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Abstract. Timed-arc Petri nets (TAPN’s) are not Turing powerful, be-
cause, in particular, they cannot simulate a counter with zero testing.
Thus, we could think that this model does not increase significantly the
expressiveness of untimed Petri nets. But this is not true; in a previous
paper we have shown that the differences between them are big enough
to make the reachability problem undecidable. On the other hand, cov-
erability and boundedness are proved now to be decidable. This fact is a
consequence of the close interrelationship between TAPN’s and transfer
nets, for which similar results have been recently proved. Finally, we see
that if dead tokens are defined as those that cannot be used for firing
any transition in the future, we can detect these kind of tokens in an
effective way.

1 Introduction

Petri nets are widely used for the modeling and analysis of concurrent systems,
because of their graphical nature and the solid mathematical foundations sup-
porting them. Several timed extensions of the basic model have been proposed to
expand their application areas to those systems which exhibit a time-dependent
behaviour that should be considered both in the modeling and the analysis pro-
cess, such as distributed systems, communication systems and real-time systems.

A survey of the different approaches to introduce time into Petri nets is
presented in [7]. We can identify a first group of models, which assign time
delays to transitions, either using a fixed and deterministic value [19,20,21] or
choosing it from a probability distribution [3]. Other models use time intervals to
establish the enabling times of transitions [16]. Finally, we have also some models
that introduce time on tokens [1,6]. In such a case, tokens become classified into
two different classes: available and unavailable ones. Available tokens are those
that can be immediately used for firing a transition, while unavailable tokens
cannot. We have to wait for a certain period of time for these tokens to become
available, although it is also possible for a token to remain unavailable forever
(such tokens are said to be dead). More recently, Cerone and Maggiolo-Schettini
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[8] have defined a very general model (statically timed Petri nets), where timing
constraints are intervals statically associated with places, transitions and arcs.
Thus, models with timing constraints attached only to places, transitions or arcs
can be obtained as particular subclasses of this general framework.

In this paper we analyze timed-arc Petri nets [6,23,14], a timed extension
of Petri nets in which tokens have associated a natural1 value indicating the
elapsed time from its creation (its age), and arcs from places to transitions are
also labelled by time intervals, which establish restrictions on the age of the
tokens that can be used to fire the adjacent transitions.

In [6], Bolognesi et. al describe timed-arcs Petri nets, comparing them with
Merlin’s model in the framework of design and analysis of concurrent systems.
The interpretation and use of timed-arcs Petri nets can be obtained from a
collection of processes interacting with each other according to a rendez-vous
mechanism. Each process may execute either local actions or synchronization
ones. Local actions are those that the process may execute without cooperation
from another process, and thus in the Petri net model of the whole system they
would appear as transitions with a single precondition place, while synchroniza-
tion actions would have several precondition places, which correspond to the
states at which each one of the involved processes is ready to execute the ac-
tion. Then, each time interval establishes some timing restrictions related to a
particular process (for instance the time that a local processing may require).
In consequence, the firing of a synchronization action can be done in a time
window, which depends on the age of the tokens on its precondition places.

One of the applications of timed-arc Petri nets comes from the fact that it is
quite easy to get a timed-arc Petri net modeling a system that has been described
by means of a Timed-LOTOS specification [18]. Therefore, in particular, the
interest of the model can be justified as a graphical tool for the design and
analysis of concurrent systems.

In [5], it is proved that timed-arc Petri nets are not Turing complete, since in
particular they cannot correctly simulate a 2-counter machine. Thus, we could
expect that the differences with untimed Petri nets in terms of expressiveness
would not be rather significant. Nevertheless, we have shown in [22] that the
difference is big enough to make the reachability problem undecidable for timed-
arc Petri nets.

In this paper we extend the study of decidability of properties of TAPN’s
proving, in particular, that coverability and boundedness are both decidable.
This is a consequence of the close connection between TAPN’s and transfer nets,
which can simulate each other, as we show in this paper. As a consequence, the

1 Although it is usual to define TAPN’s taking real numbers to measure the passage
of time, in this paper we will only allow natural numbers, since, for the time be-
ing, we have not been able to generalize our decidability results to the continuous
time models. Instead, we considered general TAPN’s when proving undecidability of
reachability in [22], but it is important to note that our counterexample proving un-
decidability makes no use of continuous time. Reachability is also undecidable when
discrete time is considered.
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(un)decidability of any property preserved by these simulations can be translated
from any of these classes to the other.

Transfer nets and reset nets have been thoroughly studied in [10,9,11] as
particular cases of the so called Generalized Self-Modifying nets (shortly G-nets).
In particular, it is proved there that coverability is decidable for both classes of
nets, by applying a new general2 backward technique, presented in [2,13]. On the
contrary, boundedness is decidable for transfer but not for reset nets. A corollary
of this decidability result is that place boundedness is undecidable in both cases.

After studying the decidability of several classic properties of TAPN’s, we
will concentrate on the detection of dead tokens. Due to the time restrictions in
the nets, and also to their structure, some tokens may become dead, since they
are too old to fire any transition in the future. Thus they stay attached to their
places forever, growing and growing, and never being available. We will prove
that this kind of tokens can be effectively detected, because of the fact that the
firability of transitions is closely related with coverability, that it is proved to be
decidable.

The paper is structured as follows. In Section 2 we present timed-arc Petri
nets and their semantics; in Section 3 we recall the undecidability of reachabil-
ity, and prove that, instead, it becomes decidable if we fix the duration of the
considered computations. In section 4 we prove the decidability of coverability.
Section 5 is the main section of the paper; there we prove the close relationship
between TAPN’s and transfer nets, and as a consequence we transfer to TAPN’s
most of the known (un)decidability results for transfer nets. In Section 6 we
show that the problem of detecting dead tokens is decidable, and we also study
a weaker version of that property. Finally, in Section 7 we discuss the work to
be done in the future.

