematics and Physics

Charles University in Prague, Malostranské náměst́ı 25, CZ-11800 Praha 1, Czechia
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Abstract. Many different definitions of computational universality for various types of dynamical
systems have flourished since Turing’s work. We propose a general definition of universality that
applies to arbitrary discrete time symbolic dynamical systems. Universality of a system is defined
as undecidability of a model-checking problem. For Turing machines, counter machines and tag
systems, our definition coincides with the classical one. Ityields, however, a new definition for
cellular automata and subshifts. Our definition is robust with respect to initial condition, which is a
desirable feature for physical realizability.

We derive necessary conditions for undecidability and universality. For instance, a universal system
must have a sensitive point and a proper subsystem. We conjecture that universal systems have
infinite number of subsystems. We also discuss the thesis according to which computation should
occur at the ‘edge of chaos’ and we exhibit a universal chaotic system.

1. Introduction

Computability is usually defined via universal Turing machines. A Turing machine can be regarded
as a dynamical system, i.e., a set of configurations togetherwith a transformation acting on this set.
∗Address for correspondence: Université catholique de Louvain, Department of Mathematical Engineering, Avenue Georges
Lemaitre 4, B-1348 Louvain-la-Neuve, Belgium
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A configuration consists of the state of the head and the content of the tape. Computation is done by
observing the trajectory of an initial point under iteratedtransformation.

There is no reason why Turing machines should be the only dynamical systems capable of universal
computation. Indeed, such capabilities have been also claimed for artificial neural networks [34, 18],
piecewise linear maps [19], analytic maps [20], cellular automata [40], piecewise constant vector fields
[2], billiard balls on particular pool tables [13], or a ray of light between a set of mirrors [28]. For all
these systems, many particular definitions of universalityhave been proposed. Most of them mimic the
definition of computation for Turing machines: an initial point is chosen, then we observe the trajectory
of this point and see whether it reaches some ‘halting’ set; see for instance [35] and [5]. However, many
variants of these definitions are possible and lead to different classes of universal dynamical systems. In
particular, there is no consensus for what it means for a cellular automaton to be universal. Moreover,
in the presence of noise many of these systems loose their computational properties [1, 25, 14]; see
[32, 31, 30] for definitions of analog computation and issuesrelative to noise and physical realizability.

Another field of investigation is to make a link between the computational properties of a system and
its dynamical properties. For instance, attempts have beenmade to relate ‘universal’ cellular automata
to Wolfram’s classification. It has also been suggested thata ‘complex’ system must be on the ‘edge
of chaos’: this means that the dynamical behavior of such a system is neither simple (i.e., a globally
attracting fixed point) nor chaotic; see [40, 27, 7, 24]. Other authors nevertheless argue that a universal
system may be chaotic; see [34].

The basic questions we would like to address are the following:

• How to define computationally universality for dynamical systems?

• What are the dynamical properties of a universal system?

A long-term motivation is to answer these questions from thepoint of view of physics. What phys-
ical systems are universal? Is the gravitational N-body problem universal [28]? Is the Navier-Stokes
equation universal [29]? However in this paper we focus onsymbolic effectivedynamical systems, i.e.,
systems defined on the Cantor set{0, 1}N or a subset of it, whose transformations are computable. Some
motivating examples of such systems are Turing machines, cellular automata and subshifts.

Turing’s machine was originally meant as a model of a computation performed by a human operator
using paper and pencil [38]. We adapt Turing’s reasoning to the case where the human operator does
not compute by himself, but relies on a dynamical system to make the computation. The system is said
to be computationally universal if the observations made bythe human operator allow him to solve any
problem that could also be solved by a universal Turing machine. We conclude that a system is universal
if some property of its trajectories, such as reachability of a halting set, is r.e.-complete.

In this contribution, rather than considering point-to-point or point-to-set properties, we consider set-
to-set properties. Typically, given an initial set and a halting set, we want to know whether there is at
least one configuration in the initial set whose trajectory eventually reaches the halting set. We require
the initial and halting sets to be clopen (closed and open) sets of the Cantor state space. Clopen sets can
be described in a natural way with a finite number of bits. Finally, we do not restrict ourselves to the
property ‘Is there a trajectory going fromU to V ?’ alone. In a previous paper [10] we have considered
properties expressible by temporal logic. In the present paper we consider the wider class of all properties
that can be observed by some finite automaton.
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This definition addresses the two issues raised above. Firstly, it is a general definition directly ap-
plicable to any (effective) symbolic system. Secondly, dealing with clopen sets rather than points takes
into account some constraints of physical realizability, such as robustness to noise.

With this definition in mind, we prove necessary conditions for a symbolic system to be universal.
In particular, we show that a universal symbolic system is not minimal, not equicontinuous and does
not satisfy the shadowing property. We conjecture that a universal system must have infinitely many
subsystems, and we show that there is a chaotic system that isuniversal, contradicting the idea that
computation can only happen at the ‘edge of chaos’.

Preliminaries are given in Sections 2, 3 and 4. Decidable anduniversal systems are defined in Sec-
tions 5 and 6. In Section 7, necessary conditions for a systemto be universal are given, related to
minimality, equicontinuity and shadowing property; chaosand edge of chaos are considered in Section
8. The definition of universality is discussed in Section 9.

2. Effective symbolic spaces

A symbolic spaceis a compact metric space whose clopen (closed and open) setsform a countable
basis: every open set is a union of clopen sets. The elements of a symbolic space are calledpointsor
configurations. A typical example is the Cantor set{0, 1}N endowed with the product topology. The
topology is given by the metricd(x, y) = 2−n, wheren is the index of the first bit on whichx andy
differ. Note that this metric satisfies theultrametric inequality: d(x, z) ≤ max(d(x, y), d(y, z)) for any
x, y andz.

If w ∈ {0, 1}∗ is a finite binary word, then[w] denotes the set of all infinite configurations with
prefix w. Sets of this form, usually calledcylinders, are exactly the balls of the metric space. They are
clopen sets and any clopen set of{0, 1}N is a finite union of cylinders. Similar distances are defined on
the spaces{0, 1}∗ ∪ {0, 1}N, AN, Q × AZ, AZd

whereQ andA are finite andd is a positive integer.
Closed subsets of the Cantor space are symbolic spaces themselves. The converse is well known to hold
as well: Every symbolic space is homeomorphic to a closed subset of the Cantor space and every perfect
symbolic space is homeomorphic to the Cantor space. For instance,{0, 1}Z is homeomorphic to{0, 1}N.

To define computational universality, we need effective symbolic spaces, in which we can perform
boolean combinations on clopen sets effectively.

Definition 1. An effective symbolic spaceis a pair(X,P ), whereX is a symbolic space andP : N → 2X

is an injective function whose range is the set of all clopen sets ofX, such that the intersection and com-
plementation of clopen sets are computable operations. This means that there exist computable functions
f : N → N andg : N × N → N such thatX \ Pn = Pf(n) andPn ∩ Pm = Pg(n,m).

Of course, union of clopen sets is then also computable. Often we denote an effective symbolic space
by X rather than(X,P ) when no confusion is to be feared. In Cantor space{0, 1}N, the lexicographic
ordering yields a standard enumeration

[λ], [0], [1], [00], [01], [10], [11], [00] ∪ [11], [01] ∪ [10], [00] ∪ [01] ∪ [10], [00] ∪ [01] ∪ [11], . . .

Other widely used symbolic spaces like{0, 1}∗ ∪ {0, 1}N, ANd

, AZd

, Q × AZ, have also their standard
enumerations. Note that we could require intersections andcomplements to be primitive recursive rather
than computable, without altering the examples and resultsof the paper.
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Definition 2. Let (X,P ) and(Y,Q) be two effective symbolic spaces. Aneffective continuous mapis
a continuous maph : X → Y such thath−1(Qn) = Pk(n), for some computable mapk : N → N. If h
is bijective then it is aneffective homeomorphism, and(X,P ) is said to beeffectively homeomorphicto
(Y,Q).

Note that the composition of effective continuous maps is aneffective continuous map, the identity
is an effective continuous map and the inverse map of an effective homeomorphism is also an effective
homeomorphism. In particular, being effectively homeomorphic is an equivalence relation for effective
symbolic spaces.

