
Decidability of branching bisimulation on
normed commutative context-free processes?

Wojciech Czerwiński, Piotr Hofman and S lawomir Lasota

Institute of Informatics, University of Warsaw
{wczerwin,ph209519,sl}@mimuw.edu.pl

Abstract. We investigate normed commutative context-free processes
(Basic Parallel Processes). We show that branching bisimilarity admits
the small response property : in the Bisimulation Game, Duplicator al-
ways has a response leading to a process of size linearly bounded with
respect to the Spoiler’s process. The linear bound is effective, which
leads to decidability of branching bisimilarity. For weak bisimilarity, we
are able merely to show existence of some linear bound, which is not
sufficient for decidability. We conjecture however that the same effective
bound holds for weak bisimilarity as well. We believe that further elab-
oration of novel techniques developed in this paper may be sufficient to
demonstrate decidability.

1 Introduction

Bisimulation equivalence (bisimilarity) is a fundamental notion of equivalence of
processes, with many natural connections to logic, games and verification [10, 13].
This paper is a continuation of the active line of research focusing on decidability
and complexity of decision problems for bisimulation equivalence on various
classes of infinite systems [12].

We investigate the class of commutative context-free processes, known also
under name Basic Parallel Processes (BPP) [1]. By this we mean the labeled
graphs induced by context-free grammars in Greibach normal form, with a pro-
viso that non-terminals appearing on the right-hand side of a productions are
assumed to be commutative. For instance, the production X −→ a Y Z, written

X
a−→ Y Z,

says that X performs an action a and then executes Y and Z in parallel. Formally,
the right-hand side is a multiset rather than a sequence.

Over this class of graphs, we focus on bisimulation equivalence as the primary
type of semantic equality of processes. It is known that strong bisimulation
equivalence is decidable [2] and PSPACE-complete [11, 8]; and is polynomial

? The first author acknowledges a partial support by the Polish MNiSW grant N N206
568640. The remaining two authors acknowledge a partial support by the Polish
MNiSW grant N N206 567840.

for normed processes [6]. Dramatically less is known about weak bisimulation
equivalence, that abstracts from the silent ε-transitions: we only know that it
is semi-decidable [3] and that it is decidable in polynomial space over a very
restricted class of totally normed processes [4]. The same applies to branching
bisimulation equivalence, a variant of weak bisimulation that respects faithfully
branching of equivalent processes. The only non-trivial decidability result known
by now for weak bisimulation equivalence is [14], it applies however to a very
restricted subclass.

During last two decades decidability of weak bisimulation over context-free
processes became an established long-standing open problem. This paper is a
significant step towards solving this problem in confirmative.

It is well known that bisimulation equivalences have an alternative formula-
tion, in terms of Bisimulation Game played between Spoiler (aiming at showing
non-equivalence) and Duplicator (aiming at showing equivalence) [13]. One of
the main obstacles in proving decidability of weak (or branching) bisimulation
equivalence is that Duplicator may do arbitrarily many silent transitions in a
single move, and thus the size of the resulting process is hard to bound.

In this paper we investigate branching bisimilarity over normed commutative
context-free processes. Our main technical result is the proof of the following
small response property, formulated as Theorem 1 in Section 3: if Duplicator has
a response, then he also has a response that leads to a process of size linearly
bounded with respect to the other (Spoiler’s) process. Importantly, we obtain an
effective bound on the linear coefficient, which enables us to prove (Theorem 2)
decidability of branching bisimulation equivalence. The proof of Theorem 1 is
quite complex and involves a lot of subtle investigations of combinatorics of BPP
transitions, the main purpose being elimination of unnecessary silent transitions.

A major part of the proof works for weak bisimulation equally well (and,
as we believe, also for any reasonable equivalence that lies between the two
equivalences). However, for weak bisimulation we can merely show existence of
the linear coefficient witnessing the small response property, while we are not able
to obtain any effective bound. Nevertheless we strongly believe (and conjecture)
that a further elaboration of our approach will enable proving decidability of
weak bisimulation. We plan to pursue this as a future work. In particular, we
actually reprove decidability in the subclass investigated in [14].

2 Preliminaries

The commutative context-free processes (known also as Basic Parallel Processes)
are determined by the following ingredients (called a process definition): a finite
set V = {X1, . . . , Xn} of variables, a finite set A of letters, and a finite set T of

transition rules, each of the form X
ζ−→ α where X is a variable, ζ ∈ A ∪ {ε}

and α is a finite multiset of variables.
A process, is any finite multiset of variables, thus of the form Xa1

1 . . . Xan
n ,

and may be understood as the parallel composition of a1 copies of X1, ... , and an
copies of Xn. In particular the empty process, denoted ε, when a1 = · · · = an = 0.

2

For any W ⊆ V we denote by W⊗ the set of all processes where only variables
from W occur, that is, W⊗ is the set of all finite multisets over W .

By αβ we mean the composition of processes α and β, understood as the mul-
tiset union. The behavior, i.e., the transition relation, is defined by the following
extension rule:

if X
ζ−→ α ∈ T then Xβ

ζ−→ αβ, for any β ∈ V ⊗.

Remark 1. Commutative context-free processes are precisely labeled communi-

cation free Petri nets, where the places are variables and transitions X
ζ−→ α

are firing rules. A process Xa1
1 . . . Xan

n represents the marking with ai tokens on
the place Xi.

The transition relation
ε−→ models silent steps and will be written −→. We

write α =⇒ β if a process β can be reached from α by a sequence of
ε−→

transitions. To simplify definitions, we assume that α −→ α for any α.

Definition 1. A binary symmetric relation B over processes is a branching

bisimulation iff for every pair α B β and ζ ∈ A ∪ {ε} satisfies: if α
ζ−→ α′ then

β =⇒ β′′
ζ−→ β′ such that α B β′′ and α′ B β′.

We say that two processes α and β are branching bisimilar, denoted α ≈ β,
if there exists a branching bisimulation B such that α B β.

In the proofs we will use the characterization of bisimilarity in terms of
Bisimulation Game [10, 13]. The game is played by two players, Spoiler and
Duplicator, over an arena consisting of all pairs of processes, and proceeds in
rounds. Each round starts with a Spoiler’s move followed by a Duplicator’s
response. In position (α, β), Spoiler chooses one of processes, say α, and one

transition α
ζ−→ α′. As a response, Duplicator has to do a sequence of transitions

of the form β =⇒ β′′
ζ−→ β′, and then Spoiler chooses whether the play continues

from (α, β′′) or (α′, β′).
If one of players gets stuck, the other wins. Otherwise the play is infinite and

in this case it is Duplicator who wins. A well-known fact is that two processes
are branching bisimilar iff Duplicator has a winning strategy in the game that
starts in these two processes.

