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Abstract. We explore the borderline between decidability and unde-
cidability of the following question: “Let C be a class of codes. Given
a machine M of type X, is it decidable whether the language L(M)
lies in C or not?” for codes in general, ω-codes, codes of finite and
bounded deciphering delay, prefix, suffix and bi(pre)fix codes, and for
finite automata equipped with different versions of push-down stores
and counters.
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1. Introduction

It is well-known that the property “L = X∗” is decidable for regular languages
L over the alphabet X , whereas the same question is undecidable for context-
free languages. The different character of regular and context-free languages also
shows up for the question whether L ⊆ X∗ is a code, that is, freely generates
the submonoid L∗ of X∗. In Section 9 of the survey paper [13], it is stated that
surprisingly few results of the following kind are known:

Let C be a class of codes. Given a device D (automaton or gram-
mar) of some fixed type, is it decidable whether the language L(D)
defined by D is in class C or not?
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The monograph [2] contains almost no information concerning this question. Known
results are surveyed in Sections 3 and 9 of [13]; more details can be found in [12]. In
these references, the undecidability results are mainly based on the undecidability
of the Post correspondence problem (PCP). This yields undecidability results for
devices like non-deterministic (one-turn) pushdown automata, leaving open this
question for more restricted devices like one-counter or deterministic (one-turn)
automata.

In our paper, we aim to show a distinctively sharp boundary between the au-
tomaton classes with a decidable or undecidable C-code problem, respectively, for
the following code classes C: codes in general, ω-codes [25], codes of finite and
bounded deciphering delay, prefix, suffix and bifix codes, because they form (aside
from suffix codes) a natural decreasing chain of code classes. Moreover, according
to Berstel and Perrin [2], p. 139, “the notion of deciphering delay appears at the
very beginning of the theory of codes”1. Furthermore, these code classes seem
to be important for applications like the computation of Hausdorff dimension of
language-defined fractals as proposed in [6, 7, 26].

The sharp bounds in our paper are achieved by using instead of the PCP the
undecidability of the halting problem for deterministic two-counter machines with
empty input tape. This allows for showing the undecidability for classes of au-
tomata defining classes of languages of low complexity (see Fig. 1). Moreover, we
strengthen our results by admitting side conditions, that is, asking for the unde-
cidability of “L(D) ∈ C” when it is known that L(D) ∈ C′ for some class C′ slightly
larger than C.

The paper is structured as follows: in the next section, we present the definitions
necessary for the understanding of this paper. In Section 3, so-called C-chains are
introduced as a basis for several proofs in Section 5. In Section 4, our decidability
results are collected, while Section 5 contains the undecidability results. Finally,
we summarize our results in Table 1.

2. Definitions

For basics in automata theory, we refer the reader to [1, 10, 11]. Especially,
the notion of (deterministic) push-down automaton, (D)PDA for short, should be
known, leading to the language classes (D)CF; if the (D)PDA is only allowed to
make one turn of the push-down store during computation, we come to 1t(D)PDA,
defining the language classes 1t(D)CF=(D)LIN. The regular languages are denoted
by REG.

Furthermore, we obey the following conventions: Z is the set of integers; N

is the set of natural numbers including zero; sgn(x) is the sign of integer x, i.e.,
sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and sgn(0) = 0; �0 is a multidimensional
all-zero-vector. X∗ is the free monoid over X , e ∈ X∗ denotes the empty word,
X+ = X∗ \ {e}, � denotes the prefix relation in X∗.

1A good coverage of the corresponding literature can be found in [4].
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2.1. Counter machines

Since definitions of counter automata are not standardized in the literature, we
have to make the notions we use precise in this subsection, mostly following [9].

A k-counter machine M = (Q, X, δ, q0, Qf , k) consists of a finite set Q of states ,
a designated initial state q0, a designated subset Qf of final or accepting states,
a finite input alphabet X and a finite transition relation

δ ⊆ Q × (X ∪ {e})× {0, 1,−1}k × Q × {0, 1,−1}k.

Intuitively, this means that δ describes what M should do when being in a specific
state q ∈ Q, when reading the current input symbol x ∈ X (or ignoring the input if
x = e) and when finding that its ith counter ci (1 ≤ i ≤ k) is zero, strictly positive
or strictly negative; this is matched by the value sgn(ci) in the ith place of the
third component of the set product that describes δ. The last two components of
that product describe the reaction of M on the observed input; namely, M would
then go (in the next step) into a specified successor state and add xi ∈ {0, 1,−1}
to counter ci (1 ≤ i ≤ k) as given by the ith place of the last component.

A configuration c of M is a member of Q× X∗ ×Z
k. The set of configurations

is denoted by C(M). Especially, c0(w) = (q0, w,�0) is the initial configuration for
w and Cf = Qf × {(e,�0)} is the set of final configurations.

Observe that we require here without loss of generality that all counters are
zero at the end of a computation, a feature which will become essential for the
special cases we consider in the following.