Given an effective symbolic space(X,P ), a closed subsetY is said to beeffective, if the family of
clopen sets intersectingY is decidable. In particular any clopen set is effective. An effective setY can
be endowed with the relative topology, whose clopen sets areall intersections of clopen sets ofX with
Y . Thus, the enumerationP0, P1, P2, . . . of clopen sets ofX yields an enumeration of clopen sets ofY :
Y ∩P0, Y ∩P1, Y ∩P2, . . . . This enumeration may contain empty sets and repetitions, but we can detect
them in an effective way and renumber the sequence accordingly. Hence we get an effective topology
for the effective closed setY . Equivalently, the inclusioni : Y ↪→ X is an effective continuous map.

Proposition 1. Every effective symbolic space is effectively homeomorphic to an effective subset of the
Cantor space. Every perfect effective symbolic space is effectively homeomorphic to the Cantor space.

Proof:
Let (X,P ) be an effective symbolic space. For every pointx ∈ X, construct the infinite configuration
g(x) ∈ {0, 1}N, whereg(x)n = 1 if and only if x ∈ Pn. Then the mapg : X → {0, 1}N is injective and
continuous. SinceX is compact,g(X) is closed. Moreover, every step of the construction is effective,
and sog(X) is an effective closed set and the mapg is effective.

If the space is perfect, then we construct another maph : X → {0, 1}N. We may writeX as a
partition of two clopen setsX = A0 ∪ A1, whereA0 is the clopen set of smallest index to be different
from X and∅; this is always possible thanks to perfectness. Suppose that we have already constructed
Aw, wherew is a binary word. Letn be the first index such thatAw ∩ Pn differs from bothAw and∅,
and setAw0 = Aw ∩ Pn, Aw1 = Aw \ Pn. Forx ∈ X let h(x) ∈ {0, 1}N be the unique configuration
such thatx ∈ Aw for all prefixesw of h(x). Thenh : X → {0, 1}N is an effective homeomorphism.ut

We see that there is no loss of generality in supposing that inany effective symbolic space, for any
rationalε there exists a finite number of balls of radiusε and that we can compute all of them. Indeed,
this is the case for all effective subsets of the Cantor space.

3. Effective symbolic systems

Definition 3. An effective symbolic dynamical systemis an effective continuous map from an effective
symbolic space to itself.

In other words, an effective symbolic system is a symbolic space with a continuous self-map in
which intersections, complements, and inverse images of clopen sets are computable. This definition of
effective function in a Cantor space is equivalent to classical definitions in computable analysis; see for
instance [39]. We denote an effective symbolic system by a map f : X → X or simply f , when the
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enumerationP of X is implicit. Extending Definition 2, we define a relation of equivalence between
effective systems.

Definition 4. The effective symbolic systemsf : X → X andg : Y → Y areeffectively conjugated
if there exists an effective homeomorphismh : X → Y such thath ◦ f = g ◦ h. If h : X → Y is an
effective surjective map (and not bijective), then the systemg : Y → Y is said to be aneffective factor
of f : X → X. The factorg can be seen as a ‘simplification’ off .

The identity on any symbolic space is the simplest example ofan effective symbolic system. A
cellular automaton is an effective symbolic system acting on the spaceAZd

, whereA is the finite alphabet
andd is the dimension.

Turing machines are usually described as working on finite configurations. A finite configuration
is an element of{0, 1}∗ × Q × {0, 1}∗, whereQ denotes the set of states of the head, the first binary
word is the content of the tape to the left of the head and the second binary word is the right part of
the tape. However,{0, 1}∗ cannot be naturally equipped with a compact topology, so we consider its
compactificationW = {0, 1}∗ ∪{0, 1}N, i.e., the set of finite and infinite binary words. Then the Turing
machine function is also defined onW × Q × W , which is a compact space, whose isolated points are
{0, 1}∗×Q×{0, 1}∗. An isolated point is clopen inW ×Q×W . Hence a Turing machine with a blank
symbol is an effective symbolic system on the spaceW × Q × W .

A Turing machine without blank symbol is an effective symbolic system as well. As we do not
suppose that almost all cells are filled with a blank symbol, aconfiguration is given by an arbitrary
element of{0, 1}N ×Q×{0, 1}N or, equivalently,Q×AZ. This is a Turing machine with moving tape,
as considered in [21]: the head is always in position zero, and the tape moves to the left or to the right.

3.1. Shifts and subshifts

A one-sided or two-sidedshift is a dynamical system onAN or AZ (whereA is a finite alphabet)
with the mapσ : AN → AN or σ : AZ → AZ defined byσ(x)i = xi+1. A shift is an effective
system. Asubshiftis a subsystem of the shift, i.e., a closed subset that is invariant under the shift map.
Most subshifts we consider in this article are one-sided subshifts. Aneffective subsystemof an effective
symbolic system is an effective closed subset that is invariant under the map. With the relative topology,
it is itself an effective symbolic system. In particular, a subshift that is an effective closed subset ofAN

is again an effective symbolic system.
The setL(X) of all finite words appearing at least once in at least one point of the subshiftX is called

the languageof the subshift. It is easy to see that a subshift is effectiveiff its language is recursive. In
particular everysoficsubshift (a subshift whose language is regular) is effective. A subshift of finite
type is the set of sequences avoiding a finite set of forbiddensubwords. Subshifts of finite type are sofic
subshfits, hence are effective. Another widely studied class of subshifts aresubstitutivesubshifts defined
by substitutionsϑ : A → A+. Since a substitution is a finitary object, every substitutive subshift is
effective. A Sturmian subshiftΣα associated to an irrational numberα is a symbolic model of rotation
of the circlex 7→ x + α; see e.g. [23]. A Sturmian subshiftΣα is is effective iffα is a computable real
number.

From any symbolic dynamical system (effective or not), we can generate one-sided subshifts in a
natural way. Aclopen partitionof a symbolic space is a partition of the space into a finite number of
disjoint clopen sets. A partitionA is finer thanB, or B is coarser thanA, if every clopen set ofA
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is included in some clopen set ofB. Given a clopen partitionA = {A1, . . . , AN} of X, the subshift
inducedby this partition is the set of infinite wordsa0a1a2a3 . . . ∈ AN, such that there is a point ina0

whose trajectory goes successively througha1, a2, . . . . Note that hereA1, say, is both a subset ofX and
a symbol from a finite alphabet. ThusA1A3A1 denotes a word of three symbols and not for instance a
cartesian product. The language of the subshift is also saidto be inducedby the partition. An induced
subshift is a factor of the system and conversely any factor subshift is induced by a clopen partition.
Following this observation, we can characterize effectivesymbolic systems in terms of their induced
subshifts.

Proposition 2. A symbolic system is effective if and only if there is an algorithm deciding from any
given clopen partition and any given finite word whether thisword belongs to the language of the subshift
induced by the partition.

Proof:
LetA = {A1, . . . , AN} be a clopen partition. Then a worda0a1 . . . al−1 ∈ A∗ is in the language of the
subshift induced by the partition if and only ifa0 ∩ f−1(a1)∩ · · · ∩ f−(l−1)(al−1) is not empty. But this
can be checked algorithmically.

Conversely, suppose that all induced subshifts have decidable languages, and that given the partition
we can effectively find a decision algorithm for the corresponding language. LetPn be a clopen set of
X. There exists a clopen partitionA = {A1, . . . , AN} such that

• for everyi, eitherAi ⊆ Pn or Ai ⊆ X \ Pn;

• if AiAj andAiAk belong to the language of the induced subshift, thenAj andAk are either both
parts ofPn or both parts ofX \ Pn.

The first condition says that the partition is finer thenPn, the second condition says that the partition is
finer thanf−1(Pn). It can be checked algorithmically whether a clopen partition has these two properties.
Thus a partition with these properties can be found algorithmically. Then we can computef−1(Pn) as
the union of allAi such that there exists a wordAiAj in the language of the induced subshift and that
Aj ⊆ Pn. ut

If the subshifts have decidable languages, but decision algorithms are not computable with respect to
the clopen partition, then the system may fail to be effective. This happens in the following example.

Example 1. Assumek : N → N is an non-computable strictly increasing total function. We define a
functionf on the Cantor space{0, 1}N by f(x) = f0(x)f1(x)f2(x) . . ., where theith bit fi(x0x1x2 . . .)
is given bymax{x0, x1, x2, . . . , xk(i)}. There are two fixed points,0ω and1ω, and the image of a point
is of the form0∗1ω or 0ω (where0ω is a shortcut for000 . . .). Then it is easy to see that for any pointx
eitherf(x) = 0ω or fn(x) = 1ω for somen ≥ 0 . For any partitionA = {A1, . . . , AN}, if 0ω ∈ A1

and1ω ∈ A2 (say), then every point inA3 ∪ . . . ∪ AN reachesA2 in bounded time, sayt. Then every
finite word of the language of the subshift induced by the partition is of the formA∗

1 or SA∗
2, whereS is

some subset of{A1, . . . , AN}t. This is certainly a decidable language. Howeverf is not effective, for
otherwise we could computek.

