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Abstract—An interval temporal logic is a propositional, multi-
modal logic interpreted over interval structures of partial
orders. The semantics of each modal operator are given in the
standard way with respect to one of the natural accessibility
relations defined on such interval structures. In this paper,
we consider the modal operators based on the (reflexive) sub-
interval relation and the (reflexive) super-interval relation. We
show that the satisfiability problems for the interval temporal
logics featuring either or both of these modalities, interpreted
over interval structures of finite linear orders, are all PSPACE-
complete. These results fill a gap in the known complexity
results for interval temporal logics.

Keywords-interval temporal logic; decidability; computa-
tional complexity

I. INTRODUCTION

Interval temporal logics provide a natural framework for
representing and reasoning about temporal properties in
many areas of computer science, including formal specifica-
tion and verification of reactive systems, temporal databases,
knowledge representation, and natural language semantics
[1]. For many years, the discouragingly high computational
complexity of these logics impeded their systematic inves-
tigation. (As an example, Halpern and Shoham’s modal
logic of time interval HS [2] and Venema’s CDT logic [3]
are highly undecidable.) Recently, however, the discovery
of expressive decidable fragments of HS has generated
renewed interest in this subject. The most significant of these
fragments are the logics of temporal neighbourhood [4] and
the logics of sub-interval and super-interval structures [5].
Decidability of temporal neighbourhood logics over various
classes of linear orders can be proved by reducing their
satisfiability problems to that of the two-variable fragment
of first-order logic over the same classes of linear orders
[6]. In fact, neighbourhood temporal logic turns out to be a
maximal decidable fragment of HS, when interpreted over
any class of linear orders that contains at least one linear
order with an infinitely ascending/descending sequence [4],
[7], [8]. In this paper, we focus on interval logics of sub-
interval and super-interval structures.

There are three natural definitions of the sub-interval

relation [5]: reflexive � (the current interval is a sub-interval
of itself), proper � (sub-intervals share at most one endpoint
with the current interval), and strict �· (both endpoints of
the sub-intervals are strictly inside the current interval).
And interval temporal logics based on all of these versions
of the sub-interval relation—interpreted over the class of
dense linear orders—have been studied in the literature.
Thus, the logic D� of reflexive sub-intervals is studied by
van Benthem in [9], where it is proved to be equivalent
to the standard modal logic S4. In [10], Shapirovsky and
Shehtman establish a connection between the logic of strict
sub-intervals D�· and the logic of Minkowski space-time.
They provide a sound and complete axiomatic system for
D�· ; moreover, they prove PSPACE-completeness of D�·
by means of a suitable filtration technique [10], [11]. An
optimal tableau system for D�· is given by Bresolin et al. in
[5]. Finally, the logic D� is treated extensively in [5]. The
authors prove decidability and PSPACE-completeness of D�,
and provide an optimal tableau system.

All of the above results concern logics interpreted over
dense linear orders; and the question naturally arises as
to what happens if we consider classes of discrete orders
instead. In this paper, we go some way to answering this
question. Specifically, we study the satisfiability problem of
interval temporal logics based on the reflexive sub-interval
and super-interval relations interpreted over finite linear
orders.

The paper is organized as follows. In Section II, we
give the syntax and semantics of three propositional modal
languages: LD, featuring the modal operator [D], LD̄,
featuring the modal operator [D̄], and LD,D̄, featuring both
operators. Informally, we read [D]ϕ as “ϕ is true at all sub-
intervals of the current interval”, and [D̄]ϕ as “ϕ is true at all
super-intervals of the current interval”. We interpret all three
languages over the class of finite linear orders. In Section III,
we prove PSPACE-hardness of the satisfiability problem for
LD and LD̄, by reduction from the satisfiability problem for
quantified Boolean formulas. In Section IV, we prove that
the satisfiability problem for LD is in PSPACE. In Section
V, we generalize this latter result to LDD̄. It can easily be
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Figure 1. Geometrical depiction of intervals.

shown that the proposed techniques cannot be directly lifted
to the strict and proper cases. Moreover, the undecidability
of various extensions of the logics of sub-interval and super-
interval structures has been recently proved [4], [7], [12].

II. PRELIMINARIES

Fix a set P of proposition letters, and denote its power
set by P(P). The language LD is defined to be the smallest
set of expressions satisfying:

(i) P ⊆ LD;
(ii) if ϕ,ψ ∈ LD, then ϕ ∧ ψ, ¬ϕ, [D]ϕ ∈ LD.

The language LD̄ is defined similarly, but with [D̄] in place
of [D]; the language LDD̄ contains both modalities.