2 Timed-Arc Petri Nets

We deal with timed-arc Petri nets, which have their tokens annotated with an
age (an integer value indicating the elapsed time from its creation), and where
arcs connecting places with transitions have associated a time interval, which
limits the age of the tokens consumed to fire the adjacent transition.

However, a transition is not forced to be fired when all its preconditions
contain tokens with an adequate age, and the same is true even if the age of
any of these tokens is about to expire. More in general, in the model there is
not any kind of urgency, which can be interpreted in the sense that the model is
reactive, as transitions will only be fired when the external context requires it.
But then, it may be the case that the external context may lose the ability to fire
a transition if some needed tokens become too old. Even more, it is possible that
some tokens become dead, which means definitely useless because the increasing
2 What is mainly new in these papers is their generality, which comes from the fact

that the presented results can be applied to any well structured transition system.
Instead, a backward algorithm to decide coverability for reset nets was presented in
[4] as long ago as in 1976.
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of their age will not allow in the future the firing of any of their postcondition
transitions.

Definition 1. (Timed-arc Petri nets)
We define a timed-arc Petri net (TAPN) as a tuple 3 N = (P, T, F, times),
where P is a finite set of places, T is a finite set of transitions (P ∩ T = ∅),
F is the flow relation (F ⊆ (P × T ) ∪ (T × P )), and times is a function that
associates to each arc (p, t) in F a pair of natural numbers, the second of which
can be infinite, i.e.: times : F |P×T −→ IN× (IN ∪ {∞}).

When times(p, t) = [t1, t2] we write πi(p, t) to denote ti, for i = 1, 2. Since
times defines the intervals of age of the tokens to be consumed by the firing of
each transition (see Def.2), we will always have π1(p, t) ≤ π2(p, t). Moreover, we
will write x ∈ times(p, t) to denote π1(p, t) ≤ x ≤ π2(p, t).

As we previously mentioned, tokens are annotated with natural numbers, so
markings are defined by means of multisets on IN. More exactly, a marking M
is a function M : P −→ B(IN) where B(IN) denotes the set of finite multisets of
natural numbers. Thus, as usual, each place is annotated with a certain number
of tokens, but each one of them has associated a natural number (its age). We
will denote the set of markings of N by M(N), and using classical set notation,
we denote the total number of tokens on a place p by |M(p)|. Finally, by some
abuse of notation, sometimes we will denote the individual tokens in a marking
M by pairs (p, i) with p ∈ P and i ∈ IN denoting its age, also writing (p, i) ∈ M .

As initial markings we only allow markings M such that for all p in P , and
any x > 0 we have M(p)(x) = 0 (i.e., the initial age of any token is 0)4. Then,
we define marked timed-arc Petri nets (MTAPN) as pairs (N, M), where N is
a timed-arc Petri net, and M is an initial marking on it. As usual, from this
initial marking we will obtain new markings, as the net evolves, either by firing
transitions, or by the passage of time. In consequence, given a non-zero marking,
even if we do not fire any transition at all, starting from this marking we get an
infinite reachability set of markings, due to the token aging.

A timed-arc Petri net with an arbitrary marking can be graphically repre-
sented by extending the usual representation of P/T nets with the corresponding
time information. In particular, we will use the age of each token to represent
it. Therefore, MTAPN’s have initially a finite collection of zero values labelling
each place. In Fig.1 we show a MTAPN modeling a producer/consumer system.

Let us now see how we can fire transitions, and how we model the passage
of time.

Definition 2. (Firing rule)
Let N = (P, T, F, times) be a TAPN, M a marking on it, and t ∈ T .
3 To simplify some definitions we consider only arcs with weight 1, but the extension

to general arcs with greater weights is straightforward.
4 In fact, it would not be a problem to allow initial markings containing older tokens,

as long as we only have a finite number of tokens. Then, the main reason for imposing
this restriction is to capture the intuitive idea that initial tokens have not had yet
time to become old.
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Fig. 1. Timed-arc Petri net modeling the PC-problem

(1) We say that t is enabled at marking M if and only if:

∀p ∈ •t ∃xp ∈ IN such that M(p)(xp) > 0 ∧ xp ∈ times(p, t)

i.e., on each precondition of t we have some token whose age belongs to
times(p, t).

(2) If t is enabled at M , it can be fired, and by its firing we reach any marking
M ′ which can be obtained as follows:

M ′(p) = M(p)− C−(p, t) + C+(t, p), ∀p ∈ P

where both the subtraction and the addition operators work on multisets, and

– C−(p, t) ∈
{{{xp}|xp ∈ M(p) and xp ∈ times(p, t)} if p ∈ •t

{?} otherwise

– C+(t, p) =
{
? if p 6∈ t•

{0} otherwise

Thus, from each precondition place of t we remove a token fulfilling (1), and
we add a new token (with age 0) on each postcondition place of t.