In the rest of the paper, we use the terms ‘symbolic system’ oreven ‘system’ to denote an effective
symbolic dynamical system.
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3.2. Products

Let (fn : Xn → Xn)n∈N be a family ofuniformly effectivesystems on the effective symbolic spaces
(Xn, Pn) ; we mean that there exists an algorithm that, givenn and two clopen sets ofXn, can compute
their intersection, complements and inverse images. Then theeffective productof (fn)n∈N is the system
f : X → X on the effective symbolic space(X,P ) such that

• the setX is the product of all setsXn;

• the clopen sets ofX are all products of clopen sets
∏

n∈N
An such that only finitely manyAn ⊆ Xn

are different fromXn (this is the usual product topology);

• the clopen sets are indexed by finite sets of integers in a straightforward manner, andf is defined
componentwise.

We see that this is indeed an effective symbolic dynamical system. The projectionsπn : X → Xn are
effective maps as well. Products are useful to build examples of systems with particular properties, as
illustrated in Propositions 13 and 17.

4. Finite automata

Consider an effective systemf : X → X and two clopen setsU, V ⊆ X. We would like to know if
there is a point ofU that eventually reachesV , that is, if there exists anx such that

x ∈ U and∃n ∈ N : fn(x) ∈ V. (1)

We call halting problem off , the problem of answering this question givenU andV . We will see
later that this is indeed a generalization of the halting problem traditionally defined for Turing machines
or counter machines. Note the relation of the halting problem with the (topological)transitivity: a
dynamical system is transitive if from any two non-empty open setsU andV there is a trajectory from
U to V . In such a system, the halting problem is trivial.

We consider now another formulation of the halting problem.Suppose that the systemf is only
partially observable. All we can know aboutf is whether the system is currently inU , in V or in
W = X \ (U ∪ V ) (we suppose for simplicity thatU andV are disjoint). The system is observed by a
finite automaton (formally defined below) as illustrated in Figure 1. At every time step, the automaton
jumps to a new state, according to which setU , V or W the system is currently in. The halting problem
amounts to deciding whether it is possible, for some initialpoint of the spaceX, that the automaton
eventually reaches the final state from the initial state.

We would like also consider variants of the halting problem.For instance, given three disjoint clopen
setsU , V andW , we want to check whether the following formula is satisfied for somex:

x ∈ U and∃n : fn(x) ∈ V and∀m < n : fm(x) /∈ W, (2)

wheren andm are non-negative integers. A finite automaton which acceptsexactly points with this
property is constructed in Figure 2.
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U
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V ,W

U ,V ,W

VU ,V ,W

q0

U ,V or W

System

Automaton

U ,W

Figure 1. The symbolic system is partitioned intoU , V andW = X \ (U ∪ V ). At every time step, the finite
automaton is fed with the symbolU , V or W and jumps to a new state. It is possible to reach the final stateqf from
the initial stateq0 iff it is possible thatqf (and onlyqf ) is reached infinitely often from the initial stateq0 iff there
is a point ofU that eventually reachesV . Checking whether this is true givenU andV , is thehalting problemof
f . The automaton can be considered as a finite automaton (the final state isqf ) or as a Muller automaton (for the
family {{qf}}).

We can also ask whether the formula

∀n : fn(x) ∈ U (3)

is satisfied for somex ∈ X. This is the case if and only if the automaton in Figure 3, starting from the
initial state and observing the systemf , reaches infinitely often the final state from the initial state. This
leads us to the theory ofω-regular languages which can be recognized by Muller or Büchi automata.

In general we are interested in all properties that can be observed by automata. A (deterministic)
finite automatonis given by a finiteset of statesQ, aninitial stateq0 ∈ Q, a set offinal statesQ1 ⊆ Q,
a finite input alphabetA and a transition function∆ : Q × A → Q. The transition function is extended
to ∆ : Q×A∗ → Q by ∆(q, ua) = ∆(∆(q, u), a). A languageL ⊆ A∗ is regular if there exists a finite
automaton which acceptsL, i.e.,u ∈ L iff ∆(q0, u) ∈ Q1.

A Muller automatonconsists of a finite set of statesQ, a transition function∆ : Q × A → Q, an
initial stateq0 ∈ Q and a familyF of subsets ofQ. A given infinite wordu ∈ AN is accepted by a
Muller automaton if the set of states that are visited infinitely often by the path generated by the given
word is a member ofF . A languageL ⊆ AN is ω-regular, if it is accepted by a Muller automaton, i.e.,

u ∈ L iff {q ∈ Q : ∀n,∃m > n : ∆(q0, u0 . . . , um−1) = q} ∈ F .

Alternatively, ω-regular languages can be defined by nondeterministic Büchi finite automata. An infi-
nite word is accepted, if there is a trajectory passing infinitely often through a given set of final states.
Although Büchi automata are simpler to define, Muller automata are deterministic, which is sometimes
an advantage. In this paper we make little use of Büchi automata. Coming back to Figure 1, the halting
problem for a symbolic system asks whether there is a finite word induced by the partitionU ,V , W that
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U ,V , W or T

System
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U , T

U

W
U ,V ,W ,T VW

T

Figure 2. The symbolic system is partitioned intoU , V , W andT = X \ (U ∪ V ∪ W ). There is a point ofU
that stays inX \ W until it eventually reachesV , iff it is possible thatqf (and onlyqf ) is reached infinitely often
from the initial stateq0.

is accepted by the finite automaton. It is equivalent to ask whether there is an infinite word induced by
the partition that is accepted by the automaton interpretedas a Muller automaton.

In general, given a clopen partitionA = {A1, . . . , AN} and a finite automaton overA, we would like
to know whether there is a non-empty intersection between the language associated to the partition and
the regular language accepted by the automaton. In other words, the problem is to know whether there
exists a point of the symbolic system whose trajectory, whenobserved through the partition, is accepted
by the automaton. The same question can be asked for a Muller automaton instead of a finite automaton.

The automaton may be interpreted asobservingthe system with a finite memory (where the ‘memory’
is the number of states of the automaton). This formalism includes all three properties described above,
including the halting problem. These are examples ofmodel-checkingproblems, although we prefer to
call themobservationproblems. Model-checking aims at finding decision algorithms to check whether
the trajectories of a dynamical system satisfy a given property. But systems considered in the literature of
model-checking are often non-deterministic and finite or countable, whereas we deal with deterministic
systems with a possibly uncountable configuration space.

Note that Muller (or Büchi) automata are rather powerful toexpress properties on infinite words.
They are equivalent to several logical formalisms, including the so-calledµ-calculus and monadic second-
order formulae. First-order formulae, including (1), (2),(3), are equivalent to linear temporal logic and
strictly weaker than Muller automata. For precise definitions of all these formalisms, see for instance
[33, 17, 15].

5. Decidable systems

Definition 5. An effective symbolic system isdecidableif there exists an algorithm that decides the
infinite-time observation problem, i.e., that decides whether the subshift induced by a given clopen par-
tition has a nonempty intersection with a givenω-regular language (described by a Muller automaton).
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U or V

Figure 3. The system is partitioned intoU andV . There is a point that never leavesU iff it is possible thatq0

(and onlyq0) is reached infinitely often from the initial stateq0.

Clearly, decidability is preserved by effective conjugacies and the factor of a decidable system is
decidable. The identity map on any effective symbolic spaceis decidable. Indeed, for a partition
A1, A2, . . . , AN , the only words induced by the partition areAω

1 , Aω
2 , . . . and Aω

N . Given a Muller
automaton, it is enough to check whether one of these paths starting from an initial state of the automa-
ton passes infinitely often through a final state. Alternatively it is a consequence of the forthcoming
Proposition 20. The mapx 7→ 0x on {0, 1}N with a unique attracting fixed point0ω is decidable. This
follows from Proposition 7. The full shift on any finite alphabet is a decidable system by a corollary to
Proposition 15.