For the rest of this paper we assume that each variable X has a sequence

of transitions X
ζ1−→ . . .

ζm−→ ε leading to the empty process. A process defini-
tion that fulfills this requirement is usually called normed. By the norm of X,
denoted norm(X), we mean the smallest possible number of visible transitions
that appears in some sequence as above. Formally speaking, the norm of X is
the length of the shortest word a1 . . . an ∈ A∗ such that

X =⇒ a1−→=⇒ . . . =⇒ an−→=⇒ ε.

We additively enhance the definition of norm to processes and write norm(α)
for any α ∈ V ⊗. Note that the norm is weak in the sense that silent transitions
do not count.

3

3 Decidability via small response property

It was known before that branching bisimilarity is semi-decidable [3]. A main
obstacle for a semi-decision procedure for inequivalence is that commutative
context-free processes are not image finite with respect to branching bisimilarity:
a priori Duplicator has infinitely many possible responses to a Spoiler’s move.
The main insight of this paper is that commutative context-free processes are
essentially image-finite, in the following sense. Define the size of a process as
its multiset cardinality: size(Xa1

1 . . . Xan
n) = a1 + · · ·+ an. Then Duplicator has

always a response of size bounded linearly with respect to a Spoiler’s process
(cf. Theorem 1 below).

Definition 2. Let c ∈ N. By a c-branching bisimulation we mean a relation B
defined as in Definition 1 with the additional requirement

size(β′), size(β′′) ≤ c · size(α′). (1)

Let the size d of a process definition be the sum of lengths of all production
rules. Our main technical result is an efficient estimation of c, with respect to d:

Theorem 1 (small response property). For each normed process definition
of size d with n variables, branching bisimilarity ≈ is a (2dn−1 + d)-branching
bisimulation.

The proof of Theorem 1 is deferred to Sections 4–6.

In consequence, a Spoiler’s winning strategy, seen as a tree, becomes finitely
branching. This observation leads directly to decidability:

Theorem 2. Branching bisimilarity ≈ is decidable over normed commutative
context-free processes.

Proof. We sketch two semi-decision procedures (along the lines of [9]): one for
branching bisimilarity and the other for (2dn−1 + d)-branching bisimilarity.

For the positive side we use a standard semi-linear representation, knowing
that each congruence, including ≈, is semi-linear [5, 7]. The algorithm guesses
a base-period representation of a semi-linear set and then checks validity of a
Presburger formula that says that this set is a branching bisimulation containing
the input pair of processes.

For the negative side, we observe that due to Theorem 1 Duplicator has
only finitely many possible answers to each Spoiler’s move. Thus, if Spoiler
wins then its winning strategy may be represented by a finitely-branching tree.
Furthermore, by König Lemma this tree is finite. The algorithm thus simply
guesses a finite Spoiler’s strategy. This can be done effectively: for given β, β′, β′′

and ζ it is decidable if β =⇒0 β′′
ζ−→ β′, as the =⇒0 relation is effectively

semilinear [3]. 2

4

Proof strategy. The rest of this paper is devoted to the proof of Theorem 1.
Consider a fixed normed process definition from now on. In Section 4 we define a
notion of normal form nf(α) for a process α and provide linear lower and upper
bounds on its size:

size(α) ≤ size(nf(α)) ≤ c · size(α) (2)

(the lower bound holds assumed that α is minimal wrt. multiset inclusion in its
bisimulation class). However, the linear coefficient c is not bounded effectively.
The computable estimation of the coefficient is derived in Section 5. Finally, in
Section 6 we show how the bounds (2) are used to prove Theorem 1. Due to
space limitations we omit some proofs in Sections 4–6.

As observed e.g. in [14], a crucial obstacle in proving decidability is so called
generating transitions of the form X −→ XY , as they may be used by Duplicator
to reach silently XY m for arbitrarily large m. A great part of our proofs is
an analysis of combinatorial complexity of generating transitions and, roughly
speaking, elimination of ’unnecessary’ generations.

Weak bisimilarity. Branching bisimilarity is more discriminating than the well
known weak bisimilarity. The whole development of Section 4 is still valid if weak
bisimilarity is considered in place of branching bisimilarity. Furthermore, except
one single case, the entire proof of estimation of the coefficient in Section 5
remains valid too. Interestingly, this single case is obvious under assumptions
of [14], thus our proof remains valid for weak bisimilarity over the subclass
studied there. We conjecture that the single missing case is provable for weak
bisimilarity and thus Theorem 1 holds just as well. This would imply decidability.

4 Normal form by squeezing

In the sequel we often implicitly use the well-known fact that branching bisimi-
larity is substitutive, i.e., α ≈ β implies αγ ≈ βγ.

In this section we develop a framework useful for the proof of Theorem 1
in the following sections. We define a normal form nf(α) of a process α that
identifies the bisimulation class of α uniquely. Moreover, we provide estimations
of the size of nf(α) relative to the size of α, from both sides, in Corollary 1 and
Lemma 11, which culminate this section.

A transition α
ζ−→ β is norm preserving if |α| = |β| and norm reducing if

|α| = |β| + 1. In the sequel we will pay special attention to norm preserving
ε-transitions. Therefore we write α −→0 β, respectively α =⇒0 β, to emphasize
that the transitions are norm preserving.

Lemma 1. If α =⇒0 β =⇒0 α
′ and α ≈ α′ then β ≈ α.

We call the transition α
ζ−→ β decreasing if either ζ ∈ A and the transition is

norm-reducing; or ζ = ε and the transition is norm preserving. Note that every
variable has a sequence of decreasing transitions leading to the empty process ε.

5

Lemma 2 (decreasing response). Whenever α ≈ β and α
ζ−→ α′ is de-

creasing then any Duplicator’s matching sequence of transitions from β contains
exclusively decreasing transitions.

Due to Lemma 1, instantiated to single variables, we may assume wlog. that
there are no two distinct variables X,Y with X =⇒0 Y =⇒0 X. Indeed, since
reachability via the =⇒0 transitions is decidable [3], in a preprocessing one may
eliminate such pairs X,Y . Relying on this assumption, we may define a partial
order induced by decreasing transitions.

Definition 3. Let X >0 Y if there is a sequence of decreasing transitions lead-
ing from X to Y . Let > denote an arbitrary fixed total order extending >0.

