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1 Introduction

In the past decade there has been a variety of results showing decidability of
bisimulation equivalence between infinite state systems. The initial result, due
to Baeten, Bergstra and Klop [1], proved decidability for normed BPA pro-
cesses, described using irredundant context-free grammars. This was extended
to all BPA processes and then to pushdown automata [5,16,14]. Decidability of
bisimilarity was also shown for Basic Parallel (BP) processes, a restricted subset
of Petri nets, [4]. For full Petri nets Jančar proved that bisimulation equivalence
is undecidable [11].

An open question is the dividing line between decidability and undecidabil-
ity of bisimilarity in the case of “sequential” systems. For instance, is bisimula-
tion equivalence decidable for the general class of prefix-recognisable transition
graphs introduced by Caucal [2]? A poignant problem is that these graphs ex-
hibit infinite branching. Families of infinite state systems for which bisimilarity
is known to be decidable are finitely branching. For each label a and for each
configuration the set of its a-successors is finite and easily computable. Therefore
if two systems are not bisimulation equivalent then there is a least approximant
n > 0 such that they are not equivalent at level n, and for each n the equivalence
at level n is decidable. But if processes are infinite branching then inequivalence
may be manifested at higher ordinals, and therefore a new technique is required
to establish semidecidability of inequivalence.

Instead of examining richer families of infinite state systems one can look
at the problem of deciding weak bisimulation equivalence for restricted classes.
Weak bisimilarity abstracts from silent activity, with the consequence that BPA
and BP processes are infinitely branching. Weak bisimulation inequivalence is
then generally not finitely approximable.

In this paper we examine the decision problem of weak bisimilarity for normed
BP processes. Esparza [6] observes that weak bisimilarity is semidecidable, be-
cause a positive witness is semilinear. Decidability was proved for a restricted
subclass, the totally normed processes, by Hirshfeld [7]. And Jančar, Kučera
and Mayr show decidability of weak bisimilarity between general (PA) processes
which includes BP processes and finite state processes [12]. However in both these
cases inequivalence is finitely approximable. In this paper we prove decidability
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of weak bisimilarity for a subset of normed BP processes for which inequivalence
need not be finitely approximable. Underpinning this result is a finite symbolic
characterisation of the infinite branching of normed BP processes. Indeed we
believe that the technique will establish decidability of weak bisimilarity for all
normed BP processes, but the combinatorics become awesome.

In section 2 we define normed Basic Parallel processes and weak bisimulation
equivalence. Section 3 is devoted to the finite characterisation of the infinite
transition relations. Then in section 4 we utilise the characterisation to prove
the decidability result using the tableau method. Proofs of two crucial lemmas
are given in section 5.

2 Normed Basic Parallel Processes

Ingredients of Basic Parallel (BP) processes are a finite set Γ = {X1, . . . , Xn}
of atoms, a finite set A = {a1, . . . , ak} of actions and a finite set T of basic
transitions, each of the form X

a−→ α where X is an atom, a ∈ A ∪ {τ} and α
is a multiset of atoms whose size is at most 2. A BP process, or configuration,
is a parallel composition of atoms. We let α, β, . . . range over such processes.
A process therefore has the form Xk1

1 . . . Xkn
n , which is the parallel composition

of k1 copies of X1, . . . and kn copies of Xn where each ki ≥ 0. We let ε be the
empty composition, where each ki = 0. If α and β are two processes then αβ is
their multiset union (and we often write Xα or αX as an abbreviation for the
multiset union of {X} and α). The behaviour of a BP process is determined by
the following extension rule: if X

a−→ α ∈ T then Xβ
a−→ αβ. The silent action

τ 6∈ A is included as a possible action. We assume the usual expansion of the
transition relation to words, α

w−→ β where w ∈ (A ∪ {τ})∗.

Example 1 The atoms Γ are {A, Y, Z} and A is the singleton set {a}. The basic
transitions are A

a−→ ε, Y
a−→ A, Z

a−→ A, Y
τ−→ Y A, Z

a−→ Z, Z
τ−→ ZA.