If a system is not decidable, how undecidable can it be? We show that the infinite-time observation
problem is at mostΣ1

1-complete, which is rather high. AΣ1
1 set is the set of integersm satisfying a

formula of the kind
∃k, Q1n1, . . . , Qini : R(k,m, n1, . . . , ni),

wherek runs over all total functions fromN to N, Q1, . . . , Qi are quantifiers,n1, . . . , ni run overN,
andR is a recursive relation. By recursive we mean that there is a Turing machine withk as oracle and
m,n1, . . . , ni as data that decides in finite time whetherR(k,m, n1, . . . , ni) holds or not. AΣ1

1 set is
Σ1

1-completeif every Σ1
1 is many-one reducible to it. The class ofΣ1

1 problems belongs to the so-called
analytical hierarchy; see [16] for more details.

Proposition 3. The infinite-time observation problem on an effective symbolic system isΣ1
1 for every

effective symbolic system andΣ1
1-complete for at least one effective symbolic system.

Proof:
Let f : X → X be an effective symbolic system. First we show that the infinite-time observation prob-
lem is inΣ1

1. Then we construct a system simulating a universal Turing machine with oracle for which
the infinite-time observation problem isΣ1

1-complete. The proof, although rigorous, is not completely
formalized.



J.-Ch. Delvenne et al. / Decidability and Universality 11

We can suppose that the spaceX of the system is an effective closed subset of the Cantor space
{0, 1}N. Let x be a sequence taking values inN. Then the assertion ‘x ∈ X ’ is equivalent to the
recursive relation ‘∀t ∈ N : x0, x1, . . . , xt ∈ {0, 1} and [x0x1 . . . xt] ∩ X 6= ∅’. Let m be a natural
integer encoding a Büchi automaton whose alphabet is a partition of X. Here Büchi automata are of
easier use than Muller automata. A Büchi automaton is givenby a finite set of states, an alphabet and
a transition relation, a set of initial states and a set of final states. For anyx ∈ X, call Rf (x,m, t) the
relation ‘for the initial conditionx, the Büchi automatonm observing the system can be in a final state
at timet’. It is a recursive relation; the configurationx can be seen as a function fromN to N. Then the
infinite-time observation problem can be expressed by the logical formula

∃x : x ∈ X and∀t,∃t′ ≥ t : Rf (x,m, t′),

with m as free variable; hence the infinite-time observation problem is inΣ1
1.

The set of natural integersn such that there exists a sequence of integersk : N → N for which the
universal Turing machine with initial datan and oraclek does not halt is well known to beΣ1

1-complete;
see [16]. An oracle universal Turing machine can be built in the following way. We take a one-tape
universal Turing machine in the usual sense, to which we adjoin a tape that contains on its right part the
oracle encoded in form10k(0)10k(1)10k(2)1. . . . The head has access to both tapes. Not every possible
content of the second tape is a valid oracle; indeed the word0ω cannot appear on the tape. We can
suppose without loss of generality that when the head wants to queryk(i), it first checks thatk(i) is
properly encoded by scanning the tape in some stateqsearchuntil it discovers a1 and then jumps to the
stateqfound. This two-tape Turing machine is an effective dynamical system, similar to the one-tape
Turing machine discussed just above Section 3.1. CallQ the states of the head,q0 the initial state and
qh the halting state. It can be supposed that it is impossible toleaveqh once we reach it. We want to
know whether there is an initial configuration of this system, composed of a state ofQ and the contents
of both tapes, that is in the clopen set{q0} × [n] × [1] (i.e., the head is in stateq0, the initial datan
is encoded at the right of the head on the first tape and a symbol1 is currently read by the head on the
second tape) and such that the head reaches infinitely oftenQ\{qsearch, qh}. For if an initial configuration
is such that the head does not reach infinitely oftenQ \ {qsearch, qh}, then it either reaches the halting
state or gets stuck in a query on an invalid oracle. This property can be observed by a Muller automaton
in a straightforward manner. Putting all together, we have constructed a reduction from aΣ1

1-complete
problem to an infinite-time observation problem of some fixedsymbolic system; the latter is therefore
Σ1

1-complete as well. ut

6. Universal systems

We are now ready to state the main definition of computationaluniversality. We define a universal
symbolic system as a special kind of undecidable system, where Muller automata are replaced by finite
automata. The universality of Turing machines is a particular example of this definition.

Definition 6. An effective dynamical system isuniversal if the finite-time observation problemof this
system, i.e., the problem whether the language induced by a given clopen partition has a nonempty
intersection with a given regular language, is recursively-enumerable complete.
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An r.e.-completeproblem, orΣ1-completeproblem, is a recursively enumerable problem, to which
any recursively enumerable problem is many-one reducible.Note that the finite-time observation prob-
lem (described in Definition 6) is always recursively enumerable, because the language induced by a
clopen partition is recursively enumerable and the language accepted by a finite automaton is recursive;
the intersection can be recursively enumerated and if it is nonempty then we can know it after a finite
time. Universality is obviously preserved by effective conjugacies, and a system with a universal factor
is also universal.

Proposition 4. A universal system is not decidable.

Proof:
If the infinite-time observation problem is decidable then so is the finite-time observation problem. In-
deed, the latter is reducible to the former in the following way. Given a deterministic finite automaton,
modify it in a such a way that the final states are fixed points ofthe transition function, whatever the
input is; the resulting automaton is interpreted as a Mullerautomaton, for the family of all sets whose
unique elements is a final state. ut

Note that a non-deterministic scheme of computation underlies the definition of universality. The
computation succeeds if and only if at least one trajectory exhibits a given behavior. For example, recall
from Section 4 that the halting problem consists in determining, given the clopen setsU andV , whether
there is a configuration inU that eventually reachesV . We may think ofV as the halting set and ofU
as an initial configuration of which we know only the first digits. The unspecified digits of the initial
configuration may be seen as encoding the non-deterministicchoices occurring during the computation.

6.1. Examples

Turing machines with blank symbol.

A Turing machine with blank symbol that is universal in the sense of Turing, is also universal ac-
cording to Definition 6, because the halting problem ‘Can we go from a clopen setU to a clopen setV ?’
is r.e.-complete. Indeed the halting problem restricted toclopen sets that are isolated points is already
r.e.-complete. Recall that isolated points are exactly finite configurations. Incidentally, we have shown
that what we have called ‘halting problem’ for a general symbolic system is indeed a generalization of
the usual halting problem for Turing machines.

Turing machines without blank symbol.

It is only slightly more complicated to build a universal Turing machine without blank symbol. In
such a Turing machine, there is no obvious notion of ‘finite configuration’. The trick is basically to
encode the initial data in a self-delimiting way. Take a Turing machine that is universal in the sense
given by Turing. Then add two new symbolsL andR to the tape alphabet. On an initial configuration,
put anL on the left end and anR on the right end of the encoded data. When the head encountersanL,
it pushes it one cell to the left, leaving some more space available for computation. It acts similarly for
anR symbol. The working space is always delimited by anL and anR; the symbols situated outside this
zone are considered as noise, and do not influence the computation. For this modified universal Turing
machine, the (clopen-set-to-clopen-set) halting problemis again undecidable.
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Cellular automata.

Let us take a universal Turing machine with a blank symbol. Wesuppose that when the halting state
is reached, then the head comes back to the cell of index0. We can simulate it in a classic way with a
one-dimensional cellular automaton. The alphabet of the automaton isA ∪ (A × Q) ∪ {L,R,Error},
whereA is the tape alphabet (including the blank symbol) andQ the set of states. Let us take a point in
the cylinder[L, initial data of the Turing machine, R], and observe its trajectory. The symbolL moves to
the left at the speed of one cell per time step, leaving behindblank symbols. The symbolR moves to the
right in a similar way. Meanwhile, the space betweenL andR is used to simulate the Turing machine
and is composed of symbols fromA and exactly one symbol fromA × Q, which denotes the position
of the head. WhenL or R symbols meet each other, then a spreadingError symbol is produced, that
erases everything.

This cellular automaton is again universal, because the (clopen-set-to-clopen-set) halting problem is
r.e.-complete. Indeed, there is an orbit from the cylinder[L, initial data of the Turing machine, R] to the
cylinder [A × {halting state]} (both cylinders centered at cell of index zero) if and only ifthe universal
Turing machine halts on the initial data.

Tag systems.

Tag systems were introduced by Post in 1920. Atag systemis a transformation rule acting on finite
binary words. At every step, a fixed number of bits is removed from the beginning of the word and,
depending on the values of these bits, a finite word is appended at the end of the word. Minsky [26]
proved that there is a so-called universal tag system, for which checking whether a given word will
eventually produce the empty word when repeating the transformation is an r.e.-complete problem.