In the sequel we assume that there are n variables, ordered X1 > X2 > . . . > Xn.
Directly from the definition of > we deduce:

Lemma 3 (decreasing transition). If a decreasing transition Xa1
1 . . . Xan

n
ζ−→

Xb1
1 . . . Xbn

n is performed by Xk, say, then b1 = a1, . . . , bk−1 = ak−1.

Consider a norm preserving silent transition X −→0 δ. If X appears in δ,
i.e. δ = Xδ̄, we call the transition generating. We use the name generating also
for a general transition α −→0 β as a single transition is always performed by a
single variable.

Lemma 4 (decreasing transition cont.). If a decreasing transition as in
Lemma 3 is not generating then bk = ak − 1.

Following [14], we say that X generates Y if X =⇒0 XY . Thus if X −→ Xδ̄
then X generates every variable that appears in δ̄. In particular, X may generate
itself. Note that each generated variable is of norm 0. More generally, we say
that α generates β if α =⇒0 αβ. This is the case precisely iff every variable
occurring in β is generated by some variable occurring in α. As a direct corollary
of Lemma 1 we get (v stands for the multiset inclusion of processes):

Lemma 5. If α generates β then α ≈ αβ̄ for any β̄ v β.

Lemma 5 will be especially useful in the sequel, as a tool for eliminating unnec-
essary transitions and thus decreasing the size of a resulting process.

A process Xa1
1 . . . Xan

n may be equivalently presented as a sequence of ex-
ponents (a1 . . . an) ∈ Nn. In this perspective, v is the point-wise order. The
sequence presentation (a1 . . . an) ∈ Nn induces additionally the lexicographic or-
der on processes, denoted �. We will exploit the fact that this order is total, and
thus each bisimulation class exhibits the least element. (A bisimulation class of
a process α is the set of all processes β with β ≈ α.)

The sequence presentation allows us to speak naturally of prefixes of a pro-
cess: the k-prefix of Xa1

1 . . . Xan
n is the process Xa1

1 . . . Xak
k , for k = 0 . . . n.

We now go to one of the crucial notions used in the proof: unambiguous
processes and their greatest extensions.

6

Definition 4 (unambiguous processes). A process Xa1
1 . . . Xan

n , is called k-
unambiguous if for every 1 ≤ i ≤ k, α, β ∈ {Xi+1, . . . , Xn}⊗ and b, c ∈ N such
that

Xa1
1 Xa2

2 . . . X
ai−1

i−1 X
b
i α ≈ X

a1
1 Xa2

2 . . . X
ai−1

i−1 X
c
i β

we have either b, c ≥ ai or b = c. When k = n we write simply unambiguous.

Note that being k-unambiguous is a property of the k-prefix: a process is k-un-
ambiguous iff its k-prefix is so.

Example 1. Consider following process definition:

X1
a−→ X1 X2

b−→ X3 X3
b−→ ε

X1 −→ ε X2 −→ X3 X3 −→ ε

and an order X1 > X2 > X3 on variables. We observe that X2
1 ≈ X1, therefore

the process X2
1 is not (1-)unambiguous. On the other hand X1 6≈ α for any

α ∈ {X2, X3}⊗ (because neither X2 nor X3 can perform an a transition), so X1

is unambiguous. Furthermore X1X2 ≈ X1X
2
3 , hence X1X2 is not (2-)unambi-

guous. Finally we observe that X1X
2
3 6≈ X1X3. Therefore X1X

2
3 is unambiguous,

but also X1X3 is so. ut

Note that a prefix of a k-unambiguous process is k-unambiguous as well.
Moreover, k-unambiguous processes are downward closed wrt. v: whenever α v
β and β is k-unambiguous, then α is k-unambiguous as well.

Directly by Definition 4, if γ = Xa1
1 . . . X

ak−1

k−1 is (k − 1)-unambiguous then
it is automatically k-unambiguous (in fact j-unambiguous for any j ≥ k). Ac-
cording to the sequence presentation, this corresponds to extending the process
(a1 . . . ak−1) with ak = 0. We will be especially interested in the greatest value
of ak possible, as formalized in the definition below.

Definition 5 (the greatest extension). The greatest k-extension of a (k−1)-
unambiguous process γ = Xa1

1 . . . X
ak−1

k−1 ∈ {X1 . . . Xk−1}⊗ is that process among
k-unambiguous processes γXa

k that maximizes a.

Clearly the greatest extension does not need exist in general, as illustrated below.

Example 2. Consider the processes from Example 1. The process X1 is the great-
est 1-extension of the empty process as X2

1 is not 1-unambiguous. X1 is also
its own greatest 2-extension. Furthermore, X1 does not have the greatest 3-
extension. Indeed, X1X

a
3 is not bisimilar to X1X

b
3, for a 6= b, therefore X1X

a
3 is

3-unambiguous for any a. ut

Definition 6 (unambiguous prefix). By an unambiguous prefix of a process
Xa1

1 . . . Xan
n we mean any k-prefix Xa1

1 . . . Xak
k that is k-unambiguous, for k =

0 . . . n. The maximal unambiguous prefix is the one that maximizes k.

Example 3. For the process definition from Example 1, the maximal unambi-
guous prefix of X1X

2
2 is X1, and the maximal unambiguous prefix of X2

1X2 is
the empty process. ut

7

The following lemma is a crucial observation underlying our subsequent de-
velopment.

Lemma 6. Let γ ∈ {X1 . . . Xk−1}⊗ be (k−1)-unambiguous and assume that
γXa

k is its greatest k-extension. Let b > a and let α, β ∈ {Xk+1, . . . , Xn}⊗ be
arbitrary processes such that

γ Xb
k β ≈ γ Xa

k α.

Then for any decreasing transition Xb
k β

ζ−→ Xb′

k β
′, that gives rise to a Spoiler’s

move

γ Xb
k β

ζ−→ γ Xb′

k β
′

there are some α′, α′′ ∈ {Xk+1, . . . , Xn}⊗ and a sequence α =⇒0 α
′′ ζ−→ α′ of

transitions that gives rise to a Duplicator’s response

γ Xa
k α =⇒0 γ X

a
k α
′′ ζ−→ γ Xa

k α
′,

as required by Definition 1.

Note 1. According to the assumptions, γXa
k is an unambiguous prefix of γXa

kα.
The crucial consequence of the lemma is that Duplicator has a response that
preserves γXa

k being a prefix, as only α is engaged in the response.