As usual, we denote these evolutions by M [t〉M ′ , but it is noteworthy that
these evolutions are in general non-deterministic, because when we fire a
transition t, some of its precondition places could hold several tokens with
different ages, that could be used to fire it. Besides, we see that the firing of
transitions does not consume any time. Therefore, to model the passage of
time we need the function age, defined below. By applying it, we age all the
tokens of the net by the same time:

(3) The function age : M(N)× IN −→M(N ) is defined by:

age(M, x)(p)(y) =
{

M(p)(y − x) if y ≥ x
0 otherwise

The marking obtained from M after x units of time without firing any tran-
sitions will be that given by age(M, x).
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Although we have defined the evolution by firing single transitions, this can
be easily extended to the firing of steps or bags of transitions, since those transi-
tions that could be fired together in a single step could also be fired in sequence
in any order, because no aging is produced by the firing of transitions. In this
way, we obtain step transitions that we denote by M [R〉M ′. By alternating step
transitions and the passage of time we can define a timed step semantics, where
timed step sequences are those sequences σ = M0[R1〉x1M1 . . .Mn−1[Rn〉xnMn,
where M ′

is are markings, R′
is multisets of transitions and x′is ∈ IN, in such a way

that Mi[Ri+1〉M ′
i+1 and Mi+1 = age(M ′

i+1, xi+1). Note that we admit xi = 0 in
order to allow null intervals of time between two causally related steps. However,
note that this does not imply that both steps could be fired together in a single
step. Therefore, we maintain the distinction between parallelism and sequential-
ity. Finally, we denote sequences σ by M0[ R 〉xMn, where R = R1R2 . . . Rn and

x =
n∑

i=1

xi, whenever we do not need to keep track of the values of each xi.

Most of the interesting properties of TAPN’s, as the terminology to define
them, are direct translations of properties of untimed Petri nets, although in
some cases the introduction of time makes necessary to change the way in which
these properties are defined. Besides, we also have some new properties for which
time plays a central role.

Given a MTAPN (N, M0), we define [M0〉 as the set of reachable markings
on N starting from M0. Given m ∈ IN we define by [M0〉m the set of reachable
markings by a computation of total duration m:

[M0〉m = {M | ∃R, M0[ R 〉mM }
When M ∈ [M0〉m we say that M is reachable in time m. The MTAPN (N, M0)
terminates if there is no infinite computation. A place p ∈ P is bounded if there
exists n ∈ IN such that for all M ∈ [M0〉 we have |M(p)| ≤ n; we say that it is
time-locally bounded if for all t ∈ IN there exists n ∈ IN such that for all M ∈ [M0〉
we have |M(p)(t)| ≤ n; finally, it is uniformly time-locally bounded if there exists
n ∈ IN such that for all t ∈ IN and all M ∈ [M0〉 we have |M(p)(t)| ≤ n. We
say that (N, M0) is bounded (resp. time-locally bounded, uniformly time-locally
bounded) if every p ∈ P in it is bounded (resp. time-locally bounded, uniformly
time-locally bounded)5.

As a matter of fact, we have only defined uniformly time-locally bounded-
ness for completeness, since for TAPN’s it is immediate to prove the following
property:

Proposition 3. Given a MTAPN (N, M0) and p ∈ P , we have that p is time-
locally bounded in N iff it is uniformly time-locally bounded in it.

Proof. Since only tokens of age 0 are created, for all M1 ∈ [M0〉N and all m ∈ IN
there exists M2 ∈ [M0〉N such that for all p ∈ P we have M1(p)(m) ≤ M2(p)(0).

5 Note that we cannot define boundedness equivalently by saying that the reachability
set is finite, since by aging a marking we can always obtain older and older different
markings.
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As a consequence, if p is time-locally bounded in N , the corresponding bound
for age 0 is a uniform bound for any age. ut

3 Decidability of Timed Reachability

In [22] we have proved the following result:

Theorem 4. The reachability problem for MTAPN’s is undecidable.

However, timed reachability is decidable, since given (finite) time m one can
simulate the behaviour of a MTAPN up to that instant by means of a plain Petri
net Nm, which is defined as follows:

Definition 5. Given a TAPN N = (P, T, F, times), an initial marking M0 for
it 6 and m ∈ IN, we define the associated P/T Petri net Nm = (Pm, T m, Fm)
as follows:

• P m = (P × 0..m) ∪ { ci | i ∈ 0..m },
• The set of transitions is the set

T m = { (t, ages, l) | ages : { p | (p, t) ∈ F }→(times(p, t) ∩ 0..m), l ∈ 0..m }
∪ { ticki | i ∈ 1..m }

• The flow relation, Fm ⊆ (Pm × T m) ∪ (T m × Pm), is defined as the set

Fm = { (ci−1, ticki), (ticki, ci) | i ∈ 1..m } ∪
{ (ci, (t, ages, i)) | i ∈ 0..m } ∪
{ ((p, j), (t, ages, i)) | (p, t) ∈ F, j = i− ages(p) } ∪
{ ((t, ages, i), (p, i)) | (t, p) ∈ F , a ∈ 0..i }

Finally, as initial marking we would take Mm
0 defined by


Mm

0 (c0) = 1,
Mm

0 (ci) = 0 for all i > 0,
Mm

0 ((p, 0)) = M0(p) for all p ∈ P ,
Mm

0 ((p, i)) = 0 for all p ∈ P and i > 0.

It is not difficult to see how Nm works, simulating the behaviour of N up to
the instant m. The idea is that the age of the tokens is controlled in a static way:
tokens do not move when they become older; instead the clock places ci do the
work, since depending on the value of the global clock represented by them, the
firable transitions would take the consumed tokens from different places. In this
way, we capture the fact that the current age of a token on a place (p, j) ∈ P m is
equal to i− j, where ci is the currently marked clock place. All this is formalized
as follows:
6 It would not be difficult to extend this construction in order to allow any finite

marking as the initial marking M0. In such a case, we take P m = P ×−old(M0)..m,
where old is defined as in Def.6. Each token (p, i) in M0 would be represented by a
token on the corresponding place (p,−i) ∈ P m.
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Definition 6. Let N = (P, T, F, times) be a TAPN with an initial marking M0.
Given M an arbitrary marking of N and m ∈ IN:

(1) We define old(M) = max{ i | ∃i ∈ M(p) }.
(2) If old(M) ≤ m we say that the marking Mm of Nm defined by


Mm(cm) = 1,
Mm(ci) = 0 for all i < m,
Mm((p, j)) = M(p)(m− j) for all j ∈ 0..m

is the representation of M in Nm.