We can extend the rule of tag systems to infinite words, by justremoving from them a fixed number
of bits. Thus we have a dynamical system on the compact space{0, 1}∗ ∪ {0, 1}N of finite and infinite
words, in which finite words are clopen sets. Again, if the tagsystem is universal for the word-to-word
definition, then it is universal for Definition 6 with the halting problem on clopen sets of{0, 1}∗∪{0, 1}N.

Collatz functions.

We can also apply our definition to functions on integers. LetN∪{∞} be the topological space with
the metricd(n,m) = |2−n − 2−m|. This is effectively homeomorphic to the set{1n0ω|n ∈ N} ∪ {1ω}.
Then some functions on integers may be extended to infinity. For instance, the famous3n + 1 function
sends evenn’s to n/2, oddn’s to 3n + 1 and∞ to ∞. Whether this map is decidable is unsettled. But
Conway [6] proved that similar functions, called Collatz functions, can be universal.

Counter machines.

A k-counter machine is composed ofk counters, each containing a non-negative integer, and a head
that can test which counters are at zero and can increment or decrement every counter (with the conven-
tion 0 − 1 = 0). Thus a counter machine is a mapf : Q × N

k → Q × N
k, whereQ is the finite set of

states of the head. There exists such a machinef for which given two configurationsx, y ∈ Q×N
k, the

problem to check whether the trajectory ofx reachesy is r.e.-complete; see Minsky [26].
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The mapf is easily extended to the compact spaceQ×(N∪{∞})k, with the convention∞±1 = ∞.
Here again, the points ofQ×N

k are clopen sets ofQ× (N∪{∞})k, hencef is universal for the halting
problem.

More examples.

In Section 8 we give an example of a universal system that is chaotic, and for which the halting
problem is decidable, but not the variant expressed by logical formula (2). In Section 7.3 we build a
system which is neither decidable nor universal. In the setting of point-to-point properties, it was proved
by Sutner [36] that there exist cellular automata with a halting problem of an intermediate degree between
decidability and r.e.-completeness. The same kind of examples for Turing machines are known for long
time (Friedberg-Muchnik theorem, see for instance [16]). However we have not been able to build a
system for which finite-automata properties of trajectories are undecidable, but not r.e.-complete.

7. Sufficient conditions for decidability

The purpose of this section is to link computational capabilities of a system to its dynamical proper-
ties: minimality, equicontinuity, etc. Most results proved in this section are in fact sufficient conditions
of decidability and can thus be interpreted as necessary conditions for universality. For instance, we
prove that minimal systems are decidable, thus universal systems are not minimal. We have chosen these
sufficient conditions because they are natural and often used in the analysis of a system, and because we
can derive clear-cut results from them.

The following constructions and propositions are useful inseveral proofs. Given an effective system
f : X → X, a clopen partitionA = {A1, . . . , AN} of X and the transition function∆ : Q×A → Q of
a deterministic finite automaton, we construct theobservation systemf∆ : X × Q → X × Q by

f∆(x, q) = (f(x),∆(q,Ai)), wherex ∈ Ai

Clearlyf∆ is an effective system, and the projectionπX : X × Q → X is an effective factor map off∆

to f .

Definition 7. We say that a dynamical systemf : X → X hasclopen basins, if for every clopen set
V ⊆ X, its basinB(V ) =

⋃
n≥0 f−n(V ) is a clopen set.

Proposition 5. If f : X → X is an effective system with clopen basins, then the operation V 7→ B(V )
is computable.

Proof:
If V andB(V ) are clopen sets, then by compactness there existsm > 0 such that

B(V ) =
⋃

n<m

f−n(V ) =
⋃

n<m+1

f−n(V ).

Given V we can determinem effectively so the operationB(V ) is effective too. Hence there exists a
computable functionk : N → N such thatB(Pn) = Pk(n), wherePn is the clopen set of indexN . ut
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Proposition 6. If an effective system is such that for any transition function, the resulting observation
system has clopen basins, then the system is decidable.

Proof:
For every clopen partitionA, for every finite setQ and for every transition function∆ : Q × A → Q,
the systemf∆ : X × Q → X × Q has clopen basins.

Assume now thatV ⊆ X × Q is clopen, so thatB(V ) is clopen and the index ofB(V ) can be
computed from the index ofV . MoreoverI(V ), defined asB(B(V )c)c, wherec denotes the complement,
is a clopen set too and its index can be again computed from that of V . A point (x, q) belongs toI(V ) iff
the trajectory of(x, q) passes throughV infinitely often. Givenq0, q1 ∈ Q, then(X×{q0})∩I(X×{q1})
is again a computable clopen set, so the set{x ∈ X : ∀n,∃m > n, fm

∆ (x, q0) = q1} is computable as
well. It follows that for a familyF of subsets ofQ, the set

{x ∈ X : {q ∈ Q : ∀n,∃m > n, fm
∆ (x, q0) = q} ∈ F}

is computable too. In particular, whether this set is empty can be decided algorithmically. Hence the
infinite-time observation problem is decidable. ut

7.1. Minimality

A minimaldynamical system is a system with no subsystem (except the empty set and itself). In a
minimal system, all orbits are dense and the basin of any clopen set is the full set.

Any dynamical system has a minimal subsystem, thanks to Zorn’s lemma and compactness. In
particular, any point comes arbitrarily close to a minimal system, since the closed orbit of the point is
itself a dynamical system. Suppose that the symbolic systemis not minimal but consists of one minimal
subsystem attracting the whole space of configurations. In other words, the limit set is minimal. The
limit set of a dynamical systemf : X → X is the set

⋂
n≥0 fn(X). Then such a system is decidable.

This results from the more general following proposition.

Proposition 7. A symbolic system whose limit set is the union of finitely manyminimal systems is
decidable.

Proof:
Given a symbolic systemf : X → X and a Muller automaton whose set of states isQ, we build the
observation systemf∆ : X × Q → X × Q.

First we prove that the observation systemf∆ contains finitely many minimal sets. LetX1, . . . ,Xk

be the minimal subsystems off : X → X. For everyi = 1, . . . , k choose an arbitrary pointxi ∈ Xi.
A minimal subsystem off∆, when projected onX, is exactly a minimal subsystem off , as easily seen.
Thus any minimal subsystem off∆ must contain at least one point of the form(xi, q), for someq ∈ Q.
Since any two different minimal subsystems are disjoint, this means that there are at mostk|Q| minimal
subsystems inf∆.

Then we show that the limit set off∆ is exactly the union of all minimal subsystems.
It is clear that the minimal subsystems are in the limit set off∆. Now we prove that each minimal

subsystemZ of f∆ has a nonempty interior in the limit set off∆ (for the relative topology). The
projection of the limit set off∆ on X is the limit set off . The projection ofZ on X is a minimal



16 J.-Ch. Delvenne et al. / Decidability and Universality

subsystem off , which has a nonempty interior in the limit set off , and the projection ofZ is
⋃

q∈Q Zq,
whereZ =

⋃
q Zq ×{q}. From Baire’s theorem, one of theseZq has a nonempty interior in the limit set

of f , andZ itself has a nonempty interior in the limit set off∆.
Let Yi be a set included inZi that is open in the limit set off∆, whereZ1, . . . , Zm are the minimal

subsystems off∆. All sets
⋃

n∈N
(f−n

∆ (Yi)) are disjoint sets, are open in the limit set and cover the limit
set, since the closed orbit of every point in the limit set off∆ must include a minimal subsystem. From
compactness, all points of the limit set off∆ fall in a minimal subsystem in bounded time. We conclude
that the union of all minimal subsystems is the exactly the limit set off∆.

So the limit set of the observation systemf∆ is a finite union of minimal subsystems. We get from
the lemma below thatf∆ has clopen basins. From Proposition 6 we deduce thatf is decidable. ut

For instance, the systemf : {0, 1}N → {0, 1}N : x 7→ 0x is decidable. The following lemma
finishes the proof.

Lemma 8. A symbolic system whose limit set is the finite union of minimal systems has clopen basins.

Proof:
Suppose that the limit set isY1∪· · ·∪Yk, whereYi are minimal subsystems, so thatYi∩Yj = ∅ for i 6= j.
Let V ⊆ X be a clopen set. IfV ∩ Yi = ∅, thenB(V ) ∩ Yi = ∅. If V ∩ Yi 6= ∅, then for somem > 0,
Yi ⊆ Vm =

⋃
n<m f−n(V ). Thus there existsm > 0 such that for alli eitherYi ⊆ Vm or Yi ∩ Vm = ∅.