If (q, a, u1, . . . , uk, q′, x1, . . . , xk) ∈ δ and (q, aw, y1, . . . , yk) is a configuration
of M with ui = sgn(yi) for 1 ≤ i ≤ k, then we write

(q, aw, y1, . . . , yk) �M (q′, w, y1 + x1, . . . , yk + xk).

If a = e, this is an e-move. �M is a relation on Q×X∗×Z
k. Its reflexive transitive

closure is denoted by �∗
M. The language accepted by M is

L(M) = {w ∈ X∗ : ∃cf ∈ Cf (c0(w) �∗
M cf ) }.

We consider the following special cases of counter machines M = (Q, X, δ, q0, Qf , k):
• M is blind if for each q, q′ ∈ Q, a ∈ X ∪ {e}, and for all ui, vi, xi in
{0, 1,−1}, it is true that

(q, a, u1, . . . , uk, q′, x1, . . . , xk) ∈ δ ⇐⇒ (q, a, v1, . . . , vk, q′, x1, . . . , xk) ∈ δ . (1)

In other words, a blind counter machine is unable to check the signs of its
counters during a computation. Only at the end, the acceptance condition
checks whether all counters are zero.

• M is partially blind if
(1) δ ⊆ Q × (X ∪ {e})× {0, 1}k × Q × {0, 1,−1}k and
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(2) for each q, q′ ∈ Q, a ∈ X ∪ {e}, and for all ui, vi in {0, 1} and for all
xi in {0, 1,−1}, equation (1) is true.

So, a partially blind multi-counter machine may be viewed as a blind multi-
counter machine which gets stuck should one of its counters decrease below
zero.

• M makes one turn if for any counter i, 1 ≤ i ≤ k, and any subcomputation

(q0, w,�0) �∗
M (q1, w1, y1, . . . , yk) �∗

M (q2, w2, x1, . . . , xk) �∗
M (q3, w3, z1, . . . , zk)

we find xi, yi, zi ≥ 0 and, if yi > xi, then xi ≥ zi.
• M is deterministic if for each q ∈ Q, a ∈ X and for all ui in {0, 1,−1}, it

is true that

|{(q, a, u1, . . . , uk, q′, x1, . . . , xk) ∈ δ | q′ ∈ Q, xi ∈ {0, 1,−1}}|
+ |{(q, e, u1, . . . , uk, q′, x1, . . . , xk) ∈ δ | q′ ∈ Q, xi ∈ {0, 1,−1}}|
≤ 1.

In such a way, we are brought to the following language classes:
• the family [1t](D)BC of languages accepted by [one-turn] blind (determin-

istic) multi-counter machines;
• the family [1t](D)PBC of languages accepted by [one-turn] partially blind

(deterministic) multi-counter machines;
• we could, in addition, specify the number of counters in our notations by

setting a numeral in front of C, e.g., D1C is the family of deterministic
one-counter languages2.

We briefly recall three non-trivial facts on counter machines:
(1) From the decidability of the reachability problem for Petri nets [14, 19],

the decidability of the emptiness problem for (partially) blind counter
machines results follows, see Theorem 6 in [9]3.

(2) According to Minsky [20, 21], cf. also Section 7.8 in [11], the halting
problem for two-counter machines is undecidable, even if one takes D2C
machines with only one accepting state whose counters never get below
zero and to which is given the empty word as input. Such machines have
a unique final configuration cf , i.e., Cf (e) = {cf}.

Furthermore, we may assume w.l.o.g. that the machine never enters
the start state q0 and never leaves the final state qf again. We will call
such a machine a D2CA in normal form.

(3) According to Greibach [9], Theorem 2, the family BC of languages accepted
by blind multi-counter machines coincides with the family 1tC of languages
accepted by one-turn multi-counter machines. The proof does not transfer,

2PB1C is called “restricted one-counter languages” in [1], and 1C is called “iterated counter
languages” in [10]. One-turn counter machines are called “reversal-bounded” in [9].

3The emptiness problem for PBLIND(n) is equivalent to the emptiness problem for
PBLIND=PBC by adding an additional blank symbol replacing e-moves.
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Figure 1. Classes of languages of low complexity.

neither to the deterministic case nor to the case of a fixed number of
counters. In fact,

L := {w ∈ {a, b}∗ : |w|a = |w|b } ∈ DB1C,

where |w|x gives the number of occurrences of letter x in string w. L cannot
be accepted by one-counter machines which only make a finite number of
turns.

(4) Blind counter machines can be simulated by partially blind counter ma-
chines but not vice versa, see Theorems 3 and 4 in [9].