In the following, we employ the usual abbreviations ϕ ∨
ψ (for ¬(¬ϕ ∧ ¬ψ)), 〈D〉ϕ (for ¬[D]¬ϕ), and 〈D̄〉ϕ (for
¬[D̄]¬ϕ). We denote by ‖ϕ‖ the total number of symbols
occurring in ϕ. For the purposes of this paper, an interval
is a set of the form {h ∈ N | i � h � j}, where i, j are
positive integers with i � j; we write [i, j] to denote this
interval. Note that intervals are finite and non-empty, but
may be singletons. If I is an interval, we write Sub(I) to
denote the set of intervals J such that J ⊆ I . A structure
is a pair A = (IA, ·A), where IA = [1,m] for some m � 1,
and ·A is a function from Sub(IA) to P(P). We refer to
IA as the domain of A, m as the size of A, and ·A as the
interpretation function of A. We define a truth-relation for
LDD̄-formulas (hence for LD-formulas and LD̄-formulas),
relative to structures A and intervals I ⊆ IA, as follows:

(i) for p ∈ P, A |=I p if and only if p ∈ IA;
(ii) the usual rules for ∧ and ¬;

(iii) A |=I [D]ϕ if and only if, for all intervals J ⊆ I ,
A |=J ϕ;

(iv) A |=I [D̄]ϕ if and only if, for all intervals J ∈ Sub(IA)
such that J ⊇ I , A |=J ϕ.

If Φ is a set of formulas, we write A |=I Φ if A |=I ϕ for
all ϕ ∈ Φ. If A |=I ϕ for some I ∈ Sub(IA), we say that
A is a model of ϕ. If ϕ has a model, then ϕ is satisfiable;
if ¬ϕ has no model, then ϕ is valid. We denote the set of
valid LD-formulas by D.

If I = [1,m], it is useful to depict Sub(I) as the upper
left-hand half of an m×m integer grid, as shown in Fig. 1,
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Figure 2. A relational frame satisfying (1)–(10).

where each interval [i, j] ∈ Sub(I) corresponds to the cell
in the grid having co-ordinates 〈i, j〉. In this representation,
all intervals sharing a common end-point j lie in the jth row
(counting from the bottom upwards), all intervals sharing a
common start-point i lie in the ith column (counting left-
to-right), and all singleton intervals [i, i] lie on the diagonal
section of the boundary. Motivated by this representation, if
A is a structure of size m, and 1 � j � m, then we refer to
the set of intervals {[i, j] | for some i (1 � i � j)} as the
jth row of A, and to the interval [i, j] as the ith cell in that
row. We refer to the mth row of A as the top row.

Evidently, we may identify LD with the language of
propositional modal logic, where [D] replaces the modal
operator �; and it is natural to ask how D is related,
under this identification, to the modal logics of various
familiar frame-classes. Thus, for example, it is easy to show
that every satisfiable LD-formula (using the semantics for
LD given above) has a relational (Kripke) model over a
finite, reflexive, transitive tree. Since the logic S4Grz is
known to be sound and complete for the class of finite,
reflexive, transitive trees [13, p. 101], we have S4Grz ⊆ D.
However, a little thought shows that this inclusion is strict.
For consider the following set of LD-formulas featuring the
proposition letters o, p, q, p1, p2, q1 and q2:

o (1)

[D](o ∨ p1 ∨ p2 ∨ q1 ∨ q2) (2)

[D](o→ 〈D〉(p1 ∧ ¬o) ∧ 〈D〉(q1 ∧ ¬o)) (3)

[D](p1 → 〈D〉(p2 ∧ ¬p1)) (4)

[D](q1 → 〈D〉(q2 ∧ ¬q1)) (5)

[D](p1 ∨ p2 → p) (6)

[D](q1 ∨ q2 → q) (7)

[D]¬(p ∧ q) (8)

[D](p→ [D]p) (9)

[D](q → [D]q). (10)

The corresponding �-formulas are easily seen to be satisfied
at the root of the reflexive, transitive tree with two depth-3
branches illustrated in Fig. 2 (where only the true proposition
letters are indicated); hence these formulas are S4Grz-
consistent.

Now suppose (1)–(10) are true at an interval I in some
structure A (under LD-semantics). From (3)–(5), every sub-



interval of I satisfying o has length at least 3, and every
sub-interval of I satisfying p1 or q1, length at least 2. Hence,
by (2), all unit-length sub-intervals of I satisfy either p2 or
q2, and by (6)–(8), no such interval satisfies both. By (1),
(3)–(7) and (9)–(10), there exists at least one unit-length
subinterval of I satisfying p2 and similarly for q2. Therefore,
we can find adjacent unit-length intervals, say, Jp satisfying
p2 and Jq, satisfying q2. Now consider the length-2 interval
J which includes Jp and Jq. Since J is of length less than
3, J cannot satisfy o; since Jp satisfies p by (6), J cannot
satisfy q1 or q2 by (7)–(8) and (10); likewise, J cannot
satisfy p1 or p2 by (6) and (8)–(9). This falsifies (2).

III. LOWER BOUND

The task of this section is to establish the PSPACE-
hardness of the satisfiability problems for D and D over
finite linear orders. The argument is straightforward, and
proceeds by reduction from the satisfiability problem for
quantified Boolean formulas, the canonical PSPACE-hard
problem. Recall, in this context, that a quantified Boolean
formula is an expression of the form

θ = Q1p1 . . . Qnpnψ, (11)

where ψ is a formula of propositional logic and, for all i (1 �
i � n), Qi is either ∀ or ∃. Given a truth-value assignment to
its free variables, θ is assigned a truth-value in the obvious
way; in particular, if θ is closed (has no free variables), it is
either true or false simpliciter. The problem of determining
the truth-value of closed quantified Boolean formulas was
shown to be PSPACE-complete in [14].

Theorem 1. The satisfiability problems for LD-formulas
and LD̄-formulas over finite linear orders are both PSPACE-
hard.