Theorem 7. For each marking M of a TAPN N such that old(M) ≤ m we
have that M ∈ [M0〉m iff Mm ∈ [Mm

0 〉Nm .

Corollary 8. Timed reachability is decidable for TAPN’s.

4 Decidability of Coverability

In this section we will prove that coverability is decidable for timed-arc Petri
nets. Nevertheless, the proof of this result cannot be obtained by generalizing
the coverability tree [12] in a proper way. Instead, we have to use a backward
technique recently presented in [2,13].

Definition 9. ([12,2] Well-structured transition systems)
A well-structured transition system (WSTS) is a structure S = 〈Q,→,v〉
such that:

(1) Q = {M, . . .} is a set of states,
(2) →⊆ Q×Q is a set of transitions,
(3) v⊆ Q×Q is a well-quasi-ordering (wqo) on the set of states, that is,
a reflexive, transitive and well founded relation such that

M → M ′ and M1 w M imply M1 → M ′
1 for some M ′

1 w M ′.

Definition 10. (Upward closed sets)
Let S be a WSTS and Q its set of states.

(1) We say that K ⊆ Q is upward closed iff whenever M ∈ K we also have
M ′ ∈ K for all M v M ′.

(2) If K ⊆ Q is upward closed and s ∈ IN, we define covers(K) as the set of
all the states from which one can reach a state in K in exactly s steps.

(3) If K is upward closed and B ⊆ K, we say that B is a basis of K iff
K = {M ′ | ∃M ∈ B, M v M ′ }.
From now on, for K ⊆ Q, ↑ K denotes the set {M ′ ∈ Q |∃M ∈ K, M v M ′}.
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Proposition 11. If S is a WSTS, any upward closed set in it admits a finite
basis.

Definition 12. (Effective WSTS)
Let S be a WSTS. We say that S is effective iff the following conditions hold:

(1) v is decidable.
(2) For each finite set B ⊆ Q we can effectively compute a finite basis of the
set ↑ (cover1(↑ B)).

Theorem 13. [2,13] For effective WSTS’s coverability is decidable.

Next we recall the main ideas of the proof of this result in the case of Petri
nets:

− If M can be covered from M0 there exists M ′ ∈ [M0〉 with M v M ′. Then
we consider the last step of these computations, taking M ′′ ∈ [M0〉 such that
M ′′[t〉M ′. We take as cover1(M) the set of these markings M ′′.

− Iterating this construction we obtain coverk(M) for all k ∈ IN. It can be
proved that each one of these sets is upward closed.
Then we define cover∗k(M) as

⋃
l≤k

coverl(M). Obviously, k ≤ k′ implies

cover∗k(M) ⊆ cover∗k′(M). But by applying the fact that v is a well-
quasi-ordering, there must exist some k ∈ IN such that cover∗k+1(M) =
cover∗k(M). If we take as cover∗(M) such a set, it is clear that M can be
covered from M0 iff M ∈ cover∗(M0).

− Since the sets cover∗k(M0) are infinite we could not cope directly with them
in an effective way. But applying Prop.11 we can effectively characterize
these sets by their finite basis.

In order to apply this technique to prove the decidability of the coverability
problem for MTAPN’s, we have to find an adequate ordering relation between
their markings. The natural candidate would be the multiset inclusion, as it is
the immediate generalization of the adequate ordering for ordinary nets. Unfor-
tunately, that would not work since IN is an infinite set, and then if for any place
p ∈ IN we consider the singleton markings Mi = {(p, i)} we have Mi *Mj , when-
ever i 6= j. Nevertheless, it is possible to find an adequate ordering taking into
account the fact that when a token becomes old enough its age becomes unim-
portant since it can be only used to fire those transitions for which M2(p, t) = ∞.
This is formalized as follows:

Definition 14. Let N = (P, T, F, times) be a TAPN.

(1) For each p ∈ P we define
Max (p) = Max{{ π1(p, t) | t ∈ p•} ∪ {π2(p, t) | t ∈ p• , π2(p, t) < ∞ }}

and S(p) = Max (p) + 1.
(2) We define the stable time of N , St(N), as Max{ S(p) | p ∈ P }.
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Thus, we have that once the age of a token on p exceeds Max (p) the only
postcondition transitions t ∈ p• that could be fired by using that token are those
for which π2(p, t) = ∞. Obviously, in order to fire such a transition t the age of
the involved token on p is unimportant once it exceeds S(p). The same is true
in a uniform way for all the places of the net if we take St(N) instead of the
values S(p).

Now we can define an adequate ordering relation v′ between markings of a
time-arc Petri net as follows:

Definition 15. Let N = (P, T, F, times) be a TAPN and M ,M ′ two of its
markings. M v′ M ′ iff the following conditions hold:

(1) M |St(N)−1 ⊆ M ′|St(N)−1 where for all p ∈ P , i ∈ IN, for any marking M
and any k ∈ IN we have

M |k(p)(i) =
{

M(p)(i) if i ≤ k
0 otherwise

(2) For all p ∈ P |{i ∈ M(p) | i ≥ St(N)}| ≤ |{i ∈ M ′(p) | i ≥ St(N)}|.

Proposition 16.

(1) v′ is a well-quasi-ordering.
(2) If we consider the equivalence relation ∼′ induced by v′, whenever
M1 ∼′ M2, for all t ∈ T we have that M1[t〉 ⇔ M2[t〉, and if M1[t〉M ′

1 there
exists M ′

2 such that M2[t〉M ′
2 and M ′

1 ∼′ M ′
2.