Proof. Consider a Duplicator’s response (all transition are necessarily decreasing
by Lemma 2):

γ Xa
k α =⇒0 γ

′′Xa′′

k α′′
ζ−→ γ′Xa′

k α′ (3)

where γ′, γ′′ ∈ {X1 . . . Xk−1}⊗ and α′, α′′ ∈ {Xk+1, . . . , Xn}⊗. Wlog. we may
assume that

γ′′Xa′′

k α′′ 6≈ γ′Xa′

k α′ (4)

as otherwise lemma holds trivially. A fast observation is that

γ Xa
k � γ′Xa′

k . (5)

Indeed, suppose γ′Xa′

k ≺ γ Xa
k . Knowing γ Xb′

k β
′ ≈ γ′Xa′

k α
′ and b′ ≥ a we get

to a contradiction with the fact that γ Xa
k is k-unambiguous.

Our aim is to demonstrate that Duplicator has a matching response (3) that
uses only transition rules of variables Xk+1 . . . Xn; in particular, by Lemma 3
this will imply γ′Xa′

k = γ Xa
k . We will describe below a transformation of the

Duplicator’s response to the required form.
Assume that some of variables X1 . . . Xk was engaged in (3) and let Xi be

the greatest of them wrt. >. By (5) and by Lemma 4 we learn that at least one
of transitions performed by some Xi must be generating, say

Xi −→ Xiδ. (6)

8

We will show how to remove one of these transitions from (3) but still preserve
the bisimulation class of processes appearing along (3), and thus keep satisfying
the requirements of Definition 1.

All variables that appear in δ are necessarily of norm 0, and thus they
may participate later in the sequence (3) only with further norm preserving
ε-transitions. Informally speaking, we consider the tree of norm preserving ε-
transitions initiated by (6), that are performed along (3), say:

Xi =⇒0 X
j
i δ
′, (7)

for some j ≥ 0 and δ′ ∈ {Xi+1 . . . Xn}⊗.
Formally, the sequence (7) is defined by the following coloring argument. As a

process may contain many occurrences of the same variable we consider variable
occurrences as independent entities. Assume that every variable occurrence in
γ Xa

k has been initially colored by a unique color. Assume further that colors
are inherited via transitions: every transition in (3) is colored with the color of
the occurrence of its left-hand side variable that is engaged; and likewise are
colored all the right-hand side variables occurrences. The sequence (7) contains
all transitions colored with the color of (6).

The sequence (7) forms a subsequence of (3). There can be many such se-
quences, but at least one witnesses j > 0, by (5) and by the choice of Xi as the
greatest wrt. >. Let us focus on removing this particular subsequence from (3).

As δ′ is generated by Xi, by Lemma 5 we obtain Xi ≈ Xj
i δ
′. By our assump-

tion (4) we deduce that the sequence (7) can not contain the last transition of (3).
Thus, by substitutivity of ≈, the sequence (3), after removing transitions (7),
yields a process bisimulation equivalent to that yielded by (3). By continuing
in the same manner we arrive finally at the Duplicator’s response that does not
engage variables X1 . . . Xk at all. This completes the proof. 2

Lemma 7 (squeezing out). Let γ ∈ {X1 . . . Xk−1}⊗ be (k − 1)-unambiguous
and assume that γXa

k is its greatest k-extension. Then for some δ ∈ {Xk+1 . . . Xn}⊗
it holds:

γ Xa+1
k ≈ γ Xa

k δ. (8)

Definition 7. If a (k − 1)-unambiguous process γ ∈ {X1 . . . Xk−1}⊗ has the
greatest k-extension, say γXa

k , then the variable Xk is called γ-squeezable and
any δ ∈ {Xk+1 . . . Xn}⊗ satisfying (8) is called a γ-squeeze of Xk.

By the very definition, Xk has a γ-squeeze only if it is γ-squeezable. Lemma 7
shows the opposite: a γ-squeezable Xk has a γ-squeeze, that may depend in
general on γ and k. The squeeze is however not uniquely determined and in
fact Xk may admit many different γ-squeezes. In the sequel assume that for
each (k− 1)-unambiguous γ ∈ {X1 . . . Xk−1}⊗ and Xk, some γ-squeeze of Xk is
chosen; this squeeze will be denoted by δk,γ .

Definition 8 (squeezing step). For a given process α, assuming it is not n-
unambiguous, let γ be its maximal unambiguous prefix. Thus there is k ≤ n such
that

α = γ Xa
k δ,

9

γ ∈ {X1 . . . Xk−1}⊗, δ ∈ {Xk+1 . . . Xn}⊗, and γ Xa
k is not k-unambiguous. Note

that a is surely greater than 0. We define squeeze(α) by

squeeze(α) = γ Xa−1
k δk,γ δ.

Otherwise, i.e. when α is n-unambiguous, for convenience put squeeze(α) = α.

By Lemma 7 and by substitutivity of ≈ we conclude that α ≈ squeeze(α)
and if α is not unambiguous then squeeze(α) ≺ α.

We have the following characterization of unambiguous processes:

Lemma 8. A process α is n-unambiguous if and only if it is the least one in its
bisimulation class wrt. �.

Lemma 7, applied in a systematic manner sufficiently many times on a process
α, yields a kind of normal form, as stated in Lemma 9 below. A process α we
call shortly v-minimal if there is no β < α with β ≈ α.

Definition 9 (normal form). For any process α let nf(α) denote the unam-
biguous process obtained by consecutive alternating applications of the following
two steps:

– the squeezing step: replace α by squeeze(α),
– the v-minimization step: replace α by any v-minimal ᾱ v α with ᾱ ≈ α.

As α ≈ squeeze(α) then α ≈ nf(α) and thus using Lemma 8 we conclude that
bisimulation equivalence is characterized by syntactic equality of normal forms:

Lemma 9. α ≈ β if and only if nf(α) = nf(β).

Finally we are able to formulate lower and upper bounds on the size of nf(α),
with respect to the size of α, that will be crucial for the proof of Theorem 1.
The first one applies uniquely to v-minimal processes.

Lemma 10. If α is v-minimal then size(α) ≤ size(ᾱ), for any ᾱ v squeeze(α)
such that ᾱ ≈ squeeze(α).

Corollary 1 (lower bound). If α is v-minimal then size(nf(α)) ≥ size(α).

Lemma 11 (upper bound). There is a constant c, depending only on the
process definition, such that size(nf(α)) ≤ c · size(α) for any process α.

Concerning the upper bound, in the following section we demonstrate a sharper
result, with the constant c estimated effectively.

5 Small normal form

Denote the size of the process definition by d.

Lemma 12 (upper bound). For any α, size(nf(α)) ≤ dn−1 · size(α).

10

Lemma 12 follows immediately from Lemma 13 that says that squeezing does
not increase a weighted measure of size, defined as:

d-size(Xa1
1 . . . Xan

n) = a1 · dn−1 + a2 · dn−2 + . . .+ an−1 · d+ an.