Proof: By (logarithmic space) reduction from the sat-
isfiability problem for quantified Boolean formulas. Let the
quantified Boolean formula θ, of the form (11), be given,
where ψ is a formula of propositional logic featuring only
the proposition letters p1, . . . , pn. We construct an LD-
formula θ̄, and show that θ̄ is satisfiable over finite linear
orders if and only if θ is true. For all i (0 � i � n), define θi

to be the formula Qi+1pi+1 . . . Qnpnψ, with free variables
p1, . . . , pi. Thus, θ0 = θ and θn = ψ.

The LD-formula θ̄ will feature the proposition let-
ters p1, . . . , pn together with additional proposition letters
q0, . . . , qn. We define θ̄ to be the conjunction of the follow-
ing set of formulas:

q0 (12)

[D](qi ∧ pj → [D](qk → pj)) (1 � j � i < k � n) (13)

[D](qi ∧ ¬pj → [D](qk → ¬pj)) (1 � j � i < k � n) (14)

[D](qi → 〈D〉qi+1) (0 � i < n) (15)

[D](qi → 〈D〉(qi+1 ∧ pi+1) (0 � i < n,Qi+1 = ∀) (16)

[D](qi → 〈D〉(qi+1 ∧ ¬pi+1) (0 � i < n,Qi+1 = ∀) (17)

q4, p4

q3,¬p3

q2, p2 q3, p3

q4,¬p4

q1,¬p1

q0

q4, p4

q3,¬p3

q2,¬p2

q3, p3

q4,¬p4

q1, p1

∅

¬p1 p1

¬p1, p2 p1,¬p2

¬p1, p2,¬p3 ¬p1, p2, p3 p1,¬p2,¬p3 p1,¬p2, p3

¬p1, p2,

¬p3, p4

¬p1, p2,

p3,¬p4

p1,¬p2,

¬p3, p4

p1,¬p2,

p3,¬p4

p1/0 p1/1

p2/1 p2/0

p3/0 p3/1 p3/0 p3/1

p4/1 p4/0 p4/1 p4/0

Figure 3. A tree-model and its embedding into a grid structure.

[D](qn → ψ) (18)

It is routine to check that the construction of θ̄ requires only
space bounded by a logarithmic function of ‖θ‖. Suppose
A |=I0 θ̄. We think of the truth of a proposition letter qi
(0 � i < n) at an interval as indicating that the quantifier
Qi+1 is being ‘considered’. Formula (12) starts the process
by considering Q1. Now, suppose A |=I qi, where 0 � i < n
and I ⊆ I0. By Formulas (13) and (14), every sub-interval of
I satisfying qk (k > i) must agree with I on the truth-values
assigned to p1, . . . , pi; thus these proposition letters may be
regarded as fixed for all such intervals. If Qi+1 = ∃, then,
by Formulas (15), I has a sub-interval J satisfying qi+1 (at
which pi+1 must be either true or false); on the other hand,
if Qi+1 = ∀, then, by Formulas (16) and (17), I has two
sub-intervals satisfying qi+1: one in which pi+1 is true, and
one in which pi+1 is false. Finally, Formula (18) ensures
that, if I ⊆ I0 and A |=I qn, then ψ is true at I . Now,
any I ⊆ I0 such that A |=I qi defines a natural truth-value
assignment νI with domain {p1, . . . , pi} obtained by taking
ν(pj) = � just in case A |=I pj , for all j (1 � j � i).
Using a (backwards) inductive argument, we claim that, if
I ⊆ I0 and A |=I qi, then νI |= θi. For i = n, the claim is
guaranteed by Formula (18). Assuming the result holds for
i (0 < i � n) Formulas (13), (14), (16) and (17) guarantee
that it holds for i− 1 if Qi = ∀, and Formulas (13)–(15) do
the same if Qi = ∃. Formula (12) then guarantees that θ is
true.

Conversely, suppose θ is true. We define a tree tr(θ) as
follows. Each node ν of tr(θ) will be a truth-value assign-
ment with domain {p1, . . . , pi} for some i (0 � i � n),
with the property that ν |= θi; we call i the level of
ν. We take the root node ν0 of tr(θ) to be the empty
assignment (i.e., the unique assignment with level 0). Since
θ = θ0 is a true formula with no free variables, we have
ν0 |= θ0. Suppose now that ν is a node of tr(θ), with level i



(0 � i < n), such that ν |= θi. If θi = ∃pi+1θi+1, let ν′ be
an assignment with domain {p1, . . . , pi+1} such that ν ⊆ ν′,
and ν′ |= θi+1; we then take ν′ to be the sole daughter
of ν in tr(θ). If, on the other hand, θi = ∀pi+1θi+1, let
ν′ = ν ∪ {pi+1 �→ �}, ν′′ = ν ∪ {pi+1 �→ ⊥}, and take ν′

and ν′′ to be the daughters of ν in tr(θ); evidently, ν′ |= θi+1

and ν′′ |= θi+1. This completes the definition of tr(θ). Note
that, in particular, if ν is a node with level n, then ν |= θn;
i.e., ν |= ψ.