The second fact will be the main tool for showing our undecidability results. In our
constructions, we will use the quasi unary encoding γ(c) := q|z# with z = 2n · 3m

for a configuration c = (q, n, m) of a 2C machine with empty input4. “Quasi unary”
means that except for the first letter q ∈ Q and the endmarker # the code word
γ(c) is unary. Since there is only a finite number of states q ∈ Q, a configuration c
can be read, stored and compared to some previously stored encoded configuration
by a counter automaton as well as by a one-turn push-down automaton. γ can
be easily interpreted as a homomorphism mapping sequences of configurations to
words over the finite alphabet Q ∪ {|, #}.

We conclude this section with presenting a diagram of inclusion relations be-
tween the classes of languages mentioned above and its relations to regular, linear,
context-free and recursively enumerable languages. In the diagram, solid lines in-
dicate known strict inclusions, while dotted lines indicate inclusions not known to
be strict.

4The notation |z refers to the symbol | repeated z times.
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2.2. Codes

A language C ⊆ X∗ is called code over X if for all n, m ∈ N and x1, . . . , xn;
y1, . . . , ym ∈ C the condition x1 . . . xn = y1 . . . ym implies n = m and xi = yi for
all 1 ≤ i ≤ n.

A code C is called prefix code if for all x, y ∈ C, x � y implies x = y, i.e.,
the prefix relation restricted to C ⊆ X+ is the identity. Observe that in fact any
language C ⊆ X+ satisfying that the prefix relation restricted to C is the identity
is a (prefix) code.

A code C is called suffix code if the suffix relation restricted to C is the identity.
A language C is called bifix code iff C is both a prefix and a suffix code5.
Notice that any subset of a code (prefix code, suffix code, bifix code, resp.) is

again a code (prefix code, suffix code, bifix code, resp.).

Example 2.1. The language CQ := {q|z# : q ∈ Q ∧ z ∈ N} containing the quasi
unary encodings (as well as non-encoding words if z has factors other than 2 or 3)
from above is a bifix code. Hence, the language of all quasi unary encodings itself
is a bifix code.

According to [2, 5, 25], a code C has a deciphering delay m ≥ 0 (m-d.d. for
short) iff for all w, w′ ∈ C the relation w · v1 · · · vm � w′ · u where v1, . . . , vm ∈ C
and u ∈ C∗ implies w = w′. We say that a code C has bounded deciphering delay
(b.d.d. for short) provided C has m-d.d. for some m ∈ N. Observe that C is a
prefix code iff C has 0-d.d.

The following obvious lower bound to the deciphering delay is sometimes useful.

Property 2.2 (lower bound). If C ⊆ X+ is a code and if there are words w, w′,
v1, . . . , vi ∈ C such that w �= w′ and w · v1 · · · vi � w′ · u for some u ∈ C∗ then C
has a deciphering delay of at least i + 1.

A code C is said to have finite deciphering delay (f.d.d. for short), provided
for every w ∈ C there is an mw ∈ N such that, for every w′ ∈ C, the relation
w · v1 · · · vmw � w′ · u where v1, . . . , vmw ∈ C and u ∈ C∗ implies w = w′. By
mC(w) we denote the smallest value mw, possible for w ∈ C.

A code C is called an ω-code, provided
∏∞

i=1 wi =
∏∞

i=1 vi where wi, vi ∈ C,
i = 1, 2, . . . implies wi = vi for all i = 1, 2, . . .

It is known that every code of bounded deciphering delay is a code of finite
deciphering delay, and a code of finite deciphering delay is an ω-code, whereas the
converse is not true in both cases (cf. [25]).

For codes of bounded deciphering delay we can prove the following.

Lemma 2.3. A language C ⊆ X+ is a code of deciphering delay m if and only
if for all w, w′, v1, . . . , vm, v′1, . . . , v

′
j ∈ C where j ≤ m the relation w · v1 · · · vm �

w′ · v′1 · · · v′j implies w = w′.

Proof. From the definition above, the necessity of our condition is immediate.

5Such codes are named biprefix codes in [2].
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Assume now that C satisfies the condition of the lemma and that w ·v1 · · · vm �
w′ ·u where w, w′, v1, . . . , vm ∈ C and u ∈ C∗. Let u = v′1 · · · v′j where j is assumed
to be minimal, that is, w · v1 · · · vm �� w′ · v′1 · · · v′j−1 if j ≥ 1.

If j ≤ m then the condition implies w = w′.
If j > m then by the minimality of j we conclude from w·v1 · · · vm � w′ ·v′1 · · · v′j

that w′ · v′1 · · · v′m � w′ · v′1 · · · v′j−1 � w · v1 · · · vm, whence again w′ = w. �

3. C-Chains

In this section, following an idea of Levenshtejn (cf. [16] and also Sect. 2.2.1 of
[17] or [25]), we introduce Levenshtejn’s relation ≺ on X∗ which useful in the study
of codes. It describes the possibilities of double factorizations of code messages.
For a subset C ⊆ X+, define ≺ as follows:

w ≺1 v :⇔ wv ∈ C ,

w ≺2 v :⇔ w ∈ C · v and ≺:=≺1 ∪ ≺2 .