As an immediate consequence we have the following

Theorem 17.

(1) The transition system generated by the firing rule of any TAPN, N , be-
comes a well-structured transition system when we take as ordering relation
between its markings the corresponding relation v′.

(2) Coverability is decidable for timed-arc Petri nets.

Proof.

(1) Immediate, by application of the firing rule for TAPN’s.
(2) Let M be the marking that we want to know if it is coverable from M0.
If M = M |St(N)−1 then we can apply the procedure in the proof of Th.13 in
order to decide if it is coverable. Otherwise, this procedure cannot be directly
used, because of the fact that v′ does not preserve the information about the
exact age of the tokens once they become older than St(N). Nevertheless,
since markings are finite, we can consider max (M) = max{i |∃(p, i) ∈ M } <
∞, taking as ordering relation v′′ that is defined exactly as v′ but replacing
St(N) by max (M) + 1 > St(N). Then we have that v′′ has the same good
properties as v′, and in addition it fully preserves the information about the
age of the tokens when they are younger than max (M). Therefore, using this
ordering relation one can decide if the given marking M is coverable from
M0.

ut
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We could continue the study of some other properties of timed-arc Petri nets
in a direct way, but in order to avoid the repetition of similar reasonings to
those made in [9,10] when studying reset and transfer nets, we will prove in the
next section that transfer nets and timed-arc Petri nets can simulate each other.
This makes possible to translate to TAPN’s most of the known results about
decidability and undecidability for transfer nets.

5 Relating Timed-Arc Petri Nets and Transfer Nets

We start this section by presenting reset and transfer nets. Both are particular
cases of Generalized Self-Modifying nets which have been thoroughly studied in
[10].

Definition 18. (Reset and transfer nets)

(1) A reset net is a 3-tuple N = 〈P, T, F 〉 where

• P = {p1, . . . , p|P |} is a finite set of places,

• T is a finite set of transitions (with P ∩ T = ?),

• F : (P ×T )∪ (T ×P ) → IN∞ is a flow function where IN∞ = IN∪{∞}
and for all (t, p) ∈ (T × P ), F (t, p) ∈ IN.

Whenever F (p, t) = ∞ we say that (p, t) is a reset arc and that t resets p.

(2) A marked reset net is a pair (N, m0) where N is a reset net and
m0 ∈ IN|P | is the initial marking.

(3) A transfer net is a 4-tuple N = 〈P, T, F, TA〉 where 〈P, T, F 〉 defines an
ordinary P/T net and TA is a function TA : T → P(P × P ), that defines
the transfer arcs, , verifying

(p, p′) ∈ TA(t) ⇒
(
(¬∃p′′ 6= p′ (p, p′′) ∈ TA(t)) ∧ F (p, t) = F (t, p′) = 0

)
.

(4) A marked transfer net is a pair (N, m0) where N is a transfer net and
m0 ∈ IN|P | is the initial marking.

Firing rules for reset and transfer nets are defined as follows:

Definition 19. (Firing rules)
A transition t is firable in a reset or transfer net whenever it is firable in the
corresponding plain P/T net obtained by removing reset and transfer arcs. The
firing of t from M produces a new marking M ′ which is defined exactly as for
ordinary nets, but whenever we have a reset or a transfer arc we have instead:

(1) If F (p, t) = ∞ then M ′(p) = F (t, p), which means that we take all the
tokens from p, and we only return someone if p is a postcondition of t.
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(2) If (p, p′) ∈ TA(t), we have the following (non disjoint) cases 7:
(a) There is no place p′′ such that (p′, p′′) ∈ TA(t): M ′(p′) = M(p′)+M(p).
(b) There is a place p′′ such that (p′, p′′) ∈ TA(t): M ′(p′) = M(p).
(c) There is no place p′′ such that (p′′, p) ∈ TA(t): M ′(p) = F (t, p).
(d) If there is a place p′′ such that (p′′, p) ∈ TA(t), one can proceed as in

case (b), since we have (p′′, p), (p, p′) ∈ TA(t).

Next we recall some of the results about decidability of properties of reset
and transfer nets which have been presented in [10,15].

Theorem 20.

(1) Coverability and termination are decidable for reset and transfer nets.
(2) Boundedness is decidable for transfer nets, but undecidable for reset nets.
(3) Structural boundedness is decidable for transfer nets.
(4) Place boundedness is undecidable for both reset and transfer nets.

In the following we will see that timed-arc Petri nets and transfer nets are
closely related. First we will see how to simulate timed-arc Petri nets by transfer
nets. In order to do it, we need some previous definitions:

Definition 21. Let N = (P, T, F, times) be a TAPN and B ∈ IN such that
B ≥ St(N). We define the transfer net NB = (PB, T B, FB, TAB) which simu-
lates N by preserving the age information up to the instant B, as follows:

• P B = P × 0..B,
• T B = {(t, ages) | t ∈ T, ages : {p | (p, t) ∈ F} → (times(p, t) ∩ 0..B)} ∪
{tick},
• FB = {((p, a), (t, ages)) | ages(p) = a} ∪ {((t, ages), (p, 0)) | (t, p) ∈ F},
• For all (t, ages) ∈ T B TAB((t, ages)) = ?,
• TAB(tick) = {((p, a), (p, a + 1)) | p ∈ P, a < B}.
In this definition, each place (p, a) with a < B represents the tokens in the

original place p ∈ P with age a, while (p, B) represents those tokens whose age
is greater or equal than B. Each transition (t, ages) represents the firing of t by
consuming tokens in its precondition places whose ages are defined by the values
of ages. So, each possible value of the function ages corresponds to a different
selection of the ages of the consumed tokens (thus to any of the different ways
to fire t in N , as defined in Def.2(2)). To be exact, we are identifying all the
ages older than B, what has no negative influence, taking into account that
B ≥ St(N). Finally, the passage of time is modelled by the transition tick that
ages all the tokens in the net that are not older than B.