A straightforward induction on n shows that, setting m =
2n+1, we may define an embedding f : tr(θ) → Sub([1,m])
in such a way that f(ν) ⊆ f(ν′) if and only if ν is a
descendant of ν′ in tr(θ). This is illustrated by the left-
hand diagram in Fig. 3, where a tree-model for the QBF
formula θ = ∀p1∃p2∀p3∃p4(p1 ∨ p2)∧ (¬p1 ∨¬p2)∧ (p3 ∨
p4) ∧ (¬p3 ∨ ¬p4) is given, together with its embedding
into a grid structure. To show that θ̄ is satisfiable, define
A with domain [1,m] as follows. For all i (0 � i � n),
we set A |=I qi if and only if I = f(ν) for some node
ν of tr(θ) with level i. Further, for each node ν with level
i, and each j (1 � j � i), we set A |=f(ν) pj if and
only if ν(pj) = �. The truth-values of the other proposition
letters may be assigned arbitrarily. It is then obvious that
A |=f(ν0) θ̄. An example of this construction is shown in
the right-hand diagram of Fig. 3.

By replacing every occurrence of [D] with [D̄], we
similarly establish the PSPACE-hardness of LD̄.

IV. UPPER BOUND

The task of this section is to establish the membership in
PSPACE of the satisfiability problem for LD-formulas over
the class of finite linear orders.

Fix an LD-formula ϕ. Let Φ′ be the set of all sub-formulas
of ϕ (including ϕ itself), and let Φ be the set of all formulas
ψ or ¬ψ, where ψ ∈ Φ′. A 1-type is a subset α ⊆ Φ
satisfying the properties:
(T1) for all formulas ¬ψ ∈ Φ, either ψ ∈ α or ¬ψ ∈ α;
(T2) α is propositionally consistent;
(T3) if [D]ψ ∈ α, then ψ ∈ α.
Let A be a structure and I ∈ Sub(IA). Evidently, there is a
unique 1-type α such that A |=I α; we say that A realizes
α at I .

For the purposes of this paper, a vector is a finite, non-
empty sequence of positive integers. The following notation
will be used. If w̄ = (w1, . . . , ws) is a vector of length s, we
write |w̄| = s, and if m is a positive integer, we write mw̄ for
the vector (mw1, . . . ,mws). If v̄ = (v1, . . . , vs) is a vector
of the same length, we write w̄ � v̄ (equivalently: v̄ � w̄) if
wi � vi for all i (1 � i � s). Less conventionally, we take
corresponding upper-case letters to denote the successive
partial sums of vectors, thus: Wi = w1 + · · · +wi, for all i
(0 � i � s). Note that, for any vector w̄, W0 = 0.

Let A be a structure of size m, I1, . . . , Is, a selection
of intervals in IA occurring left-to right across a single

α1 · · · α1 · · ·

w1

αi · · · αi · · ·

wi

αs · · · αs

ws

Figure 4. Geometrical depiction of the realization of a profile by a row.

row in the grid-representation of Sub(IA), and α1, . . . , αs

the respective 1-types realized in A by these intervals. In
addition, suppose that the final cell in that row realizes αs.
Evidently:

(C1) if 1 � h < h′ � s and [D]ψ ∈ αh, then [D]ψ ∈ αh′ ;
(C2) if 〈D〉ψ ∈ αs, then ψ ∈ αs.

Accordingly, we say that a configuration is a finite, non-
empty sequence ᾱ = (α1, . . . , αs) of 1-types satisfying
conditions (C1) and (C2). Again, we denote the length of
this sequence by |ᾱ|. A profile is a pair 〈ᾱ, w̄〉, where ᾱ is
a configuration of length s � 1, and w̄ = (w1, . . . , ws) a
vector, also of length s; we say that the length of this profile
is s. For 1 � j � m, we say that the jth row of A realizes the
profile 〈(α1, . . . , αs), (w1, . . . , ws)〉 if Ws = j and, for all h
(1 � h � s) and all i (Wh−1 < i � Wh), A |=[i,j] αh. Picto-
rially, this means that the successive 1-types α1, . . . , αs are
realized horizontally in uniform blocks of length w1, . . . , ws,
respectively, and that these blocks cover the entire row, as
shown in Fig. 4. For all j (1 � j � m), the jth row of A
obviously realizes at least one profile; however, since there is
no requirement that neighbouring αi are distinct, this profile
will not in general be unique.

The following lemma shows that we may, without loss of
generality, confine attention to ‘short’ profiles.

Lemma 2. If an LD-formula ϕ has a model, then it has a
model over the same domain in which every row realizes a
profile of length at most ‖ϕ‖ + 1.

Proof: Fix a model A of ϕ, of size m. If ψ ∈ Φ, a
witness for ψ is an interval I ∈ Sub(IA) such that A |=I ψ.
We call an interval I = [i, j] ∈ Sub(IA) special if there
exists ψ ∈ Φ such that A |=I ψ and, for all k (i < k � j)
A �|=[k,j] ψ—that is, if there is some formula of Φ for which
I is the right-most witness in its row. Since every singleton
interval, [j, j], is special, it follows that, for any I = [i, j] ∈
Sub(IA), there is a least k (i � k � j) such that K = [k, j]
is special. We refer to K as the first special interval to the
right of I . Evidently, K = I if and only if I is itself special.
Moreover, since |Φ| � 2‖ϕ‖, and the right-most interval of
any row is the right-most witness for at least |Φ|/2 of the
formulas of Φ in that row, it follows that the number of
special intervals in any row is at most ‖ϕ‖ + 1.