ZA3 has the following transitions, ZA3 a−→ A4, ZA3 a−→ ZA2, ZA3 a−→ ZA3

and ZA3 τ−→ ZA4. 2

Example 2 The atoms are {C, D, U, V }, A = {c, d} and the basic transitions
are U

τ−→ UD, U
c−→ ε, U

c−→ C, U
c−→ U , V

τ−→ V D, V
c−→ ε, V

c−→ C,
C

c−→ C, C
c−→ ε, D

d−→ ε, D
τ−→ ε. For each n ≥ 0 there is the extended

transition U
τnc−→ UDn. 2

BP processes are communication free Petri nets, where the places are the
atoms, and transition X

a−→ α is a firing rule. A configuration Xk1
1 . . . Xkn

n

represents the marking when there are ki tokens on place Xi. They are commu-
nication free because each transition requires just one place to fire. As is usual
in process calculi when there are silent transitions, the weak transition relations

ε=⇒ and a=⇒ for a ∈ A are defined as follows.

α
ε=⇒ β iff ∃n ≥ 0. α

τn

−→ β α
a=⇒ β iff ∃α1, β1. α

ε=⇒ α1
a−→ β1

ε=⇒ β
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There can be infinite branching with respect to these transition relations, as
illustrated by Examples 1 and 2, Y

ε=⇒ Y An and V
c=⇒ CDn for all n ≥ 0.

An atom X is normed if there is a word w ∈ A∗ such that X
w=⇒ ε. A BP

definition is normed if all its atoms are normed. Both Examples 1 and 2 are
normed. The norm of atom X, written N(X), is the length of a shortest word
w such that X

w=⇒ ε. N(Y ) = 2 and N(D) = 0 where Y and D are from the
examples above. Norm extends to configurations α, written N(α), which is the
length of a shortest word w such that α

w=⇒ ε. If a BP definition is normed then
so is any process α = Xk1

1 . . . Xkn
n and N(α) is

∑
1≤i≤n(ki ×N(Xi)). A subset of

normed BP processes is the totally normed processes, as introduced by Hüttel
and examined by Hirshfeld [9,7]. A BP process definition is totally normed if
all its atoms are normed and have norm greater than 0. Example 1 is totally
normed but Example 2 is not because N(D) = 0.

Our interest is with deciding when two normed BP processes are weak bisim-
ulation equivalent. There is more than one way to define this equivalence. First
we start with the natural (and “symmetric”) version.

Definition 1 A binary relation B between BP processes is a weak bisimulation
relation provided that whenever αBβ and a ∈ (A ∪ {ε})

if α
a=⇒ α′ then there is a β′ such that β

a=⇒ β′ and α′Bβ′

if β
a=⇒ β′ then there is an α′ such that α

a=⇒ α′ and α′Bβ′

Two processes α and β are weakly bisimilar, written α ≈ β, if there is a weak
bisimulation relation B such that αBβ. Important properties of weak equivalence
are that it is a congruence for BP processes, see [7] for instance, and that it
preserves norm.

Fact 1 If α ≈ β then αδ ≈ βδ and N(α) = N(β).

An alternative (and equivalent) basis for the definition of weak bisimilarity is as
follows, where if a ∈ A then â is a and if a = τ then â is ε, [13].

Definition 2 A binary relation B between BP processes is a wb relation pro-
vided that whenever αBβ and a ∈ (A ∪ {τ})

if α
a−→ α′ then there is a β′ such that β

â=⇒ β′ and α′Bβ′

if β
a−→ β′ then there is an α′ such that α

â=⇒ α′ and α′Bβ′

Fact 2 B is a wb relation iff B is a weak bisimulation relation.

To establish that α ≈ β it therefore suffices to exhibit a binary relation
containing α and β and prove that it is a wb relation. In general such a relation
will be infinite. The relation {(Y An, ZAn), (An, An) : n ≥ 0} over processes of
Example 1 is a wb relation, which proves that Y ≈ Z.

The “symmetric” definition of equivalence supports weak bisimulation ap-
proximants, ≈o for any ordinal o, which are themselves equivalence relations.

Definition 3 The relations ≈o for ordinals o are defined inductively as follows,
where we assume that l is a limit ordinal (such as ω).
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α ≈0 β
α ≈o+1 β iff for a ∈ (A ∪ {ε})

if α
a=⇒ α′ then ∃β′. β

a=⇒ β′ and α′ ≈o β′

if β
a=⇒ β′ then ∃α′. α

a=⇒ α′ and α′ ≈o β′

α ≈l β iff ∀o < l. α ≈o β

Fact 3 α ≈ β iff for all ordinals o. α ≈o β.