As a consequence, the markings of both nets N and NB are related as follows:
7 We have to distinguish whether we have one or more transfer arcs associated to the

same transition.
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Definition 22.

(1) Given a marking M of N we define the associated marking MB of NB

by {
MB(p, a) = M(p)(a) if a < B
MB(p, B) =

∑
a≥B

M(p)(a)

(2) Given a marking M ′ of NB we define the set of markings represented by
M ′, tr(M ′), as tr(M ′) = {M ∈M(N) |MB = M ′ }.
The following theorem formalizes the fact that NB is a full simulation of N

up to age B:

Theorem 23. Let N be a TAPN, B ≥ St(N) and NB the associated transfer
net, we have:

(1) For any marking M ′ of NB, if M1, M2 ∈ tr(M ′) then M1|B−1 = M2|B−1.
(2) Whenever we have M1[t〉NM2, there exists some (t, ages) ∈ T B such that
MB

1 [(t, ages)〉NB MB
2 .

(3) If M ′
1[(t, ages)〉NB M ′

2, then for all M1 ∈ tr(M ′
1) we have M1[t〉NM2 for

some M2 ∈ tr(M ′
2).

Therefore, TAPN’s can be smoothly simulated by transfer nets; as a conse-
quence, any decidable property for these latter preserved by the simulation is
also decidable for the former. In particular, we could have used this simulation
to prove decidability of coverability, but we prefered to do it in a direct way in
order to emphasize the role of the bound St(N), which allow us to reason about
the ages of the tokens in a finitary way. We also have the following:

Corollary 24.

(1) Boundedness of MTAPN’s is a decidable property.
(2) Structural boundedness of MTAPN’s is also decidable.

By applying this simulation we can also conclude the decidability of termina-
tion of TAPN’s. Nevertheless, this cannot be done in a straightforward way, since
the computations of the nets NB never terminate (because tick transition has
no precondition and therefore it can be executed forever). Instead, we have to
study if any infinite computation of this net does not terminate with an infinite
suffix containing only tick transitions. But, due to the structure of these nets,
whenever we iterate the execution of tick for at least St(N) times we reach a
stable marking where all the tokens are St(N) old. Besides, it is easy to see that
before this happens we can only reach a marking that is bigger than or equal
to some previous one in the computation if we have executed some non-tick
transition in between. Therefore, by applying the finite reachability technique in
[12], and not taking into account the execution of tick when it does not change
the current marking, we can prove the following:

Corollary 25. Termination of TAPN’s is decidable.
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In order to prove that the undecidability results for transfer nets are also pre-
served on TAPN’s we need the converse simulation. This is a much more elabo-
rated construction, that is somehow based on the simulation of counter machines
that was used in [22] to prove undecidability of reachability for MTAPN’s, and
in [10,11], to prove undecidability of boundedness for reset nets. The main ideas
of this simulation are to introduce transitions to represent transfer arcs, and to
force the transitions to consume tokens one instant old. Together with the good
computations also some bad but non-dangerous computations will be generated.
Besides, older tokens become dead.
Definition 26. Let N = 〈P, T, F, TA〉 be a transfer net. We define the associ-
ated TAPN, N I = 〈P I , T I , F I , timesI〉, as follows:

• P I = P ∪ {n} ∪ {rt | t ∈ T }, where n and each rt will be control states to
capture the different (normal and reset) working states of the net.
• T I = T ∪ {vt,p | p ∈ P, t ∈ T } ∪ {rnt | t ∈ T }, where the transitions vt,p will
be used to reset the age of the tokens after the firing of t and transfer them to
the corresponding place when there exists some transfer arc (p, p′) ∈ TA(t).
Finally, the transitions rnt are used to recover the normal state of the net.
• The flow function, F I ⊆ (P I × T I) ∪ (T I × P I) is defined as the set

F I = F ∪ {(p, vt,p), (rt, vt,p), (vt,p, rt) | p ∈ P, t ∈ T }
∪ {(vt,p, p

′) | p ∈ P, t ∈ T, (p, p′) ∈ TA(t)}
∪ {(vt,p, p) | p ∈ P, t ∈ T,¬∃(p, p′) ∈ TA(t)}
∪ {(rt, rnt), (rnt, n) | t ∈ T }
∪ {(n, t), (t, rt) | t ∈ T }

• timesI : F I |P I×T I → IN× IN is defined by
timesI(pI , tI) =

{
[0, 0] if pI ∈ {rt | t ∈ T }
[1, 1] otherwise.

It is easy to see that N I can simulate the behaviour on N in the following way:
Each marking M of N will be represented by the marking M I given by

• For each p ∈ P with M(p) = k we take M I(p) = 0k, where 0k denotes the
multiset containing k zero values.

• M I(n) = 01 and M I(rt) = ?, for all t ∈ T .

Then, whenever we have M [t〉NM ′, we can represent in N I the firing of t by
means of the following steps:

(a) M I [?〉1ages(M I , 1), that is, we age one unit all the tokens in M I .
(b) ages(M I , 1)[t〉0M ′′I , that is, we fire (the copy of) t. As a consequence, the

tokens in •t are removed from these places, having age 1, while the tokens
in t• are added to these places, having age 0.