Now define the structure B, over the same domain as A,
by setting, for all I ∈ Sub(IA), IB = KA, where K is the
first special interval to the right of I . We claim that, for all
I ∈ Sub(IA) and all ψ ∈ Φ:
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Figure 5. Neighbouring rows of a structure

B |=I ψ if and only if A |=K ψ, where K is the
first special interval to the right of I .

We prove the claim by structural induction. If ψ = p is a
proposition letter, the claim is immediate by the construction
of B; furthermore, the Boolean cases are trivial. So suppose
ψ = [D]θ (whence ¬ψ,¬θ ∈ Φ). Pick any I ∈ Sub(IA), and
let K be the first special interval to the right of I . Suppose
first that B �|=I ψ. Then B �|=J θ for some J ⊆ I . Let
K ′ be the first special interval to the right of J , so that,
by inductive hypothesis, A �|=K′ θ. Since K ′ ⊆ J ⊆ I , we
have A |=I ¬[D]θ; so let I ′ be the right-most witness for
¬[D]θ in the same row as I . By definition, I ′ is special, and
hence must lie (non-strictly) to the right of K; thus, I ′ ⊆ K.
But then A |=K ¬[D]θ, i.e., A �|=K ψ. Conversely, suppose
A �|=K ψ. Then A |=J ¬θ for some J ⊆ K. So now let J ′

be the right-most witness for ¬θ in the same row as J . By
definition, J ′ is special, and thus (trivially) the first special
interval to the right of J ′, whence, by inductive hypothesis,
B |=J ′ ¬θ. But J ′ ⊆ J ⊆ K ⊆ I , so that B �|=I ψ. This
completes the induction, and establishes the claim.

To conclude the proof, suppose A |=I ϕ, and suppose,
without loss of generality, that I is the right-most witness for
ϕ in its row. Thus, I is special, and, furthermore, is (trivially)
the first special interval to the right of I . Constructing B as
above, BI |= ϕ. Finally, the claim shows that every row in
B realizes a profile of length no greater than the number of
special intervals in that row. But we have already noted that
this number is bounded by ‖ϕ‖ + 1.

Now suppose ᾱ = (α1, . . . , αs) and β̄ = (β1, . . . , βt) are
configurations. A solution for 〈ᾱ, β̄〉 is a pair 〈ū, v̄〉, where
ū is a vector of length s and v̄ a vector of length t, satisfying
the following conditions:

(S1) for all h (1 � h � s) and all h′ (1 � h′ � t), if
[D]ψ ∈ βh′ and Uh > Vh′−1, then [D]ψ ∈ αh;

(S2) for all h′ (1 � h′ � t), if 〈D〉ψ ∈ βh′ , either there
exists h′′ (h′ � h′′ � t) such that ψ ∈ βh′′ , or there
exists h (1 � h � s) such that Uh � Vh′ and 〈D〉ψ ∈
αh;

(S3) Vt−1 � Us < Vt.

The following two lemmas motivate this definition.

Lemma 3. Let A be a structure of size m, let 1 � j < m,
and let 〈ᾱ, ū〉, 〈β̄, v̄〉 be profiles realized by the jth and
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Vt − Us

� �
Us

Figure 6. The structure B of Lemma 4.

(j + 1)th rows of A, respectively. Then 〈ū, v̄〉 is a solution
for 〈ᾱ, β̄〉.

Proof: Numbering the cells of the jth row from left to
right (starting with 1), we observe that, for all h (1 � h �
|ᾱ|), the cells in positions Uh−1 + 1 to Uh all satisfy αh;
similar remarks apply to row j+1. Conditions (S1)–(S2) are
then evident by inspection of Fig. 5, which depicts the two
rows of A in question. For condition (S3), note that Us = j,
Vt = j + 1 and, by assumption, vt > 0.

Lemma 4. Let ᾱ and β̄ be configurations. Suppose that
〈ū, v̄〉 is a solution for 〈ᾱ, β̄〉, and that A is a structure
whose top row realizes the profile 〈ᾱ, ū〉. Then there exists
a structure B whose top row realizes the profile 〈β̄, v̄〉.

Proof: Write β̄ = (β1, . . . , βt), and let s = |ᾱ|. The
structure B shown in Fig. 6 has the required properties. A
label βh in a region indicates that all the intervals in that
region make true exactly the proposition letters βh∩P. Con-
dition (S3) guarantees that the dimensions of the rectangles
labelled β1, . . . , βt−1 are such that the ‘trapezium’ labelled
βt exists. In particular, each of the new rows (above the top
row of A) contains a final block of cells in the region labelled
βt. (This is important, because (β1, . . . , βh) need not be a
configuration for h < t.) Using Conditions (C1)–(C2) and
(S1)–(S2), a routine structural induction establishes that, for
all h (1 � h � t), and any interval I lying in the region
labelled βh, B |=I βh.

Thus, Lemma 3 states that configurations belonging to
profiles realized by successive rows in a structure always
have a solution, while Lemma 4 provides a partial converse:
given a solution 〈ū, v̄〉 for 〈ᾱ, β̄〉, we can extend any struc-
ture whose top row realizes the profile 〈ᾱ, ū〉 to one whose
top row realizes the profile 〈β̄, v̄〉 (notice that reflexivity of
the sub-interval relation plays an essential role in Lemma



4.3). Indeed, the next lemma allows us to create, ex nihilo,
a structure whose top-row realizes any profile of length 1.