ThenWm = f−m(V ) \ Vm is a clopen set disjoint from the limit set. From compactnessthere exists
k > 0 such thatf−k(Wm) = ∅, soB(Wm) is a clopen set. It follows thatB(V ) = Vm ∪ B(Wm) is a
clopen set too. ut

We immediately have the following corollary.

Corollary 9. A minimal symbolic system is decidable.

This is in a way not surprising since in some way all trajectories of a minimal system have the same
behavior. The following proposition leads to another consequence of Proposition 7:

Proposition 10. A symbolic system such that all nonempty subsystems have a nonempty interior has a
limit set composed of finitely many minimal subsystems.

Proof:
Let f be a system such that all nonempty subsystems have a nonemptyinterior. In the interior of every
minimal subsystem choose a clopen setUi. The basin of the open set

⋃
i Ui is the full space, because

every point of the system must come arbitrarily close to someminimal subsystem, thus must fall in some
Ui. By compactness, there is a finite set ofis and a natural integerm such that

⋃
i∈I

⋃
n<m f−n(Ui) is

the full space. So there are finitely many minimal subsystems, and every point falls in a finite time into
a minimal subsystems. The union of the minimal subsystems istherefore the limit set. ut

Corollary 11. A symbolic system such that all nonempty subsystems have a nonempty interior is decid-
able.



J.-Ch. Delvenne et al. / Decidability and Universality 17

In another words, an undecidable system must have a ‘thin’ subsystem. A stronger statement than
Proposition 7 is suggested by the intuition that an undecidable system (and especially a universal system)
is likely to be able to ‘simulate’ many other systems.

Conjecture 1. A universal symbolic system has infinitely many minimal subsystems.

7.2. Regular Systems

A subshift is called sofic, if its language is regular. A symbolic system is calledregular, if all its
induced subshifts are sofic; see [22]. Can a regular system beuniversal? We first consider a closely
related question. We say that an effective system iseffectively regularif it is regular and there is an
algorithm that builds from a given clopen partition the finite automaton recognizing the regular language
induced by the partition.

Proposition 12. An effectively regular system is decidable.

Proof:
The intersection of twoω-regular languages is well known to be anω-regular language, and a Muller
automaton accepting the intersection can be computed; see [33] for instance. Moreover, whether the
language accepted by a given Muller automaton is empty is a decidable problem too. And a sofic subshift
is anω-regular language: the finite automaton accepting the language, interpreted as a Büchi automaton
with the same set of final states, accepts the sofic subshift.

Suppose that we are given an effectively regular system, a clopen partitionA of the space and a
Muller automaton over the alphabetA. Then we construct another Muller automaton that accepts exactly
the subshift induced byA and verify whether the languages accepted by these two Muller automata has
a nonempty intersection. Hence the system is decidable. ut

If the system is regular but not effectively regular, then the argument of the proof fails.

Proposition 13. There exists a symbolic system that is regular and universal.

Proof:
Let Xn be the subshift of{0, 1}N whose forbidden words are words of the form10t1, wheret is less
than the (possibly infinite) halting time of the universal Turing machine launched on datan. If the Turing
machine does not halt, thenXn is the sofic subshift{0∗10ω, 0ω}. If the Turing machine halts ink steps,
thenXn is the subshift of finite type with forbidden words11, 101, 1001, . . . ,10k−11. So all subshifts
are sofic, but we cannot effectively build the automaton recognizing the language, for it would allow to
solve the halting problem.

Now consider the product of allXn. This product is again an effective symbolic systemX, and all
its induced subshifts are sofic, due to the fact that the finiteproduct of sofic subshifts is a sofic subshift
and the induced subshift of a sofic subshift is again sofic; see[23]. Thus the system is regular, but not
effectively regular. Finally, it is r.e.-complete to checkwhether there is a trajectory starting fromπ−1

n ([1])
which eventually reachesπ−1

n ([01]). Hereπn : X → Xn is the projection. ut
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7.3. Shadowing property

Definition 8. Let f : X → X be a symbolic dynamical system. Aδ-pseudo-orbitis a (finite or infinite)
sequence of points(xn)n≥0 such thatd(f(xn), xn+1) < δ for all n. A point x ε-shadowsa (finite
or infinite) sequence(xn)n≥0 if d(fn(x), xn) < ε for all n. A dynamical system is said to have the
shadowing propertyif for every ε > 0 there is aδ > 0 such that anyδ-pseudo-orbit isε-shadowed by
some point. If moreover such a rationalδ can be effectively computed from a rationalε then we say that
the system has theeffective shadowing property.

For example, the one-sided and two-sided shifts have the shadowing property forδ = ε. By a
theorem of Walters, a subshift of finite type has the shadowing property, with a linear relation betweenε
andδ (see [23] for a proof), thus has the effective shadowing property. Clearly, the effective shadowing
property is invariant under effective conjugacies. We can give the following interpretation to the effective
shadowing property. Suppose that we want to compute numerically the trajectory ofx such that at every
step numerical errors are bounded byδ. The resulting sequence of points is aδ-pseudo-orbit, and the
shadowing property ensures that this pseudo-orbit isε-close to an actual trajectory of the system, ensuring
that the result of the numerical computation is not meaningless.

Proposition 14. A symbolic system (effective or not) with the shadowing property is regular. An effec-
tive symbolic system with the effective shadowing propertyis effectively regular.

Proof:
The proof generalizes Proposition 5.69 of [23] about cellular automata. Consider a symbolic system
f : X → X with the shadowing property and a clopen partitionA = {A1, . . . , AN}. There exists anε
such that all clopen sets of the partition are finite unions ofballs of radiusε. By the shadowing property,
there existsδ such that everyδ-pseudo-orbit isε-shadowed. We may suppose without loss of generality
that δ ≤ ε. Let B = {B1, . . . , BM} the clopen partition where eachBi is a ball of radiusδ. Then the
set of all infinite words induced by allδ-pseudo-orbits throughB is a subshift of finite type: the word
BiBj is forbidden iffBi ∩ f−1(Bj) = ∅, i.e., we cannot go fromBi to Bj in one step. But the partition
A is coarser thanB, so the subshift induced byA is a factor of a subshift of finite type, hence sofic. If
the system has the effective shadowing property, then we caneffectively findδ, effectively describe the
subshift of finite type and effectively build the sofic subshift. ut

Theorem 15. A symbolic system that has the effective shadowing propertyis decidable.

Proof:
By Propositions 14 and 12. ut

In particular, the shift and any subshift of finite type is decidable. We also have the following result.

Proposition 16. A symbolic system that has the shadowing property is not universal.

Proof:
Let f : X → X be a symbolic system with the shadowing property. Given a deterministic finite
automaton observing the system through a given clopen partition, the problem is to check whether there
exists a finite word induced by the clopen partition that is accepted by the automaton. As we have noticed
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after stating Definition 6, this problem is recursively enumerable. We show that it is also co-recursively
enumerable. This will prove that the problem is decidable and thatf is not universal.

Let A = {A1, . . . , AN} be a clopen partition and∆ : Q × A → Q the transition function of a
deterministic finite automaton. We must essentially prove that the halting problem is decidable for the
observation systemf∆ : X × Q → X × Q.

But f∆ is an effective symbolic system with the shadowing property, as we now show. We can
suppose that the distance between(x, q) and(x′, q′) is 1 if q 6= q′ andd(x, x′) otherwise. For anε > 0,
choose anε′ ≤ ε such that anyAi can be written as a union of balls of radiusε′. Then the shadowing
property forf yields a correspondingδ′. Choose aδ ≤ δ′ such thatδ is strictly smaller than the distance
between any two setsX × {q} andX × {q′}. Then it is easy to see that anyδ-pseudo-orbit offδ is
ε-shadowed by some point ofX ×Q: such a pseudo-orbit is projected onto aδ-pseudo-orbit off , which
is ε-shadowed by some point, and this point can be lifted to a point that ε-shadows the pseudo-orbit of
f∆.

Take two clopen setsU, V ⊆ X × Q. There exists an orbit fromU to V iff for every δ > 0 there
exists aδ-pseudo-orbit fromU to V (see Proposition 2.15 of [23]). If there is no orbit startingin U that
reachesV , then there exists aδ such that noδ-pseudo-orbit goes fromU toV , and we can algorithmically
check it by the following method. For a fixedδ, defineV ′ as the union of balls of radiusδ whose center
is in f−1

∆ (V ). Then computeV ′′, V ′′′, and so on. As there are only finitely many balls of radiusδ,
V (t) = V (t+1) for somet. Then check whetherV (t) ∩U is empty; it is the case if and only if there is no
δ-pseudo-orbit fromU to V . Start again with smaller and smallerδ.