Example 2 illustrates the need for ordinals beyond ω. Although U 6≈ V for any
n ≥ 0, U ≈n V . The inequivalence is due to the transition U

c=⇒ U . Process
V does not have a similar transition. However for any n ≥ 0, V

c=⇒ CDn and
U ≈n CDn but U 6≈n+1 CDn because of the transition U

d=⇒ UDn. Therefore
it follows that U 6≈ω+1 V . It is conjectured by Stř́ıbrná [15] that one only needs
ordinals which are less than ω × 2 to establish inequivalence between all BP
processes, including the unnormed. She proves this in the special case when
there are no atoms of norm 0 and A is a singleton set. And in the case of totally
normed processes she shows that the closure ordinal is ω: if α 6≈ β then for some
n ≥ 0, α 6≈n β.

Esparza observes that a wb relation which witnesses the equivalence α ≈ β
is semilinear [6], which establishes semidecidability of weak bisimilarity for all
BP processes (and therefore decidability for totally normed processes). But the
problem is establishing semidecidability of inequivalence.

A new approach to deciding weak equivalence is now developed. First we
finitely characterise the infinite branching of a normed BP process, and then
we use the characterisation to show that equivalence and inequivalence can be
captured by examining only boundedly many transitions. However we are only
able to prove decidability for a subset of normed BP processes which includes
the totally normed processes. The family also includes Example 2 where inequiv-
alence is not finitely approximable. The subset is given by a technical restriction,
whose notation is now developed.

3 Stratification and Generators

In this section we symbolically characterise the weak transition relations of
normed BP processes. Assume a fixed normed BP process definition with atoms
Γ , action set A and transitions T. The initial step is to stratify the basic tran-
sitions in T, by including a numerical index on the transition relation which
represents the change in norm produced by the transition. If X

a−→ α ∈ T then
we re-write it as X

a−→n α where n = N(α) − N(X). The index n is bounded,
−1 ≤ n ≤ 2M, where M is the maximum norm of any atom in Γ . Either a
transition is norm reducing, but then by at most 1, or it is nondecreasing and
because |α| ≤ 2 the increase in norm is at most 2M. An important, but simple,
observation is that for a stratified τ -transition, X

τ−→n α, the index n must
be nondecreasing, n ≥ 0. A selection of stratified transitions from Examples 1
and 2 of the previous section is A

a−→−1 ε, Z
a−→0 Z, Y

τ−→1 Y A, U
c−→−1 ε,

D
τ−→0 ε, V

τ−→0 V D.
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The definition of stratification is extended to the weak transition relations
as follows.

α
ε=⇒0 β iff ∃m > 0.∃α1, . . . , αm. α = α1

τ−→0 . . .
τ−→0 αm = β

α
ε=⇒n+1 β iff ∃α′, β′. α

ε=⇒j α′ τ−→k+1 β′ ε=⇒l β where n = j + k + l

α
a=⇒n β iff ∃α′, β′. α

ε=⇒j α′ a−→k β′ ε=⇒l β where n = j + k + l

For instance, U
ε=⇒0 UD64 and U

c=⇒−1 D80 are stratified weak transitions
arising from Example 2 of the previous section.

Weak bisimulation equivalence can be redefined using the stratified weak
transition relations. Assume that K is the largest increase in norm of the BP
process definition, max{n : X

a−→n α ∈ T}. For instance, K = 1 for Example 1
of the previous section.

Definition 1 A relation B between normed BP processes is a stratified weak
bisimulation relation provided that whenever αBβ and n ≤ K and a ∈ (A∪{ε})

if α
a=⇒n α′ then there is a β′ such that β

a=⇒n β′ and α′Bβ′

if β
a=⇒n β′ then there is an α′ such that α

a=⇒n α′ and α′Bβ′

Proposition 1 B is a stratified weak bisimulation relation iff B is a wb relation.

Hence α ≈ β iff there is a stratified weak bisimulation relation B which contains
the pair α and β. In the next section we shall also define associated stratified
weak approximants.

The crucial feature of totally normed processes is that they are finitely
branching with respect to the stratified weak transition relations.

Fact 1 If α is totally normed then for all a and n {δ : α
a=⇒n δ} is finite.

This is not generally the case for normed BP processes. For instance V
c=⇒−1 Dn

for all n ≥ 0. The crucial component of infinite branching is the relation ε=⇒0,
to which we now direct our analysis. The following result is useful.