(c) In order to obtain the marking representing M ′ in N I , M ′I , we have to
transfer the tokens in each p ∈ P , for which there exists some (p, p′) ∈ TA(t),
to the corresponding p′. This is made by firing M ′′I(p)(1) copies of vt,p.
Besides, for each p ∈ P for which there is no transfer arc (p, p′) ∈ TA(t) we
have to rejuvenate the tokens in M ′′I(p) by firing M ′′I(p)(1) copies of the
corresponding transition vt,p.

(d) Finally, we recover the “normal” state of N I by firing rnt.
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It is easy to see that no other transition can be fired until we terminate a
step of the simulation by firing the last transition rnt. Therefore, we only have
two possibilities: either we strictly follow the procedure above, thus obtaining
M ′I , or we fire rnt in advance to get some marking M ′′′I . In this last case, if we
denote by M∗I the submarking of M ′′′I constituted by the tokens having age 0,
we have M∗I ⊆ M ′I . However, the older tokens in M ′′′I , having age 1, become
dead, since the only way in which N I can evolve is by aging M∗I , and in such
a case these tokens become too old to be used in the future, since no transition
in N I can consume a token older than 1.

So we obtain the following:

Theorem 27. N I weak-simulates N , which means that by means of the com-
putations of transitions in N I we obtain as reachable markings, when restricting
ourselves to tokens having age 0, the representations M ′I of the reachable mark-
ings in (N, M0) and their approximations M∗I ⊆ M ′I.

As a consequence, most of the undecidability results for transfer nets can be
translated to TAPN’s. In particular, we have the following:

Proposition 28. Timed-locally boundedness is undecidable for TAPN’s.

Proof. Since the projections of the markings of the simulating net N I on the set
of tokens having age 0 are just the representations of the reachable markings in
N and their approximations, for each p ∈ P we have that p is bounded in N iff
there exists some k ∈ IN such that for all M ′ ∈ [M I〉NI we have M ′(p)(0) ≤ k.
Therefore, since place boundedness is undecidable for transfer nets, we conclude
that timed-locally boundedness is also undecidable for TAPN’s. ut

In the following section we will present some more consequences of the mutual
reductions between transfer nets and TAPN’s. Before, we will note that the same
construction can be used to simulate reset nets, by only including recovering
transitions vt,p for those places p ∈ P with F (p, t) ∈ IN. Of course, in this case,
even when we exactly replicate the behaviour of the original net, something is
lost; namely, the global boundedness character of the net. This is because we
are not able to accurately capture the resetting character of reset arcs: instead
of removing the corresponding tokens we just avoid its rejuvenation; so they
become dead and thus have no other influence in the forthcoming behaviour of
the net, but they remain in the reachable markings, and thus they probably alter
the boundedness character of the net. As a consequence of this fact, we do not
know yet if place boundedness is or not decidable for TAPN’s.

6 Eliminating Dead Tokens

Let us now turn our attention to dead tokens. It is obvious that they can be elimi-
nated without affecting the future behaviour of the net, although the reachability
set will be affected when doing it. Moreover, the reachable markings with dead
tokens are exactly those which are obtained by inserting these dead tokens into
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the markings that are reachable after their removal. Then, we are interested in
eliminating dead tokens, because by doing so we decrease the number of reach-
able markings, thus slightly reducing the state explosion. At first, we have to
exactly define what a dead token is.

Definition 29. (Dead tokens)
Given a TAPN N = (P, T, F, times) and a marking M of it, we say that a token
in M is dead if there is no reachable marking M ′ ∈ [M〉 and no transition t ∈ T
such that t is enabled at M ′ and some of its firings can consume that token.

We will see that, as a consequence of the decidability of coverability for
TAPN’s, dead tokens can be effectively detected. However, this is not obtained
as an immediate corollary. Instead, we have to slightly change the coding of a
TAPN by a transfer net, by adding a clock:

Definition 30.

(1) We define the clocked transfer net NCB which simulates a TAPN N
by representing the global clock of N and preserving the age information
up to B, by NCB = 〈PB ∪ {clock}, T B, FCB, TAB〉 where FCB = FB ∪
{(tick, clock)}.

(2) We define the ordering vB between markings of the net NCB by M1 vB M2

iff M1(clock) = M2(clock) and M1|P B ⊆ M2|P B .

We have defined in this way the covering ordering vB since we need to
control the passage of time and this is clearly lost if tick tokens are treated in
an accumulative way. But it is clear that vB is not a well-quasi-order since the
number of tick-tokens is not bounded a priori. Fortunately, it is only necessary
to measure time up to a known bound. This can be done by slightly changing
the definition of NCB:

Definition 31. Given B′ ∈ IN we define NB,B′
as NCB, but taking

• P B,B′
= PB ∪ {c0, . . . , cB′},

• T B,B′
= T B ∪ {tick1, . . . , tickB′ , tick∞},

• FB,B′
= FB ∪{(ci−1, ticki), (ticki, ci) | i ∈ 1..B′}

∪{(cB′ , tick∞), (tick∞, cB′)}.
Then we define vB,B′ , taking M1 vB,B′ M2 iff

M1|P B ⊆ M2|P B ∧ M1|P B,B′−P B = M2|P B,B′−P B

Now, we define clock safe markings as those markings M having
B′∑
i=0

M(ci) =

1, so it is clear that if we take as initial marking any M0 with M0(c0) = 1 and
M0(ci) = 0, ∀i 6= 0, all the reachable markings are clock safe. And if we restrict
vB,B′ to these clock safe markings, it is easy to see that the corresponding
transition system is well structured.