Thus the halting problem forf∆ is decidable. In particular ifU = X × {q0} (whereq0 is the initial
state of the automaton) andV = X × F (whereF ⊆ Q is the set of final states of the automaton),
then we can algorithmically check whether there exists a point of X which induces through the clopen
partition a word that is accepted by the automaton. ut

The following proposition shows that the effective shadowing property is stronger than the shadowing
property.

Proposition 17. There exists an undecidable effective symbolic system thathas the shadowing property,
but not the effective shadowing property.

Proof:
Let Xn be the subshift with forbidden words0t, where the universal Turing machine stops on datan in at
mostt steps. If the Turing machine does not halt onn, thenXn is the full shift; if it stops ink steps, then
the forbidden word is0k. All these subshifts are effective, but we cannot compute their set of forbidden
words.

The productX of all Xn is an effective system. Whether there is a point that remainsfor ever in
π−1

n [0] is co-r.e.-complete (whereπn : X → Xn is the projection). This property has been shown in
Figure 3 to be expressible in terms of Muller automata. Hencethe system is undecidable.

Recall that a subshift of finite type has the shadowing property. We show that the countable product
of subshifts that have the shadowing property also has the shadowing property. A ball of radiusε in the
product system may be expressed as the finite union of products of balls of radiusε′ in a finite number
of constituent subshifts. We choose the smallest of the correspondingδ′ given by shadowing property in
the subshifts. The product of balls of radiusδ′ may be expressed as union of balls of radiusδ; this is the
δ corresponding toε.
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Hence the systemX has the shadowing property but not the effective shadowing property, since it is
undecidable. ut

As the shadowing property implies non-universality, it also proves that universality is stronger than
undecidability.

Corollary 18. There exists a symbolic system that is neither decidable noruniversal.

Note also that Turing machines that satisfy the shadowing property have been given a combinatorial
characterization in [21]; in particular, the proof shows that the link betweenε andδ (see Definition 8) is
linear. Hence the effective shadowing property is not stronger than the shadowing property in the case of
Turing machines.

7.4. Equicontinuity

A systemf : X → X is equicontinuousif for every ε > 0 there exists aδ > 0 such thatd(x, y) < δ
impliesd(f t(x), f t(y)) < ε, for any pointsx, y andt ∈ N. Note that equicontinuity in symbolic systems
is a topological property, not just a metric one. Instead of ‘For everyε > 0, there is aδ . . . ’ we could say
‘For every clopen partition, there is a finer clopen partition such that if two points are in the same subset
of the finer partition, then they generate the same infinite word in the coarser partition.’

Proposition 19. An equicontinuous effective symbolic system has the effective shadowing property.

Proof:
Let f : X → X be an equicontinuous system. Then for everyε > 0, there is aδ such that any two points
distant of less thanδ haveε-close trajectories. We show that anyδ-pseudo-orbit isε-shadowed by some
point.

Let x0, x1, x2, . . . be aδ-pseudo-orbit. We show by induction onm thatd(fn(xm), fn+m(x0)) < ε
for everym andn. The casem = 0 is obvious. If it is true form thend(fn+1(xm), fn+m+1(x0)) < ε.
But d(xm+1, f(xm)) < δ implies d(fn(xm+1), f

n+1(xm)) < ε. From the ultrametric inequality we
haved(fn(xm+1), f

n+m+1(x0)) < ε.
It is now enough to prove that a suitableδ is computable fromε, i.e. an equicontinuous symbolic

system is always ‘effectively’ equicontinous. Take the partition B0 of all balls of radiusε. For every
n = 0, 1, 2, . . ., letBn+1 be the coarsest partition finer thanBn andf−1(Bn). From equicontinuity, this
sequence of finer and finer partitions must stabilize to someBn = Bn+1 = Bn+2 = · · · . To check that
we have reached this point it is enough to check thatBn = Bn+1. We chooseδ so that the clopen sets of
Bn can be expressed as balls of radiusδ. ut

Corollary 20. An equicontinuous effective symbolic system is decidable.

Proof:
By the above proposition and Proposition 15. Alternatively, we can prove it from Proposition 6. ut

We say that a pointx of a dynamical systemf is sensitiveif there is anε > 0 such that for every
δ > 0 there is a pointy with d(x, y) < δ and a non-negative timet such thatd(f t(x), f t(y)) > ε. It
is easy to show with compactness that an equicontinuous dynamical system is exactly a system with no
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sensitive point. Hence, Proposition 20 implies that an undecidable symbolic system must have a sensitive
point. Equicontinuity in the case of cellular automata are given a combinatorial characterization in [23],
where it is also proved that equicontinuous cellular automata are eventually periodic, thus confirming in
this particular case that equicontinuity is incompatible with computational universality.

7.5. Families of dynamical systems

Let us take for instance Proposition 7. The proof shows that adecision procedure for an individual
system can be effectively found from programs of the computable functions that compute inverse image
and the boolean connectors. So we can generalize Proposition 7:

Proposition 21. Let (Xn, fn)n∈N be a family of effective dynamical systems such that givenn and two
clopen setsU andV of Xn, we can computeU ∩ V , U \ V andf−1

n (U). Suppose in addition that any
(Xn, fn) has a limit set composed of finitely many minimal systems. Then, givenn and an instance for
(Xn, fn) of the infinite-time observation problem, we can decide it.

For instance, the problem of infinite-time, finite-memory observation can be solved for the whole
family of sturmian subshifts with algebraic slopes. Indeed, given an algebraic number (described by
the polynomial it is the root of), we can effectively find a program witnessing that the corresponding
sturmian subshift is effective; hence the above proposition applies.

Similar results can be proved with families of equicontinuous systems, for instance. For other results
about decidable and undecidable properties in families of dynamical systems, see [9].

8. A universal chaotic system

According to Devaney [11], a system ischaotic if it is infinite, topologically transitive and has a
dense set of periodic points. Bytopologically transitivewe mean that for any two open setsU andV ,
there is a point ofU that eventually reachesV . One can prove that every point of a chaotic system is
sensitive [3]. For instance, the full shift is chaotic and sensitive in every point.

It is not difficult to construct a universal subshift. Indeed, in {0, 1}N consider all forbidden words
of the form01n00t1, where the universal Turing machine launched on datan does not halt in less than
t steps. Then the subshift of all configurations avoiding thisset of words is effective and universal:
the halting problem is r.e.-complete. Note that it is not paradoxical or unreasonable to have a universal
subshift while the shift itself is decidable: it is a common observation that a subshift can be much more
complicated than the shift itself.

Modifying this construction, we get the following result:

Proposition 22. There exists an effective system on the Cantor space that is chaotic and universal.

Proof:
Consider a subshiftX ⊂ {0, 1, §}N whose forbidden words are all01n00t1, where the universal Turing
machine launched on datan does not halt in less thant steps. Denote byL ⊂ {0, 1}∗ the language of
binary words with no forbidden subword. Then the language ofX consists of wordsw1§w2§ . . . §wn,
wherewi ∈ L. We show thatX is a universal chaotic system.
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First note thatX is a perfect subshift, so it is effectively conjugated to a system on the Cantor space.
ThenX has dense periodic points: ifw ∈ L, then(w§)ω is in X. Finally X is topologically transitive:
for any two finite wordsv,w of the language we can go from[v] to [w] with the pointv§w. . . . ThusX
is chaotic.

Moreover, givenn it is r.e.-complete whether there is a point of[01n0] that eventually reaches[001]
without passing through[§]. This property can be expressed by the finite automaton constructed in Figure
2. ThusX is universal. ut

Note that the system built in the proof is a one-sided subshift, hence it is positively expansive: there
is anε such that any two points are eventually separated by at leastε. Note also that the halting problem
for a chaotic symbolic system is trivially decidable, because of the topological transitivity.

The central idea of the ‘edge of chaos’ is that a system that has a complex behavior should be neither
too simple nor chaotic. There are several ways to understandthat. Here we interpret ‘complex system’
by ‘universal symbolic system’. Then ‘too simple’ could refer to the situation treated in Proposition 7:
one or several attracting minimal subsystems. This includes of course the case of a globally attracting
fixed point. If we take ‘chaotic’ as meaning ‘Devaney-chaotic’, then computational universality need not
be on the ‘edge of chaos’, since we have just constructed a chaotic system that is universal.