We consider C-chains, that is, sequences of the form

Γ := u1 ≺1 u2 ≺k2 u3 ≺ . . . ≺kn−1 un , (2)

where u1 ∈ C, u2 �= e and ki ∈ {1, 2} for i ≥ 26.
We call a C-chain Γ nontrivial provided n ≥ 2. Observe that for a nontrivial

C-chain Γ = u1 ≺1 u2 ≺ u3 ≺ . . .≺ un we have u1 � u1 · u2 and u1, u1 · u2 ∈ C.
The following theorem shows a close connection between C-chains and double

factorizations.

Theorem 3.1. Let C ⊆ X+.
(1) If there are families (vk)i

k=1 and (wk)j
k=1 of words vk, wk ∈ C with w1 �=

v1 and w1 · · ·wj−1 � v1 · · · vi � w1 · · ·wj then there is a C-chain u1 ≺1

u2 ≺ u3 ≺ . . .≺ ui+j such that {u1, u1 · u2} = {v1, w1}, v1 · · · vi · ui+j =
w1 · · ·wj and |ui+j | ≤ |wj |.

(2) If a sequence (uk)n
k=1 , n ≥ 2 is a C-chain u1 ≺1 u2 ≺ u3 ≺ . . .≺ un, then

there are words w1, . . . , wj , v1, . . . , vi ∈ C where w1 �= v1 , {u1, u1 · u2} =
{w1, v1}, |un| ≤ |wj | and i + j = n such that

v1 · · · vi · un = w1 · · ·wj and |un| ≤ |wj | . (3)

Proof. The proof is by induction on n = i + j. In both cases the assertion is
obvious if n = i + j ≤ 2.

1. Let w1 · · ·wj−1 � v1 · · · vi � w1 · · ·wj . We distinguish two cases.
If w1 · · ·wj−1 � v1 · · · vi−1 � w1 · · ·wj then, by the induction hypothesis, there

is a C-chain u1 ≺1 u2 ≺ u3 ≺ . . .≺ ui+j−1 such that {u1, u1 · u2} = {v1, w1} and
v1 · · · vi−1 · ui+j−1 = w1 · · ·wj . Define ui+j via the equation ui+j−1 = vi · ui+j .

6Sometimes we shall append the values ki ∈ {1, 2} for easier orientation.
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Then ui+j−1 ≺2 ui+j , and we can continue our C-chain to length i + j satisfying
the required properties.

In case v1 · · · vi−1 � w1 · · ·wj−1 � v1 · · · vi using the induction hypothesis we
obtain a C-chain u1 ≺1 u2 ≺ u3 ≺ . . .≺ ui+j−1 such that w1 · · ·wj−1 · ui+j−1 =
v1 · · · vi and |ui+j−1| ≤ |vi|. Consequently, ui+j−1 � wj , and defining ui+j via the
equation ui+j−1 · ui+j = wj we obtain the required prolongation ui+j−1 ≺1 ui+j

of our C-chain u1 ≺1 u2 ≺ . . .≺ ui+j−1.
2. Assume now that the assertion holds for arbitrary C-chains of length n and

let u1 ≺1 u2 ≺ u3 ≺ . . .≺ un ≺ un+1 be a C-chain of length n + 1. According to
our assumption on the initial part u1 ≺1 u2 ≺ u3 ≺ . . .≺ un we can find words
v1, . . . , vi, w1, . . . , wj ∈ C such that v1 · · · vi · un = w1 · · ·wj , w1 �= v1 , {u1, u1 ·
u2} = {w1, v1}, |un| ≤ |wj | and i + j = n. Again we consider two cases.

If un ≺1 un+1, that is, un · un+1 ∈ C we set vi+1 := un · un+1 and obtain
w1 · · ·wj · un+1 = v1 · · · vi+1.

If un ≺2 un+1 there is a word vi+1 ∈ C such that un = vi+1 · un+1, and we
obtain v1 · · · vi+1 · un+1 = w1 · · ·wj . �

Theorem 3.1 makes the following equivalences obvious, cf. also [2, 25].

Property 3.2 (The Sardinas-Patterson Theorem). C is a code iff there is no
nontrivial C-chain terminating with a word un ∈ C.

If a C-chain Γ = u1 ≺1 u2 ≺ u3 ≺ . . .≺ ui terminates with ui ∈ C, then we may
proceed by adding ui ≺1 ui+1 = e ≺1 ui ≺1 ui+1 = e ≺ . . . . In general, a C-chain
contains the empty word ui = e if and only if its preceding entry ui−1 is in C. In
the sequel, we will refer to C-chains not containing the empty word as proper.

We call a proper C-chain Γ maximal provided Γ cannot be extended to a proper
C-chain.

In the same way as in equation (2) we can define infinite C-chains. Thus, a
proper infinite C-chain is always maximal.

Property 3.3. C is an ω-code iff there is no infinite C-chain.