Lemma 5. Let α be a 1-type such that 〈D〉ψ ∈ α implies
ψ ∈ α, and let m be a positive integer. Then there exists a
structure A whose top row realizes the profile 〈(α), (m)〉.

Proof: Set IA = [1,m], and IA = α ∩ P for all I ∈
Sub(IA).

The following sequence of lemmas shows that, if 〈ᾱ, β̄〉
has one solution, then it has many.

Lemma 6. Let ᾱ and β̄ be configurations, and m a positive
integer, and suppose that 〈ū, v̄〉 is a solution for 〈ᾱ, β̄〉. Then
〈mū,mv̄〉 is also a solution for 〈ᾱ, β̄〉.

Proof: Satisfaction of inequalities x1 + · · ·+xh � y1 +
· · · + yk and x1 + · · · + xh < y1 + · · · + yk is preserved
under multiplication by m.

Lemma 7. Let ᾱ and β̄ be configurations, and suppose that
〈ū, v̄〉 is a solution for 〈ᾱ, β̄〉. If ū′ is a vector satisfying
ū � ū′, then there exists a vector v̄′ satisfying v̄ � v̄′ such
that 〈ū′, v̄′〉 is a solution for 〈ᾱ, β̄〉.

Proof: It suffices to prove the lemma where ū =
(u1, . . . , us), v̄ = (v1, . . . , vt), and ū′ = (u1, . . . , ui−1,
ui + 1, ui+1, . . . , us). Since Vt > Us, pick the least j
(1 � j � t) such that Vj > Ui−1, and set v̄′ =
(v1, . . . , vj−1, vj + 1, vj+1, . . . , vt). It is then obvious that,
for all i (0 � i � s) and all j (0 � j � t), Ui > Vj if and
only if U ′

i > V ′
j .

Lemma 8. Let ᾱ and β̄ be configurations, with |ᾱ| = s � m
and |β̄| = t � n, such that 〈ᾱ, β̄〉 has a solution. Then 〈ᾱ, β̄〉
has a solution 〈ū, v̄〉 satisfying ū � (n, . . . , n). Indeed, it
has a solution 〈ū, v̄〉 satisfying ū � (n, . . . , n) and v̄ �
(m+ 1, . . . ,m+ 1).

Proof: Let 〈ū, v̄〉 be a solution with ū = (u1, . . . , us)
and v̄ = (v1, . . . , vt). For the first statement of the
lemma, suppose ui > n for some i (1 � i � s).
We claim that there exists j (1 � j � t) such that,
writing ū′ = (u1, . . . , ui−1, ui − 1, ui+1, . . . , us) and v̄′ =
(v1, . . . , vj−1, vj−1, vj+1, . . . , vt), 〈ū′, v̄′〉 is also a solution.
By repeated applications of this claim, we obtain the desired
solution. The claim is obvious if n = 1; so assume n > 1
(whence ui � 3). Now, since Vt > Us � Us−1 + 1, let j′

be the smallest positive integer such that Vj′ > Ui−1 + 1.
If vj′ > 1, then, since ui � 3, setting j = j′ gives the
required v̄′. So suppose vj′ = 1, in which case, we also
have j′ � 2 and indeed Vj′ = Ui−1 + 2. Since, in addition,
ui � n+1, there exists j (j′ < j � t) such that vj > 1 and
Vj−1 � Ui − 2. Again, it is easy to check that this value of
j gives the required v̄′. The second statement of the lemma
follows by an almost identical argument.

Lemma 9. Let ᾱ and β̄ be configurations whose length

is bounded by a polynomial function of ‖ϕ‖. Then we can
determine, using space likewise bounded by a polynomial
function of ‖ϕ‖, whether 〈ᾱ, β̄〉 has a solution.

Proof: Try all pairs of vectors 〈ū, v̄〉 satisfying the
bounds given in Lemma 8.

Lemma 10. Let ᾱ and β̄ be configurations, with |β̄| � n,
such that 〈ᾱ, β̄〉 has a solution; and let m be a positive
integer. For any vector ū satisfying ū � (mn, . . . ,mn),
there exists a vector v̄ satisfying v̄ � (m, . . . ,m), such that
〈ū, v̄〉 is a solution for 〈ᾱ, β̄〉.

Proof: By Lemma 8, let 〈ū′, v̄′〉 be a solution satisfying
ū′ � (n, . . . n). By Lemma 6, 〈mū′,mv̄′〉 is a solution, with
mū′ � ū, and (trivially) mv̄′ � (m, . . . ,m). By Lemma 7,
there exists a vector v̄ with v̄ � mv̄′ such that 〈ū, v̄〉 is a
solution.

Define the directed graph Gϕ = (C,E) as follows:

C = {ᾱ | ᾱ is a configuration s.t. |ᾱ| � ‖ϕ‖ + 1}
E = {〈ᾱ, β̄〉 ∈ C2 | 〈ᾱ, β̄〉 has a solution}.