Let us now consider a token (p, i) in a given marking of a TAPN N that we
take as its initial marking M0. If it is not dead then we have some reachable
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marking M0[ R 〉mM , where m denotes the total ellapsed time, and some firable
t, M [t〉, with (p, t) ∈ F and i + m ∈ times(p, t). As a consequence, we have the
following:

Proposition 32. For each token (p, i) on the initial marking M0 of a MTAPN
N and each t ∈ T with (p, t) ∈ F , there exists some reachable marking M0[R〉mM
with M [t〉 and i + m ∈ times(p, t) iff there exist some m ∈ 0..St(N) with
i + m ∈ times(p, t) and some M ′ ∈ M(NSt(N),St(N)) with M ′(cm) = 1 and
M ′[t〉, such that M ′ is coverable from MB,B′

0 with respect to vSt(N),St(N), where
MB,B′

0 is defined as MB
0 , adding MB,B′

0 (c0) = 1.

Corollary 33. We can decide when a token of a marking of a TAPN is dead.

Proof. We only have to apply Th.13 for each one of the minimal markings of the
set {M ∈M(NSt(N),St(N)) |M [t〉 and M(cm) = 1 with i+m ∈ times(p, t)} ut

We can also consider a weaker version of dead tokens. The reason why we
introduce this new notion is because by means of dead tokens we wanted to
capture the fact that they are useless, since they cannot be used to fire any
transition in the future. However, when we have several identical tokens in the
same place it is possible that some (but not all) of them can be used to fire such
a transition. If this were the case, under our Def.29 any such token would be
said to be non-dead. We need a weaker notion if we want to say that some of
these identical tokens is indeed (weakly) dead.

Definition 34. (Weakly dead tokens) Given a TAPN (P, T, F, times) and a
marking M of it, a token in M at the place p is not8 weakly dead if there is
some reachable marking M ′ ∈ [M〉 such that M ′ contains at p a single token as
old 9 as the given one, and there is some enabled transitions at M ′ whose firing
can consume that token.

The detection of weakly dead tokens in TAPN’s turns out to be a rather
pathological task, as the following result shows:

Theorem 35.

(1) It is not possible to effectively detect weakly dead tokens with age 0.
(2) We can effectively detect any weakly dead token having a positive age.

Proof.

(1) We use the fact that reachability in TAPN’s can be reduced to zero-
reachability of a single given place. This is proved in a similar way as for
classic P/T nets.

8 We define this concept in a negative way in order to have a more clear definition
9 Taking into account the fact that the given token has possibly grown during this

computation.
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(2) (sketch) We consider the transfer net NB simulating N , defined as in
Def.21, but introducing into it clock places, as in Def.31, by means of which
we can control when a token from the same place and having the same
age that the given one, is consumed by the firing of a transition. Then we
introduce a counter place where we put a token each time that happens.
Then, it is clear that the given token is weakly dead iff we can put in this
counter place (at least) as many tokens as we had in the given marking at
the same place having the same age as the original one. Since coverability is
decidable for TAPN’s we conclude that, in this case, weakly dead tokens are
effectively detectable.

ut

The reason why the situation is different depending on the age of the given
token is that whenever we create a new token its age is 0. Therefore, when the
age of the given token is positive, we know in advance how many tokens like it
have to be consumed in order that the given one will be necessary to fire some
new transition. Instead, when the age is 0, we could create some new copies of
the given token before the marking is aged, thus making impossible to control
when the last clone of the given token is consumed.

7 Conclusions, Discussion, and Future Work

We have studied timed-arc Petri nets, for which we have proved that coverability,
termination and boundedness are decidable, but timed-locally boundedness is
not. We have also seen that dead tokens can be effectively detected. All of this is
due to the close relationship between TAPN’s and transfer nets, because enabling
of transitions is closely related to coverability.

Besides place boundedness, there are some other timed properties of TAPN
in which we are interested but unfortunately we do not know yet if they are
decidable or not. For instance, we could say that N is non-Zeno if it has no
infinite computation with finite duration, i.e. such that, the number of aging
steps in it is finite.

If we take into account the relationship between TAPN’s and transfer nets
we see that in order to decide this kind of properties we should be able to decide
on transfer nets properties like:

Is there any infinite computation along which only finitely many instances of
transitions having transfer arcs are executed?

This kind of properties have been proved to be decidable for plain nets. But
the technique to do it is to characterize infinite computations by means of looping
ones. This cannot be done for transfer nets since the coverability tree does not
give enough information to characterize the behaviour of such a net.

So, in order to extend our knowledge about decidability of properties of
TAPN’s, or equivalently on transfer nets, we have to study which are the logics
for which the model checking problem is decidable for this kind of nets. In
order to obtain these logics we should take into account that the corresponding
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decidability proofs should be based on the use of the backward technique in [2,12],
instead of using the coverability tree.

Concerning the possibility of extending our results to continuous time, we
conjecture that it can be done in the case where the limits of the intervals defining
the age of the tokens to be consumed by the firing of a transition are integer
(or rational) values, but allowing arbitrary passage of time along computations
to be in IR. The idea to prove such a result would be to take into account that
the age of a token is only defined by the instant at which it is produced. Then,
we should prove that any timed step sequence could be represented by some
equivalent one where aging steps are defined by integer values.

If this conjecture is proved to be correct, we should look for a continuity
argument by means of which these results for the rational case could be extended
to arbitrary TAPN’s whose firing intervals are defined by real values.

We already succeeded on the extension of decidability of coverability for
timed Petri nets to the rational and real cases [21], although the ideas there
applied cannot be directly translated to the case of timed-arc Petri nets. It could
be the case that such a generalization would be not possible in this framework. In
fact, in [21] we can also find some result for the discrete time case whose proof
cannot be translated to dense time domains. But perhaps, by an alternative
proof one could get such a generalization.
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