Let �C(w) denote supremum over the lengths of all C-chains starting with w ≺1

u2 or with u1 ≺1 u2 where w = u1 · u2.
If mC(w) > i then there are w, w′, v1, . . . , vi ∈ C, w �= w′ and a word u ∈ C∗

such that w · v1 · · · vi � w′ · u. According to Theorem 3.1 we have a C-chain
starting with w ≺1 u2 or with w′ ≺1 u2 where w = w′ ·u2 of length ≥ i+2. Thus,
�C(w) ≥ i + 2, and we obtain the following.

Property 3.4. If C ⊆ X∗ is a code then ∀w(w ∈ C → �C(w) ≥ mC(w) + 1).

This yields a connection to codes having finite deciphering delay.

Property 3.5. Let �C(w) < ∞ for every w ∈ C. Then C has f.d.d.

As we shall see in the proof of Theorem 5.11, the converse is not true.
If C has m-d.d.,then, in view of Lemma 2.3, we can derive a tighter relationship.

Property 3.6. If C has deciphering delay m then �C(w) ≤ 2m + 1 for every
w ∈ C, and if �C(w) ≤ n for every w ∈ C then C has deciphering delay n − 1.
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Proof. From Property 2.2 we know that in equation (3) i ≤ m and j ≤ m + 1,
whence n = i + j ≤ 2m + 1.

The bound m ≤ sup{�C(w) − 1 : w ∈ C} is derived above in Property 3.4. �

4. Decidability results

In [10], p. 355, Problem 7, it was mentioned that for DCF the property to be a
prefix code is decidable, whilst the prefix code property is known to be undecidable
for CF, see [10], p. 262, Problem 6. Although this result seems to be folklore, we
give an outline of the proof in the following.

Theorem 4.1. It is decidable for a DCF L ⊆ X+ whether L is a prefix code.

Proof. Let M be a DPDA accepting L. Modify M as follows in order to obtain a
DPDA M′ such that L(M′) = ∅ iff L is a prefix code: M′ has two copies of the set of
states of M; it starts working like M on the first copy, switching deterministically
to the second copy when first reaching a final state of M upon actually reading
the next (non-empty) symbol; then, it proceeds to work on the second copy like
M; the accepting states of M in the second copy are the accepting states of M′.
This makes sure that a word x is accepted by M′ if and only if x has a proper
prefix that is accepted by M. �

Obviously, the previous construction is applicable to all deterministic machine
models with a decidable emptiness problem, like deterministic stack automata [8],
deterministic set automata [15], etc7.

Theorem 5.8 below shows that we cannot expect to sharpen the previous the-
orem even from 0-d.d. decidability to 1-d.d. decidability. For (partially) blind
counters, however, we obtain an even stronger result. This result is interesting
also in the following respect.
Although, in view of Theorems 5.1 and 5.9, we cannot decide whether a language
L ⊆ X+ accepted by a partially blind counter automaton is a code or a code of
bounded deciphering delay, we can decide whether it has a given deciphering delay.

Theorem 4.2. For every fixed m ≥ 0, it is decidable for a PBC L ⊆ X+ whether
L is a code of deciphering delay m or not.

Proof. Let M = (Q, X, δ, q0, {qf}, k) be a PBCA. (Since M is nondeterministic, we
may assume that it has only one accepting state qf .) First we build an automaton
A as the marked union of m + 1 copies of M using all disjoint counters and
connecting them by adding e-moves (qf,i, e,�0, q0,i+1) from the ith copy of qf to
the i + 1st copy of q0 for all 0 ≤ i ≤ m. Additionally we add a new final state q̂f

and the transitions (qf,m, e,�0, q̂f ) and (q̂f , a,�0, q̂f ). If the finite control is within a
state of the ith copy of Q, then it may only increment or decrement counters from

7 Conversely, if for a class of languages L closed under union with finite languages and
concatenation from the left with finite languages, the property of being a prefix code for L ∈ L
is decidable, then also the emptiness problem for L is decidable, see Section 6.
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the ith copy of the k counters of M. Thus A has k(m + 1) counters, starts in q0,0

and reaches qf,m iff it reads a word in Lm+1 and finally q̂f iff it reads a word in
Lm+1X∗.

Consider the canonical product automaton M′ = A×A with 2k(m+1) counters.
M′′ is obtained by enclosing an additional finite control, which ensures that the
use of the transition containing (qf,0, e,�0, q0,1) in the first component and the
transition containing (qf,0, e,�0, q0,1) in the second component is separated by a
non-e-transition. Now, L(M′′) is empty iff for all w, w′ ∈ L, w �= w′, wLmX∗ ∩
w′LmX∗ is empty iff L has m-d.d, cf. Lemma 2.3. �

The previous construction should work for all automata classes A with a decid-
able emptiness problem, if A is closed under the product automaton construction.

PBC is closed under mirror image, so that we immediately obtain:

Corollary 4.3. It is decidable for a PBC L ⊆ X+ whether L is a prefix code or
whether L is a suffix code or whether L is a bifix code.