Lemma 13. For every k and (k − 1)-unambiguous γ ∈ {X1 . . . Xk−1}⊗, if Xk

is γ-squeezable then it has a γ-squeeze δ with d-size(δ) ≤ d-size(Xk).

Indeed, Lemma 13 implies d-size(nf(α)) ≤ d-size(α) and then Lemma 12 follows:

size(nf(α)) ≤ d-size(nf(α)) ≤ d-size(α) ≤ dn−1 · size(α).

Before embarking on the proof of Lemma 13, we formulate a slight general-
ization of Lemma 6 from Section 4. For two processes α, β ∈ {X1 . . . Xl}⊗ we
say that α is l-dominating β if α is bisimilar to some α′ w β.

Lemma 14. Let α be an arbitrary process, β1 ∈ {X1 . . . Xl}⊗ be m-unambi-

guous and β2 ∈ {Xl+1 . . . Xn}⊗ such that α ≈ β1β2. Let α
ζ−→ α′ be an arbitrary

decreasing transition such that the l-prefix of α′ is l-dominating β1. Then there

is a sequence of transitions β2 =⇒0 β
′′
2

ζ−→ β′2 that gives rise to a Duplicator’s
response

β1β2 =⇒0 β1β
′′
2

ζ−→ β1β
′
2,

as required by Definition 1.

Lemma 14 is proved in exactly the same way as Lemma 6. Recalling Lemma 6
observe that it is indeed a special case of Lemma 14: γXb′

k is surely k-dominating
γXa

k as b′ ≥ b− 1 ≥ a.
Now we return to the proof of Lemma 13, by induction on k. For k = n it

trivially holds. Fix k < n and assume the lemma for all greater values of k. Fix
a (k−1)-unambiguous γ ∈ {X1 . . . Xk−1}⊗ and consider its greatest k-extension
γXa

k . The proof is split into three cases:

– a > 0,
– a = 0 and Xk has a γ-squeeze δ such that Xk =⇒0 δ,
– a = 0 and Xk has no γ-squeeze δ such that Xk =⇒0 δ.

In the rest of this section we prove the last case only. The other cases are omitted
due to space limitations.

Simplifying assumption. Variables Xk+1 . . . Xn may be split into those gen-
erated by Xk, an those not generated by Xk. A simple but crucial observation
is that the order > on variables Xk+1 . . . Xn may be rearranged, without losing
generality, so that all variables generated by Xk are smaller than all variables
not generated by Xk. Clearly, if we provide a γ-squeeze of Xk for the rearranged
order, it is automatically a γ-squeeze of Xk for the initial order.

Thus for some l ≥ k we know that variables Xl+1 . . . Xn are all generated
by Xk, and all the remaining variables Xk+1 . . . Xl are not generated by Xk. To
emphasize this we will write [α · β] for the composition of α and β, instead of
αβ, whenever we know that α ∈ {Xk+1 . . . Xl}⊗ and β ∈ {Xl+1 . . . Xn}⊗.

11

Lemma 15. No γ-squeeze of Xk contains a variable generated by Xk.

Proof. Assume the contrary, that is,

γ Xk ≈ γ δ′ Y, (9)

with δ′ Y ∈ {Xk+1 . . . Xn}⊗ and Y generated by Xk. Consider the Bisimulation
Game for γXk ≈ γ δ′ Y and an arbitrary sequence of −→0 transitions Y =⇒0 ε
from Y to the empty process ε, giving rise to the sequence of Spoiler’s moves

γ δ′ Y =⇒0 γ δ
′.

By Lemma 14 we know that there is a Duplicator’s response that does not engage
γ at all:

γ Xk =⇒0 γ ω,

i.e. Xk =⇒0 ω. Now substituting γω in place of γδ′ in (9) we obtain a γ-squeeze
of Xk

γ Xk ≈ γ ω Y,

such that Xk −→0 XkY =⇒0 Xk ω Y . This is in contradiction with the assump-
tion that no γ-squeeze is reachable from Xk by =⇒0. Thus the claim is proved.
2

Using Lemma 15 we deduce that the normal form nf(γ Xk) = γ δ contains
no variable generated by Xk, i.e., nf(γ Xk) = γ [δ · ε]. We will show that the
weighted size of δ satisfies the required bound.

Consider the Bisimulation Game for γ Xk ≈ γ δ and the Spoiler’s move from
the smallest variable occurring in δ wrt. >, say Xm. Process δ contains no
variable generated by Xk, hence m ≤ l. Thus δ = δ′Xm, and let the Spoiler’s

move be induced by a decreasing non-generating transition Xm
ζ−→ ω:

γ δ′Xm
ζ−→ γ δ′ ω.

By Lemma 14 we know that there is a Duplicator’s response that does not
engage γ. As no γ-squeeze of Xk is reachable from Xk by =⇒0, the response has
necessarily the following form

γ Xk =⇒0 γ Xk η
ζ−→ γ σ η,

where η is generated by Xk:

Xk =⇒0 Xk η and Xk
ζ−→ σ,

as otherwise at some point in the =⇒0 sequence a γ-squeeze would appear. We
obtain γ σ η ≈ γ δ′ ω and thus

nf(γ σ η) = nf(γ δ′ ω). (10)

12

From the last equality we will deduce how the sizes of nf(γ σ) and nf(γ δ′) are
related, in order to conclude that the weighted size of δ is as required.

Let’s inspect the l-prefix of the left processes in (10). Process η can not
contribute to that prefix of the normal form, thus if we restrict to the l-prefixes
we have the equality

l-prefix(nf(γ σ η)) = l-prefix(nf(γ σ)). (11)

Similarly, let’s inspect the m-prefix of the right process in (10). Again, ω can not
contribute to that prefix of the normal form, thus if we restrict to the m-prefixes
we have the equality

m-prefix(nf(γ δ′ ω)) = m-prefix(nf(γ δ′)).

As γ δ is the normal form, the process γ δ′ is unambiguous and thus clearly
nf(γ δ′) = γ δ′. Substitute this to the last equality above:

m-prefix(nf(γ δ′ ω)) = m-prefix(γ δ′) = γ δ′. (12)

Using induction assumption we obtain d-size(nf(γ σ)) ≤ d-size(γ σ). As m ≤ l,
by (10), (11) and (12) we conclude that

d-size(γ δ′) ≤ d-size(nf(γ σ)) ≤ d-size(γ σ)

and thus d-size(δ′) ≤ d-size(σ). By the last inequality together with size(σ) ≤
d− 1 and σ ∈ {Xk+1 . . . Xn}⊗ we get the required bound on weighted size of δ:

d-size(δ) = d-size(δ′) + d-size(Xm) ≤ d-size(σ) + dn−m ≤
(d− 1) dn−k−1 + dn−m ≤ dn−k = d-size(Xk).