Since the number of 1-types is at most 2‖ϕ‖, |C| � 2n,
where n = ‖ϕ‖(‖ϕ‖ + 1). The main lemma of this sec-
tion states necessary and sufficient conditions for ϕ to be
satisfiable.

Lemma 11. Let ϕ be an LD-formula, and let the graph
Gϕ = (C,E) be constructed as above. Then ϕ is satisfiable
if and only if there is a path in Gϕ from some configuration
ᾱ of length 1 to some configuration β̄ containing a 1-type
β such that ϕ ∈ β.

Proof: Suppose first that A is a model of ϕ. By
Lemma 2, we may assume that each row of A realizes
some profile (ᾱ, ū) of length at most ‖ϕ‖ + 1, so that
ᾱ ∈ C. The first row necessarily realizes a profile of
length 1; by Lemma 3, the configurations corresponding to
successive rows are joined by an edge in E; and, since A
is a model of ϕ, some row of A realizes a profile in which
ϕ occurs somewhere. That is: there is a path in Gϕ from
some configuration ᾱ of length 1 to some configuration β̄
containing a 1-type β such that ϕ ∈ β.

Conversely, suppose there is a path ᾱ1, . . . , ᾱz in Gϕ

where: (i) ᾱ1 = (α) is a configuration of length 1; (ii)
〈ᾱi, ᾱi+1〉 is an edge of E for all i (1 � i < z); and (iii)
ᾱz contains a 1-type β such that ϕ ∈ β. Let n = ‖ϕ‖ + 1.
By definition, each configuration in C is of length at most
n. We show by induction that, for all j (1 � j � z), there
exists a structure Aj whose top row realizes a profile of the
form 〈ᾱj , ū〉, with ū � (nz−j , . . . , nz−j). It follows that Az

is a model of ϕ, proving the lemma.
Case j = 1: By Lemma 5, there exists a structure whose
top row realizes the profile 〈(α), (nz−1)〉.
Case 1 < j � z: Suppose Aj−1 has been defined, and that
the top row of Aj−1 realizes the profile 〈ᾱj−1, ūj−1〉, with



ūj−1 � (nz−j+1, . . . , nz−j+1). Since (ᾱj−1, ᾱj) ∈ E, the
pair 〈ᾱj−1, ᾱj〉, has a solution, and hence, by Lemma 10,
a solution 〈ūj−1, ūj〉 with ūj � (nz−j , . . . , nz−j). By
Lemma 4, there exists a model Aj whose top row realizes
the profile 〈ᾱj , ūj〉. This completes the induction, and the
proof.

Theorem 12. The satisfiability problem for LD is in
PSPACE.

Proof: Denote ‖ϕ‖(‖ϕ‖ + 1) by n, and consider the
following nondeterministic procedure

1. set N = 0;
2. guess a configuration β̄ of length 1;
3. until N = 2n or β̄ contains a 1-type β such that
ϕ ∈ β do:

4. set ᾱ = β̄ and increment N ;
5. guess a configuration β̄ s.t. |β̄| � ‖ϕ‖ + 1;
6. if 〈ᾱ, β̄〉 has no solution, then fail;
7. end until
8. if N = 2n then fail;
9. succeed.

By Lemma 9, the test in Line 6 requires only space bounded
by a polynomial function of ‖ϕ‖; further, the counter N
requires only n + 1 bits. Evidently, the procedure has a
successful run if and only if there exists a path in Gϕ from
some configuration ᾱ of length 1 to some configuration β̄
containing a 1-type β such that ϕ ∈ β. The result then
follows by Lemma 11 and Savitch’s theorem.

V. ADDING THE OPERATOR [D̄]

In this section, we show how to generalize Theorem 12 to
the satisfiability problem for LDD̄ over finite linear orders
(LD̄ is just a special case). First, we modify the definitions
of configuration and profile by adding to conditions (C1)–
(C2) the further condition:
(C3) if 1 � h < h′ � s and [D̄]ψ ∈ αh′ , [D̄]ψ ∈ αh.

Next, we prove an analogue of Lemma 2.

Lemma 13. If an LDD̄-formula ϕ has a model, then it has
a model over the same domain in which every row realizes
a profile of length at most 4‖ϕ‖ + 3.

Proof: Fix a model A of ϕ. If ψ ∈ Φ, a witness for
ψ is an interval I ∈ Sub(IA) such that A |=I ψ. We call
an interval I = [i, j] ∈ Sub(IA) right (resp., left) special if
there exists ψ ∈ Φ such that A |=I ψ and, for all k (i < k �
j) (resp., (1 � k < i)) A �|=[k,j] ψ—that is, if there is some
formula of Φ for which I is the right-most (resp., left-most)
witness in its row. A special interval is a right special or
left special interval. Evidently, for any I = [i, j] ∈ Sub(IA),
there is a least k (i � k � j) (resp., greatest k′ (1 � k′ < i))
such that Kr = [k, j] (resp., Kl = [k′, j]) is special. We refer
to Kr (resp., Kl) as the closest-to-the-right (resp., closest-
to-the-left) special intervals for I . Finally, since |Φ| � 2‖ϕ‖,

and the right-most (resp., left-most) interval of any row is
the right-most (resp., left-most) witness for at least |Φ|/2 of
the formulas of Φ in that row, it follows that the number of
special intervals in any row is at most 2‖ϕ‖ + 2.