In fact, the last argument should work for all classes A of nondeterministic
automata (like PBC) with “reasonable” storage types: such classes are closed
under mirror image, since nondeterminism allows to “trace back” the computation
of a machine M on a word w = a1 . . . an by another machine M′ on the mirror
word wR = an . . . a1.

By way of contrast, observe that often languages classes defined via determinis-
tic machine models are not closed under mirror image, so that we cannot conclude
that say for DCF languages, the suffix code property is decidable. In fact, this
property is undecidable for DCF (and even more restricted deterministic language
classes), as we will see in the next section.

We remark that the preceding three results are also valid in case of languages L
containing the empty word. For such languages, the answer has to be “no”, since
no language containing the empty word is a code. Since e ∈ L(A)? can be tested
algorithmically for all automata classes considered in this section, we can cope
with arbitrary languages L ⊆ X∗, too.

Now, we turn to several undecidability results.

5. Undecidability results

5.1. Blind counters

The proofs in this subsection rely on the properties listed in Section 3.

Theorem 5.1. Let L ∈ 1tDB1C. Then, the property “L is a code” is undecidable.

Proof. Let M = (Q, δ, q0, {qf}) with q0 �= qf be a D2CA with empty input in
normal form. We use the quasi unary encoding for the configurations of M and
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define our language L ⊆
(
Q ∪ {# , |}

)∗
as follows:

L := L0 ∪ L1 ∪ Lf , where

L0 := {q0|#} = {γ(c0)},
L1 := {γ(c)γ(c′) : c, c′ ∈ C(M) ∧ c �M c′},
Lf := {qf |#} = {γ(cf)}.

It is readily seen that L1 ∪ Lf is a prefix code and that L ∈ 1tDB1C8.
Since the words in L1 link the configurations of M to their successor configura-

tions, and since L1∪Lf contains exactly one word with prefix q0|#, it is immediate
that L admits exactly one nontrivial maximal L-chain Γ:

Γ = q0|# ≺1 q1w1# ≺1 q2w2# ≺1 . . . ,

where (qi, ni, mi) �M (qi+1, ni+1, mi+1) when wj is the word consisting of 2nj ·3mj

letters |. Thus L is a code iff this L-chain does not end with qf |#, that is, the
computation of M does not halt. �
The previous result strengthens the undecidability of the code property shown for
linear languages in [13].

With a slight modification of the construction of Theorem 5.1 we obtain the
following.

Theorem 5.2. For languages L ∈ 1tDB1C, it is undecidable whether L is an
ω-code, even if we suppose L to be a code.

Proof. The language C := L0 ∪ L1, where L0 and L1 are defined in the proof of
Theorem 5.1, is a code with exactly one infinite C-chain iff the machine M does
not halt. Otherwise, there is only one finite maximal C-chain of length greater
than 1. �
Corollary 5.3. For languages L ∈ 1tDB1C, it is undecidable whether L is a code
of finite (bounded) deciphering delay, even if we suppose L to be a code.

Proof. The code C constructed in the proof of Theorem 5.2 is an ω-code iff C has
finite deciphering delay iff C has bounded deciphering delay. �

5.2. Other cases

In the case of nondeterministic one-counter and linear languages we obtain a
series of results concerning non-decidability of questions related to the deciphering
delay of codes, thereby sharpening Theorem 9.5 of [13] in parts.

8Details work like in the proof of Lemma 5.1 in [22]. The counter is used to check a multipli-
cation by 2 or 3 simulating an increment by reading || or ||| in the second configuration for every
letter | in the first configuration and vice versa for a division simulating a decrement. Divisibility
by 2 or 3 simulating a zero-test can be checked already by the finite control.
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We start with a general construction. Let, as above, M = (Q, δ, q0, {qf}) be a
deterministic two-counter machine with empty input. We can assume q0 �= qf and
M to be in normal form. Recall that the encoding γ can be viewed as a morphism.
With the help of the regular language

C0 := γ(c0c0){ γ(c) : c ∈ C(M) \ {c0, cf} }∗γ(cfcf ),

we define the following deterministic one-counter and linear languages derived from
the quasi-unary encoding of the configurations of M (observe that C0 is a bifix
code):

C1(M) := γ(c0){γ(cc′) : c, c′ ∈ C(M) ∧ c �M c′}∗γ(cf ) ∩ C0

C2(M) := γ(c0c0){γ(cc) : c ∈ C(M)}∗γ(cfcf ) ∩ C0

L1(M) := {γ(cncn−1 . . . c2c1)$γ(c0c
′
1c

′
2 . . . c′n−1c

′
n) :

n ∈ N ∧ ci, c
′
i ∈ C(M) ∧ ci �M c′i for 1 ≤ i ≤ n}

L2(M) := {γ(cncn−1 . . . c2c1)$γ(c1c2 . . . cn−1cn)γ(cf ) :
n ∈ N ∧ ci ∈ C(M) for 1 ≤ i ≤ n}.