6 Proof of the small response property

Now we show how Theorem 1 follows from the estimations given in Corollary 1
and Lemma 12. We will need a definition and two lemmas.

We write α
≈

=⇒0 β if α =⇒0 β and α ≈ β. A process α is called
≈

=⇒0-minimal

if there is no β ≺ α with α
≈

=⇒0 β.

Lemma 16. For any α there is a
≈

=⇒0-minimal process ᾱ with α
≈

=⇒0 ᾱ of size
bounded by size(ᾱ) ≤ size(nf(α)).

Lemma 17. If α is
≈

=⇒0-minimal and α
≈

=⇒0 β then α v β.

Proof of Theorem 1. Consider α ≈ β, a Spoiler’s move α
ζ−→ α′ and a

Duplicator’s response: β =⇒0 β1
ζ−→ β2, with α ≈ β1 and α′ ≈ β2. The basic

idea of the proof is essentially to eliminate some unnecessary generation done
by transitions β =⇒0 β1.

13

As the first step we apply Lemma 16 to β, thus obtaining a sequence of

transitions β =⇒0 β̄, for some
≈

=⇒0-minimal process β̄, in order to consider the
pair (α, β̄) instead of (α, β). Knowing α ≈ β̄ we obtain a Duplicator’s response

β =⇒0 β̄ =⇒0 β
′
1

ζ−→ β′2 (13)

with α ≈ β′1 and α′ ≈ β′2. Note that by Lemma 17 we know β̄ v β′1.

As the second step extend (13) with any sequence β′2
≈

=⇒0 β̄
′
2 leading to a

v-minimal process β̄′2 v β′2. Our knowledge may be outlined with the following
diagram (the subscript in =⇒0 is omitted):

β̄ v
≈ +3 β′1

ζ

��
β̄′2 β′2v

≈ks

Both left-most processes in the diagram are size bounded. Indeed, Corollary 1
applied to β̄ and β̄′2 yields

size(β̄) ≤ size(nf(α)) and size(β̄′2) ≤ size(nf(α′)).

Then applying Lemma 12 to α and α′ we obtain:

size(β̄) ≤ size(α) · dn−1 and size(β̄′2) ≤ size(α′) · dn−1. (14)

As the third and the last step of the proof, we claim that β′1 and β′2 may be
replaced by processes of size bounded, roughly, by the sum of sizes of β̄ and β̄′2.

Claim. There are some processes β′′1 ≈ β′1 and β′′2 ≈ β′2 such that

β̄ =⇒0 β
′′
1

ζ−→ β′′2 (15)

and
size(β′′1), size(β′′2) ≤ size(β̄) + size(β̄′2) + d. (16)

The claim is sufficient for Theorem 1 to hold, by inequalities (14). Thus to
complete the proof we only need to demonstrate the claim. The idea underlying
the proof of the claim is illustrated by the following diagram:

β̄

v

v
≈ +3 β′1

ζ

��v
≈

{� �
�

�
�

�
�

�
�

β′′1

ζ

��

β′2

v
≈

{� ��
��

��
�

��
��

��
�

β̄′2 β′′2v
≈ks

14

We use a coloring argument, similarly as in the proof of Lemma 6. Let us color
uniquely every variable occurrence in β′1 and let every transition preserve the
color of the left-hand side variable. Obviously at most size(β̄′2) of these colors will

be still present in β̄′2, name them surviving colors. Let the β′1
ζ−→ β′2 transition

be performed due to a transition rule X
ζ−→ δ, color this particular X, say,

brown.
Let β′′1 consists of all variables which either belong to β̄ or are colored surviv-

ing or brown color. Thus clearly β̄ v β′′1 v β′1. One easily observes that after the

brown transition X
ζ−→ δ from β′′1 we get β′′2 such that β̄′2 v β′′2 v β′2, because

all surviving colored variables are still present. By Lemma 1 one has β′′1 ≈ β′1
and β′′2 ≈ β′2.

Finally we obtain the size estimation size(β′′1) ≤ size(β̄) + size(β̄′2) + 1 as in
β′′1 there can be at most size(β̄′2) + 1 surviving and brown colored variables that
do not belong to β̄. This easily implies the estimation for size(β′′2). 2

Acknowledgments. We are grateful to the reviewers for valuable comments, in
particular for encouraging us to restrict the paper to branching bisimilarity.

References

1. S. Christensen. Decidability and Decomposition in process algebras. PhD thesis,
Dept. of Computer Science, University of Edinburgh, UK, 1993.

2. S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation equivalence is decidable
for Basic Parallel Processes. In CONCUR, pages 143–157, 1993.

3. J. Esparza. Petri nets, commutative context-free grammars, and Basic Parallel
Processes. Fundam. Inform., 31(1):13–25, 1997.

4. S. Fröschle and S. Lasota. Normed processes, unique decomposition, and com-
plexity of bisimulation equivalences. Electr. Notes Theor. Comp. Sci., 239:17–42,
2009.

5. Y. Hirshfeld. Congruences in commutative semigroups. Technical report, Univer-
sity of Edinburgh, LFCS report ECS-LFCS-94-291, 1994.

6. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial-time algorithm for decid-
ing bisimulation equivalence of normed Basic Parallel Processes. Mathematical
Structures in Computer Science, 6(3):251–259, 1996.

7. P. Jancar. Decidability questions for bismilarity of Petri nets and some related
problems. In STACS, pages 581–592, 1994.

8. P. Jancar. Strong bisimilarity on Basic Parallel Processes is PSPACE-complete.
In LICS, pages 218–227, 2003.

9. S. Lasota. Decidability of performance equivalence for Basic Parallel Processes.
Theoretical Computer Science, 360:172–192, 2006.

10. R. Milner. Communication and Concurrency. Prentice Hall, 1995.
11. J. Srba. Strong bisimilarity and regularity of Basic Parallel Processes is PSPACE-

hard. In STACS, pages 535–546, 2002.
12. J. Srba. Roadmap of Infinite results, volume Vol 2: Formal Models and Semantics.

World Scientific Publishing Co., 2004.
13. C. Stirling. The joys of bisimulation. In MFCS, pages 142–151, 1998.
14. C. Stirling. Decidability of weak bisimilarity for a subset of Basic Parallel Processes.

In FoSSaCS, pages 379–393, 2001.