However, many examples of chaotic systems (whatever the exact meaning given to ‘chaotic’, and
for symbolic systems as well as for analog ones), have the shadowing property. For instance the shift
and Smale’s horseshoe (present in some physical systems), as well as hyperbolic systems, satisfy the
shadowing property.

Thus we suggest that the term ‘edge of shadowing property’ would be more appropriate (at least for
symbolic systems), although not as thrilling.

Note nevertheless that the ‘edge of chaos’ has been much studied in cellular automata, and we don’t
know whether an example of a chaotic universal cellular automaton exists.

9. Discussion of universality

Turing [38] justified the form of his machine along the following lines. A human operator applying
an algorithmic procedure can be supposed to be at every step of time in a unique mental state. He can be
supposed to have finitely many possible mental states, and tohave at his disposal a pencil and as much
paper as needed, on which he may write out letters or digits. In a finite time he may read or write only
finitely many symbols on the paper. Paper is modelled by the tape and the human by a kind of finite
automaton that is able to read, write or shift the tape.

Now suppose that the human operator has no paper or pencil, but can observe a (physical realization
of) a symbolic dynamical system, without being able to control it. The system can serve as a ‘universal
computer’ if with its help, the human operator is able to solve all problems he could also solve with
paper and pencil. As the human operator has finitely many possible mental states, at every step he can
distinguish only finitely many configurations of the system.If we group together all points that are
undistinguishable between them, we obtain a partition of the system state space. We suppose that this
partition is clopen, because clopen partitions express in anatural way that finitely many symbols are
observed from the system at every step of time, analogously to Turing’s assumption.

Consequently, we model the situation as a symbolic system endowed with a clopen partition observed
by a finite automaton. Now suppose that deciding whether the finite automaton can reach a final state
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from an initial state is at least as difficult as deciding the halting problem for a universal Turing machine.
Then to get the answer to a recursively enumerable problem, it is enough to observe the system, provided
we are ‘lucky’ and wait long enough. We say that such a system is computationally universal.

Our definition of universality perhaps differs in several ways from what we could expect at first
glance from a generalization of Turing machine universality. We give now various arguments to support
the present definition against seemingly more obvious attempts. In particular, we justify the use ofset-
to-setproperties, observed byfinite automata, on systems defined by acomputablemap.

9.1. Set-to-set properties

Many definitions of universality for particular systems (cellular automata, for instance) propose to
observe point-to-point properties. Typically, a countable set of points(xn)n∈N, and the system is said
universal if the relation ‘xn is in the orbit ofxm’ is r.e.-complete (this is a generalization of Davis’
definition of universality for Turing machines [8]).

This definition has in our opinion three drawbacks.

• If the system is uncountable, there are infinitely many choices for the countable family of points
(xn). In the literature points with periodic or eventually periodic sequence of symbols are of-
ten considered, but there is apparently noa priori argument for this somewhat arbitrary choice
(although Sutner’s reflection principle [37] sheds some light into that direction).

• As remarked in [12], this definition leads to conclude that the shift is universal, for some choice of
the(xn)n; a consequence that sounds unreasonable, because the shiftdoes not compute anything
but just reads the memory. Indeed, consider the set of all configurations with primitive recursive
digits. This set is countable and dense, and every such configuration is computable. Then we take
as an initial configuration the sequence of pairs (state of the head, currently read symbol) of a
universal Turing machine during a computation. And we only have to shift it to know whether the
halting state will ever appear.

• From a physical point of view, point-to-point properties are rather unsatisfactory. Indeed, if the
system is uncountable, specifying an initial point for the computation means that we must give an
infinite amount of information. Preparing a physical systemto be in a very particular configuration
is likely to be impossible, because of the noise or finite precision inherent to every measure.

The definition presented in Section 6 overcomes these three problems in a simple manner: the user
needs only to specify a finite number of bits as an initial condition. Instead of initialconfigurations
we should rather talk about initialsets, which may be seen as ‘fuzzy points’, points defined with finite
accuracy. The system is said universal if some property about these sets is r.e.-complete.

9.2. Finite automata

What kind of property are we going to test on clopen sets (or, equivalently, on induced subshifts)?
We choose properties that can be expressed by finite automatabecause they agree with Turing’s idea of
modelling a human operator as having finitely many possible mental states. Finite automata are also a
simple and well-established framework, extensively studied in the literature.
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Moreover, observing a larger class of properties may lead toabsurdities. For instance, suppose that
we look at identity on the Cantor space. We now choose to observe the following property: a clopen
set satisfies the property if and only if its index (i.e., the integer describing the clopen set) satisfies some
r.e.-complete property onN. Then we find that the identity is computationally universal, which is a result
not to be desired. The complexity of computation is artificially hidden in the decoding.

On the other hand, we see no reason to restrict ourselves to the sole halting property: ‘there is a
trajectory from this clopen set to that clopen set’. For instance, the chaotic system built in Section 8 is
universal but the halting property is decidable.

We do not use the powerful setting of Muller automata to defineuniversality, because it may need
an infinite time to check that a trajectory has the required property, which goes against the idea that a
successful computation should end in a finite time. Whether agiven observer Muller automaton accepts
at least one trajectory of the system is actually a more general question, which is dealt with in our
definition of ‘decidable system’. This question is interesting as well (independently of the debate over
universality), since many properties of interest in dynamical systems, such as ‘Is there a trajectory that
reaches the setA infinitely often’ for instance, can be expressed in this simple formalism. Informally,
they observe all properties that can be observed with a finitememory of the past.

9.3. Effectiveness

Finally, the following example shows the usefulness to add an effectiveness structure on dynamical
systems. Fix an r.e.-complete setH ⊂ N of integers and consider the symbolic dynamical system
f : {0, 1}N → {0, 1}N such thatf(1ω) = 1ω and f(1n0x0x1x2 . . .) = 1m0x0x1x2 . . ., wherem
depends onn in the following way. Ifn ∈ H, thenm is the largest integer strictly smaller thann such
thatm ∈ H or 0 if no such number exists. Ifn 6∈ H, thenm = n. Suppose now that13 ∈ H. Then the
relation ‘the clopen set[1n0] will eventually reach[1130]’ is r.e.-complete, becauseH is.

On the other hand, if we were provided with an actual implementation off : {0, 1}N → {0, 1}N,
we could decide an undecidable problem (namely,H) by observing the trajectories. So this system
has ‘super-Turing’ capabilities, whereas the goal of this paper is to characterize those systems that have
exactly the same power as universal Turing machines. To exclude such examples, we therefore restrict
ourselves to systems such that the inverse image of a clopen set is computable. Note that for instance in
[34] Siegelmann allows neural networks with non-recursiveweights, leading to a non-computable maps
and to super-Turing capabilities.

10. Conclusions and future work

We provided a definition of decidability and universality for a symbolic systems, and established
some links between decidability and the dynamical properties of the system. We also constructed a
chaotic system that is universal. These results are summed up in Figure 4. Let us list some open problems.

Is there a cellular automaton that is chaotic and universal (Section 8)? Do undecidable system have
infinitely many disjoint subsystems (Conjecture 1)? Can we find sufficient conditions of universality?
What can be said about distal systems, Furstenberg systems,topological entropy with respect to univer-
sality? Are the Game of Life and the automaton 110 universal for our definition? Can a linear cellular
automaton be universal?
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Figure 4. Summary of the results. Arrows read ‘implies’, crossed arrows read ‘does not imply’.

The collection ofΣ1
1 problems can be stratified into a rich variety of intermediate levels. For instance,

it contains the so-called arithmetic hierarchy. Which of these levels contain the infinite-time observation
problem of some symbolic system?

It also remains to extend the definitions and results to systems in R
n in discrete time or even con-

tinuous time. The resulting definition of universality could then be compared to existing definitions,
for instance [35, 5, 32, 30]. Then, results such as those of Section 7 could hopefully be adapted. For
instance, are minimal systems capable of universal computation? Such results could then be applied to
physical systems. What systems that can be found in Nature are able to compute? For instance, hyper-
bolic dynamical systems are known to have the effective shadowing property. This would suggest that
hyperbolic systems are not universal.

A theory a computational complexity could also be investigated. What problems can be solved in
polynomial time with a discrete-time dynamical system? Canwe formulate a ‘P 6=NP’ conjecture? See
[4, 35] for theories of complexity in analog computation.
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