One easily observes that C1(M) and C2(M) are deterministic one-counter lan-
guages, whereas L1(M) and L2(M) are deterministic linear languages.

Since M is a deterministic two-counter machine with empty input in normal
form, the following lemma is valid.

Lemma 5.4. The languages C1(M)∪C2(M) and L1(M)∪L2(M) are bifix codes.

The following lemma is crucial for our non-decidability results.

Lemma 5.5. The deterministic two-counter machine with empty input in normal
form M halts iff C1(M) ∩ C2(M) �= ∅ iff L1(M) ∩ L2(M) �= ∅.
Proof. We prove only that M halts iff L1(M)∩L2(M) �= ∅, the proof of the other
equivalence being similar.

We have w = γ(cncn−1 . . . c2c1)$γ(c0c
′
1c

′
2 . . . c′n−1c

′
n) ∈ L1(M) ∩ L2(M) if and

only if first c1 = c0, ci+1 = c′i for 1 ≤ i < n and c′n = cf , because w ∈ L2(M), and
then c0 �M c1 �M · · · �M cn �M cf , because w ∈ L1(M). This observation makes
the assertion obvious. �

The developed apparatus enables us to prove the results.

Theorem 5.6. It is undecidable for L ∈ 1C (or L ∈ LIN) whether L is a prefix
code, even if we know that L is a suffix code and has deciphering delay 1.

Proof. Again, we simulate a D2C machine M with empty input in normal form
using quasi unary encoding. Let

L := C1(M) ∪ C2(M)# ,

where C1(M), C2(M) are defined above. Obviously, L ⊆ C0 ∪ C0 # is a suffix
code.
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By Lemma 5.4 C1(M) ∪C2(M) is a prefix code, hence a word w1 ∈ L can only
be a prefix of a word w2 ∈ L iff w1 ∈ C1(M), w2 ∈ C2(M)# and w2 = w1 # , that
is, iff C1(M) ∩ C2(M) �= ∅. Thus L is a prefix code iff M halts, and the latter is
undecidable.

The relation w2 = w1 # results in an L-chain w1 ≺1 # which has no continu-
ation. Thus, in view of Property 3.6, L has 1-d.d. (and is a suffix code).

The proof for LIN proceeds analogously using L := L1(M) ∪ L2(M)# . �

For suffix codes, we have a stronger result using a simple modification of the
previous construction.

Theorem 5.7. It is undecidable for a L ∈ D1C (or L ∈ DLIN) which is a prefix
code whether L is a suffix (and hence bifix) code.

Proof. Let M be a D2CA with empty input in normal form. The language

L := C1(M) ∪ $C2(M)

is a prefix code and in D1C. Since according to Lemma 5.4 C1(M) ∪ C2(M) is a
suffix code, a word w1 ∈ L is a suffix of w2 ∈ L iff w1 ∈ C1(M), w2 ∈ $C2(M) and
w2 = $w1, that is w1 ∈ C1(M) ∩ C2(M).

Similarly, the linear case can be treated. �

The undecidability results for linear languages proved in the preceding two the-
orems are already shown in [13], Section 9, using constructions based on Post’s
correspondence problem.

Again, simple modifications yield the next theorem:

Theorem 5.8. For L ∈ D1C (or L ∈ DLIN), it is undecidable whether L is a
code of deciphering delay m ≥ 1, even if we suppose that L has m + 1-d.d.

Proof. Let M be a D2CA with empty input in normal form and consider

L := C1(M) ∪ $mC2(M)# ∪{$} .

It is obvious that we have only the following L-chains of length m + 1:

$ ≺1 $m−1w # ≺2 $m−2w # ≺2 · · · ≺2 w # where w # ∈ C2(M)# (4)

corresponding to $ · $m−1 � $mw # for w ∈ C2(M). Thus Property 2.2 shows
that L has at least deciphering delay m.

Moreover, L-chains of length m + 2, $ ≺1 $m−1w # ≺2 $m−2w # ≺2 · · · ≺2

v ≺2 w # , exist iff v � w # for some v ∈ C1(M). Other L-chains longer than the
ones in equation (4) do not exist. In view of Lemma 5.4, the condition v � w #
for some v ∈ C1(M) is equivalent to v ∈ C1(M)∩C2(M). Thus L has (m+1)-d.d.
but not m-d.d. iff C1(M) ∩ C2(M) �= ∅ iff M halts.
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In order to meet the 1-turn restriction, for L ∈ DLIN we use again the languages
L1(M) and L2(M):

L := L1(M) ∪ $mL2(M)# ∪{$} ,

and the proof proceeds in the same way as for the one-counter case. �

Now we turn to the undecidability of the bounded delay property.

Theorem 5.9. For languages L ∈ 1tDB1C it is undecidable whether L has b.d.d.,
even if we suppose L to have f.d.d.