15

A Proofs missing in Section 4

Proof of Lemma 1. Immediate using Definition 1. If Spoiler plays from α,
Duplicator uses its response from α′, precomposed with β =⇒0 α

′. On the other
hand, if Spoiler plays from β, Duplicator moves α =⇒0 β and then copies the
Spoiler’s transition. 2

Proof of Lemma 2. Follows from the following simple observations: ≈ is norm
preserving; for a 6= ε, the transition relation

a−→ may decrease the norm by at
most one; the transition relation

ε−→ never decreases the norm. 2

Proof of Lemma 7. By δ, δ′, etc. we denote below processes from {Xk+1 . . . Xn}⊗.
As a is the maximal extension of γ, there is some b > a and some processes

δ, δ′ such that
γ Xb

k δ ≈ γ Xa
k δ
′.

Consider an arbitrary sequence of decreasing transitions

Xb
k δ

ζ1−→ . . .
ζm−→ Xa+1

k .

By Lemma 6 there is a sequence of matching (necessarily decreasing) transitions

Xa
k δ
′ ψ1−→ . . .

ψl−→ Xa
k δ
′′,

for some δ′′, such that
γ Xa+1

k ≈ γ Xa
k δ
′′.

This completes the proof. 2

Proof of Lemma 8. If α is not unambiguous then it is not the least one in its
bisimulation class wrt. � as α ≈ squeeze(α) and squeeze(α) ≺ α.

On the other hand, assume α is not the least process in its bisimulation class.
That is, for some i ≤ n we have α = γXa

i ᾱ and there is some β = γXb
i β̄ ≈ α

with b < a. Thus, according to the definition, α is not unambiguous. 2

Proof of Lemma 10. If α is unambiguous the proof is trivial therefore assume
otherwise. According to Definition 8, let α = γXa

k δ and let

squeeze(α) = γ Xa−1
k δk,γ δ. (17)

Consider any ᾱ v squeeze(α) such that ᾱ ≈ squeeze(α). First we observe that
γ is necessarily a (k − 1)-prefix of ᾱ as α is (k − 1)-unambiguous and α ≈ ᾱ.
Therefore

ᾱ = γ Xb−1
k δ̄k,γ δ̄

for some b ≤ a and δ̄k,γ v δk,γ and δ̄ v δ. We observe that δ̄k,γ is necessarily non-
empty, as α is v-minimal and α ≈ ᾱ. For size(α) ≤ size(ᾱ) it is thus sufficient
to demonstrate that

b = a and δ̄ = δ.

16

Towards a contradiction assume the opposite, i.e., either b < a, or δ̄ < δ. As
α ≈ ᾱ, i.e.,

γ Xa
k ≈ γ Xb−1

k δ̄k,γ δ̄,

knowing that a > b− 1 we deduce that the process γXb may not be k-unambi-
guous. Thus we may apply squeeze() to γXbδ̄ to obtain

squeeze(γ Xb
k δ̄) = γ Xb−1

k δk,γ δ̄.

By Lemma 1 applied to

squeeze(α) = γ Xa−1
k δk,γ δ =⇒0 γ X

b−1
k δk,γ δ̄ =⇒0 γ X

b−1
k δ̄k,γ δ̄ = ᾱ

we deduce squeeze(α) ≈ γ Xb−1
k δk,γ δ̄, i.e.,

squeeze(α) ≈ squeeze(γ Xb
k δ̄).

Since always α ≈ squeeze(α) we obtain

α = γ Xa
k δ ≈ squeeze(α) ≈ squeeze(γ Xb

k δ̄) ≈ γ Xb
k δ̄,

with either b < a or δ̄ < δ, thus contradicting the v-minimality of α. This
completes the proof. 2

Proof of Lemma 11. Let α be an arbitrary process. We claim that the size of
nf(α) is bounded by:

size(nf(α)) ≤ size(α) · size(δk1,γ1) · . . . · size(δkn,γn) (18)

for some unambiguous processes γ1 . . . γn. Indeed, let γk be the (k − 1)-unam-
biguous process witnessing the squeezing step for Xk (if any). The size of the
process, during all squeezing steps for Xk, increases at most size(δkk,γk) times.

However, in general, there may be infinitely many different processes δk,γ
used in the squeezing steps for different processes α, as there may be in general
infinitely many unambiguous processes γ. We will argue that for the purpose of
estimating the size of nf(α) for all processes α, it is sufficient to take into account
only a finite subset of unambiguous processes. We will rely on the following
simple observation. Let γ, γ′ ∈ {X1 . . . Xk−1}⊗, for some k ≤ n, be both (k−1)-
unambiguous and γ v γ′, respectively. Let the greatest k-extensions of γ and
γ′ be γXa

k and γXa′

k . The exponents necessarily satisfy a ≥ a′. The crucial
observation is that whenever a = a′ then every γ-squeeze, like δk,γ , is also a
γ′-squeeze. Indeed:

γ Xa+1
k δ ≈ γ Xa

k δk,γ δ implies γ′Xa+1
k δ ≈ γ′Xa

k δk,γ δ,

since ≈ is substitutive. In other words: one may safely assume δk,γ′ = δk,γ
whenever γ v γ′ and a ≤ a′.

Now we easily obtain the estimation. For every k ∈ {1 . . . n}, consider all
pairs (γ, a), where γ ∈ {X1 . . . Xk−1}⊗ is any (k− 1)-unambiguous process that

17

exhibits the greatest extension γXa
k (note that only such processes γ witness a

squeezing step). Choose those among them that are minimal wrt. v on the first
coordinate, and wrt. ≤ on the second one. By Dickson’s Lemma there are only
finitely many such minimal pairs. The set of all processes δk,γ , for all chosen
minimal pairs (γ, a), jointly for all k, has an element which is maximal wrt. size;
denote this maximal size by s. The size of any process δki,γi in (18) is dominated
by s and thus we obtain:

size(nf(α)) ≤ size(α) · sn (19)

which completes the proof by putting c = sn. Note that c only depends on a
process definition, and does not depend on a process α. 2

B Proofs missing in Section 5

Consider a sequence α
ζ1−→ . . .

ζm−→ β of decreasing transitions. By a canonical
re-shuffling we mean any permutation of these transitions that respects the
following two conditions: (1) if X > Y then every transition of X occurs before
every transition of Y ; (2) every generating transition of a variable occurs before
every non-generating transition of the same variable. Due to Lemma 3 we have:

Lemma 18. Any sequence α
ζ1−→ . . .

ζm−→ β of decreasing transitions may be
executed after the canonical re-shuffling.