Let f : Sub(IA) → Sub(IA) be a function that satisfies
the following properties:

(F1) for every special interval I , f(I) = I;
(F2) for every non-special interval I , f(I) = I ′, where I ′ is

a non-special interval such that the closest-to-the-left
and closest-to-the-right special intervals for I and I ′

are the same;
(F3) for every pair of non-special intervals I , I ′, if the

closest-to-the-left and closest-to-the-right special inter-
vals for I and I ′ are the same, then f(I) = f(I ′).

Observe that, for any ψ = [D]θ ∈ Φ and any I ∈ Sub(IA),
A |=I ψ if and only if A |=f(I) ψ; similarly for ψ = [D̄]θ.

Let B be a structure with the same domain as A (that is,
Sub(IB) = Sub(IA)) such that IB = f(I)A. We claim that,
for every I ∈ Sub(IA) and every ψ ∈ Φ:

B |=I ψ if and only if A |=f(I) ψ.

We prove the claim by structural induction. If ψ = p is a
proposition letter, the claim is immediate by the construction
of B. Boolean cases are trivial. So suppose ψ = [D]θ
(whence ¬ψ,¬θ ∈ Φ). Pick I ∈ Sub(IA), and let f(I) = I ′.
For the left-to-right implication, suppose that A |=I′ ¬ψ.
Let K be the right-most witness for ¬ψ in the same row
as I . Since K is special and non-strictly to the right of I ′,
we have K ⊆ I . Now, there exists an interval K̄ such that
K̄ ⊆ K, A |=K̄ ¬θ, and K̄ is the right-most witness for
¬θ in its row. Since K̄ is special, f(K̄) = K̄, and thus,
by inductive hypothesis, B |=K̄ ¬θ, whence B |=I ¬ψ.
Conversely, suppose B |=I ¬ψ. Then, there exists J ⊆ I
such that B |=J ¬θ, whence A |=f(J) ¬θ, by inductive
hypothesis. Let K be the right-most witness for ¬θ in the
same row as J . Since K is special and non-strictly to the
right of f(J), we have K ⊆ J , whence A |=I ¬[D]θ. But
we have already observed that A |=I [D]θ if and only if
A |=f(I) [D]θ. Hence, A |=f(I) ¬ψ as required. The case
ψ = [D̄]θ is completely symmetric.

Now, suppose A |=I ϕ. We may assume without loss
of generality that I is special, whence I = f(I), so that,
constructing B as above, B |=I ϕ. To conclude the proof,
it suffices to observe that every row in B realizes a profile
that features one 1-type for every special interval in that row
(at most 2‖ϕ‖+2) plus at most one 1-type for every maximal
consecutive sequence of non-special intervals in that row (at
most 2‖ϕ‖ + 1).

Next, we modify the definition of a solution for a pair
of configurations 〈ᾱ, β̄〉, given in Section IV, by adding to
conditions (S1)–(S3) the further conditions
(S4) for all h (1 � h � s) and all h′ (1 � h′ � t), if

[D̄]ψ ∈ αh and Uh > Vh′−1, then [D̄]ψ ∈ βh′ ;



(S5) for all h (1 � h � s), if 〈D̄〉ψ ∈ αh, either there
exists h′′ (1 � h′′ � h) such that ψ ∈ αh′′ , or there
exists h′ (1 � h′ � t) such that Vh′−1 � Uh−1 and
〈D̄〉ψ ∈ βh′ .

We construct the graph Gϕ exactly as described in Sec-
tion IV, except that we employ the revised definitions of
configuration and solution, and set

C = {ᾱ | ᾱ is a configuration s.t. |ᾱ| � 4‖ϕ‖ + 3}.
In place of Lemma 11, we then have:

Lemma 14. Let ϕ be an LDD̄-formula, and let the graph
Gϕ = (C,E) be constructed as above. Then ϕ is satisfiable
over finite linear orders if and only if there is a path in Gϕ

from some configuration α of length 1 to some configuration
β̄ containing a 1-type β such that ϕ ∈ β, and a path in Gϕ

from β̄ to some configuration (γ1, . . . , γk) such that, for
every j (1 � j � k) and every 〈D̄〉ψ ∈ γj , there exists j′

(1 � j′ � j) with ψ ∈ γj′ .

The following theorem is the counterpart of Theorem 12
for LDD̄, and may be proved similarly.

Theorem 15. The satisfiability problem for LDD̄ is in
PSPACE.

VI. CONCLUSIONS

In this paper, we have shown that the satisfiability prob-
lems for the interval logics of the reflexive sub-interval and
super-interval relations interpreted over finite linear orders
are PSPACE-complete. The authors are currently investigat-
ing the problem of establishing whether decidability, and
complexity, of LDD̄ are preserved if we replace finite linear
orders by the natural numbers or the integers. The problem
is of interest, because, as is easily shown, 〈D̄〉 can be used to
write formulas satisfiable over infinite discrete linear orders,
but not over finite linear orders. As we have already pointed
out, some basic steps of our proof do not work if we replace
reflexive sub-interval and super-interval relations by strict or
proper ones. To the best of our knowledge, the satisfiabil-
ity problems for interval logics of the strict (respectively,
proper) sub-interval and super-interval relations, interpreted
over finite linear orders, are still open.
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