Proof. In order to guarantee that L has finite deciphering delay, we change the
construction in the proof of Theorem 5.2 as follows: we encode the configuration
(q, n, m) of M aiming to allow at most t further steps as γu

t (q, n, m) := q|z# with

z = 2n · 3m · 5t · u and define C ⊆
(
Q ∪ {# , |}

)∗
in the following way:

C := L0 ∪ L1, where

L0 := {q0|5tu# : t ∈ N and u is not divisible by 2, 3 or 5},
L1 := {γu

t (q, n, m)γu
t−1(q

′, n′, m′) : q′ �= qf ∧ (q, n, m) �M (q′, n′, m′) ∧ t ≥ 1}.

The deciphering delay of a word in C is determined by the t in the first encoding,
so that C has f.d.d. If and only if M halts after at most s steps when having
started from an arbitrary configuration, the deciphering delay is bounded by s,
such that C has b.d.d. in that case. �

In [25], we described a code which has a finite, but not bounded deciphering
delay. This code is, however, not context-free, let alone 1tDB1C. Moreover, it was
shown there that every regular code of finite deciphering delay also has bounded
deciphering delay. As a corollary to Theorem 5.9 we discover even 1tDB1C lan-
guages which are codes of finite, but not bounded deciphering delay.

For the sake of simplicity we provide an example which does not refer to the
machine construction in the proof of Theorem 5.9.

Example 5.10. Let X := {a, b} and C = a · b∗a ∪ {abn+1abna : n ∈ N} ∪
{bn+1abna : n ∈ N}. Then C ∈ 1tDB1C and is a code of finite but unbounded
deciphering delay.

The last theorem proves the remaining undecidability result.

Theorem 5.11. For languages L ∈ 1tDB1C it is undecidable whether L is a code
of finite (bounded) deciphering delay, even if we suppose L to be an ω-code.

Proof. Simply alter the proof of Theorem 5.9 as follows. Define

L0 := {q0} ∪ {|5tu# : t ∈ N and u is not divisible by 2, 3 or 5} .



DECIDABILITY OF CODE PROPERTIES 257

Table 1. D stands for determinism, N for nondeterminism, d
for decidable, u for undecidable and t for trivial; arrows indicate
how (un)decidability results trivially propagate. When writing
m-d.d. we assume m ≥ 1.

Question Condition CF LIN 1C PBC 1tB1C REG
N D N D N D N D N D

code - ←− u5.1 d

ω-code code ←− u5.2 d

f.d.d. code ←− u5.3 d

f.d.d. ω-code ←− u5.11 d

b.d.d. code ←− u5.3 d

b.d.d. f.d.d. ←− u5.9 t

m-d.d. ↑ ↑ ↑ ↑ ↑ ↑ d4.2 −→
m-d.d. (m+1)-d.d. ←− u5.8 ←− u5.8 ↓
Prefix - ↑ d ↑ d ↑ d

u 4.1 u 4.1 u 4.1
Prefix 1-d.d. 5.6 ↓ 5.6 ↓ 5.6 ↓
Suffix - ↑ ↑ d4.3 −→
Bifix Prefix ←− u5.7 ←− u5.7 ↓
Bifix - ↓ ↓

If M does not halt, this may result in arbitrarily long sequences of code words
wi, vi ∈ L1 and x ∈ L0 \ {q0} such that q0xw1w2 . . . � v1v2 . . . but no infinite
sequence, because x gives a bound for its length. �

In the preceding proof, the word q0 ∈ L0 has �L0(q0) = ∞ regardless whether
the code L0 has f.d.d. or not. This shows that the converse of Property 3.5 is not
valid.

6. Summary and prospects

Table 1 summarizes the results on the (un-)decidability status of code properties
for various language classes. As regards the positive decidability results for regular
languages, proofs can be found in Section 1.3 of [2] regarding the decidability of
the code property, in [5] concerning the decidability of the ω-code and f.d.d. (or,
here equivalently, the b.d.d.) property. Moreover, it was shown in [5, 25] that a
regular code has f.d.d. iff it has b.d.d., so that one question becomes trivial.

It would be nice to know more about the (time or space) complexities of the
decidable code properties; only the finite and regular code problems have received
some attention until now [18, 24], although complexity questions have been ex-
plicitly raised in [3]. Let us remark as an example that the prefix code problem
is just as hard as the emptiness problem for say (P)BC, since L is empty iff
{a} ∪ {aa}L , a ∈ X is a prefix code, cf. also footnote 7. Moreover, the decision
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algorithm for DCF explained in Theorem 4.1 is much simpler than the algorithm
for (P)BC given in Theorem 4.2 in terms of complexity.

Finally, there are lots of other code classes, see, e.g., [13], for which it is still an
open question to determine the borderline between the decidability and undecid-
ability of the corresponding code class problems. Associated decidability questions
are discussed in [23].
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