Proof of Lemma 13. Lemma 13 is formulated for ≈ but the major part of the
proof either works for weak bisimilarity directly, or may be adapted. The only
case that we can not adapt to weak bisimilarity is Case 2.1 below. Importantly,
under the assumption of [14] the proof of this subcase is straightforward. Thus we
claim that our whole proof covers weak bisimilarity over the restricted subclass
studied in [14].

Case 1: a > 0.

Claim. γ Xa+1
k

≈
=⇒0 γ X

a
k η for some η ∈ {Xk+1 . . . Xn}⊗.

Proof. Consider the pair γXa+1
k ≈ γXa

k δk,γ and an arbitrary non-generating

decreasing transition Xk
ζ−→ ω; thus δk,γ ω ∈ {Xk+1 . . . Xn}⊗. The transition

gives rise to a Spoiler’s move

γ Xa
k δk,γ

ζ−→ γ Xa−1
k δk,γ ω,

matched by some sequence of transitions of the form

γ Xa+1
k =⇒0 α

ζ−→ α′,

such that α ≈ γ Xa
k δk,γ and α′ ≈ γ Xa−1

k δk,γ ω. As γXa
k is k-unambiguous,

by the latter equivalence we deduce that γXa−1
k is the k-prefix of α′. As α′

18

results from α by a single transition, γXa
k is necessarily the k-prefix of α. Thus

α = γXa
k η as required. 2

Assume that the sequence of transitions γ Xa+1
k =⇒0 γ X

a
k η has been canon-

ically re-shuffled, and distinguish the very first process whose k-prefix is γXa
k :

γ Xa+1
k =⇒0 γ X

a
k ω =⇒0 γ X

a
k η.

Due to the re-shuffling, the last transition of the first part involves necessarily
Xk, say Xk −→0 φ, and thus the k-prefix of the immediately proceeding process
is γ Xa+1

k . We obtain:

γ Xa+1
k =⇒0 γ X

a+1
k δ −→0 γ X

a
k φ δ =⇒0 γ X

a
k η.

Note that by Lemma 1 we have:

γ Xa+1
k ≈ γ Xa

k δ φ. (20)

Furthermore, by canonical order we deduce

γ Xa
k =⇒0 γ X

a
k δ

and consequently, by Lemma 5 we obtain

γ Xa
k ≈ γ Xa

k δ.

This allows us, using substitutivity and (20), to obtain a γ-squeeze of Xk of size
at most d:

γ Xa+1
k ≈ γ Xa

k δ φ ≈ γ Xa
kφ.

Knowing φ ∈ {Xk+1 . . . Xn}⊗ and size(φ) ≤ d we easily deduce the required
bound on the weighted size of φ:

d-size(φ) ≤ d · dn−k−1 = dn−k = d-size(Xk).

Case 2.1: a = 0 and Xk has a γ-squeeze δ such that Xk =⇒0 δ. This is
the only case that we are not able to adapt to weak bisimilarity.

In the proof of this case we will only use −→0 transitions. As γ is unambi-
guous, the normal form of γ Xk has the form:

nf(γ Xk) = γ [α · β]. (21)

Consider the sequence of transitions Xk =⇒0 δ after canonical re-shuffling. As
some non-generating transition of Xk necessarily occurs, consider the last such
transition, say Xk −→ ω. We obtain:

γXk =⇒0 γXkβ
′ −→0 γωβ

′ =⇒0 γδ,

for some β′ generated by Xk. As γXk ≈ γδ, by Lemma 1 we obtain γXk ≈ γωβ′,
and by (21) we obtain

nf(γωβ′) = γ [α · β].

19

Recall that the normal form is obtained by squeezing (cf. Definition 9). As
squeezing of β′ can only yield variables {Xl+1 . . . Xn}, we deduce that the normal
form of γω differs from nf(γωβ′) only on variables {Xl+1 . . . Xn}:

nf(γω) = γ [α · η]. (22)

Now consider the first step in the Bisimulation Game for γ Xk ≈ γ [α · β],
starting with the Spoiler’s move γ Xk −→0 γ ω. Due to (22) we know that
l-prefix(γ ω) is l-dominating γ α and thus Lemma 14 applies to give the following
claim.

Claim. Duplicator has a response of the following form

γ [α · β] =⇒0 γ [α · β′] −→0 γ [α · β′′]

using no transition of γ or α, i.e., induced by the sequence of transitions

β =⇒0 β
′ −→0 β

′′. (23)

Let the last transition rule be, say, Y −→0 φ. Thus we may write

β′ = β̄ Y and β′′ = β̄ φ

which allows us to prove the following:

Claim. γ Xk φ ≈ γ ω Y .

Proof. On one side, as γ Xk ≈ γ [α · β̄ Y], by substitutivity γ Xk φ ≈ γ [α · β̄ Y φ].
On the other hand, for similar reasons γ ωY ≈ γ [α · β̄ φ Y]. 2

Note that φ is generated by Xk as Y ∈ β′. Thus γ Xk ≈ γ Xk φ by Lemma 5.
This together with the last claim yields a γ-squeeze of Xk of size at most d:

γ Xk ≈ γ ω Y.

As before, we deduce d-size(ω Y) ≤ d-size(Xk).

Case 2.2: a = 0 and Xk has no γ-squeeze δ such that Xk =⇒0 δ. This
subcase has been treated in Section 5.

As this was the last case, we have thus completed the proof of Lemma 13. 2

C Proofs missing in Section 6

Proof of Lemma 16. First note that some
≈

=⇒0-minimal process ᾱ with α
≈

=⇒0

ᾱ surely exists as � is well-founded. Every such process is necessarily v-minimal:
indeed, If β < ᾱ then β ≺ ᾱ and ᾱ =⇒0 β. Then the size bound follows
immediately by Corollary 1. 2

20

Proof of Lemma 17. Note that α � β holds by the very definition. We will
show that

β = α δ (24)

for some δ generated by α.
For the sake of contradiction assume the shortest sequence of transitions

α =⇒0 β such that β ≈ α fails to satisfy (24). Consider the last transition, say

α δ −→0 β,

performed necessarily by a variable, say X, that appears in α but not in δ. This
last transition has the following form

α δ −→0 α
′ δ,

due to a transition α −→0 α
′. As the last transition is necessarily decreasing and

non-generating, α′ ≺ α, and thus α′ δ ≺ α δ. Recall that α′ δ ≈ α. By Lemma 5
we know that those variables in δ that are generated by a variable different than
X may be safely removed. Hence

α =⇒0 α
′ δ′ ≈ α

where all variables appearing in δ′ v δ are generated by X, and thus smaller
than X wrt. ≤. This implies

α′ δ′ ≺ α,

a contradiction. 2

21