Proposition 2 If α
ε=⇒0 β and β

ε=⇒0 δ and α ≈ δ then α ≈ β.

Consequently if X
ε=⇒0 Y and Y

ε=⇒0 X then X ≈ Y . In this circumstance, if
X 6= Y then we say that atom Y is redundant because of X. A BP definition
can therefore be replaced with an equivalent definition which does not contain
redundant atoms. If Y ∈ Γ is redundant because of X ∈ Γ then we change Γ
to Γ − {Y } and we replace all transitions Y

a−→ α ∈ T with X
a−→ α and all

transitions Z
a−→ Y α ∈ T with Z

a−→ Xα. It is clear that this transformation
of a BP definition preserves weak bisimulation equivalence. We therefore assume
that atoms of a BP definition adhere to the following condition: (1) if X 6= Y

and X
ε=⇒0 Y then not(Y ε=⇒0 X).

The reason that the transition relation ε=⇒0 can be infinite branching is
because atoms can “generate” other atoms. If X

ε=⇒0 XA then we say that X
generates A. And for each atom X, the set of atoms generated by X, written
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G(X), is {A : X
ε=⇒0 XA}. In Example 2 of the previous section, G(D) = ∅

and G(U) = G(V ) = {D}.

Proposition 3

1. If A ∈ G(X) then N(A) = 0
2. If A ∈ G(X) and A

ε=⇒0 B then B ∈ G(X)
3. If A ∈ G(B) and B ∈ G(X) then A ∈ G(X)
4. If α ∈ G(X)∗ then X

ε=⇒0 Xα
5. If α ∈ G(X)∗ then X ≈ Xα

If A ∈ G(X) then An+1Xα ≈ Xα. Hence any configuration α can be reduced
to an equivalent minimal normal form nf(α).

Definition 2 If α = Xk1
1 . . . Xkn

n then nf(α) = X l1
1 . . . X ln

n where

1. if j 6= i and Xj ∈ G(Xi) and ki > 0 then lj = 0,
2. if Xi ∈ G(Xi) and ki > 0 and ∀j 6= i. kj = 0 or Xi 6∈ G(Xj) then li = 1.
3. if kj = 0 or for all i such that ki 6= 0, Xj 6∈ G(Xi) then lj = kj .

Proposition 4

1. If X l1
1 . . . X ln

n = nf(α) and Xj1
1 . . . Xjn

n = nf(α) then li = ji for each i
2. α ≈ nf(α)

Assume a BP process definition which obeys condition (1) and let Γ 0 be the set of
generable atoms, {A ∈ Γ : ∃X. A ∈ G(X)}. An “extended” configuration either
has the form β where β = nf(β), or has the form βA∗

1 . . . A∗
k where β = nf(β)

and each Ai ∈ Γ 0 and Ai 6∈ G(X) for any X ∈ β, and Ai 6∈ β.

Theorem 1 For any configuration α and a ∈ (A ∪ {ε}) and n there is a finite
set of extended configurations E(α, a, n) such that

1. if α
a=⇒n δ then either nf(δ) ∈ E(α, a, n) or δ = δ1A

l1
1 . . . Alk

k and each li ≥ 0
and β = nf(δ1) and βA∗

1 . . . A∗
k ∈ E(α, a, n),

2. if β ∈ E(α, a, n) then α
a=⇒n β,

3. if βA∗
1 . . . A∗

k ∈ E(α, a, n) then ∀l1 ≥ 0. . . . ∀lk ≥ 0. α
a=⇒n βAl1

1 . . . Alk
k .

Proof: Assume configuration α and assume a ∈ A ∪ {ε} and n ≥ −1. Any
transition α

a=⇒n δ can be decomposed as follows α
ε=⇒j α1

a−→k δ′ ε=⇒l δ

where j + k + l = n. Clearly for the set {δ : α
a=⇒n δ} there are only finitely

many different indices j, k and l which can be involved in a decomposition (be-
cause k ≤ K and both j and l are at least 0). In turn a transition λ

ε=⇒m λ′

can also be decomposed. If m = 0 then λ
τ−→0 . . .

τ−→0 λ′ and if m > 0 then
λ

ε=⇒0 λ1
τ−→k λ′

1
ε=⇒m−k λ′ where k > 0. Hence any transition a=⇒n is built

from only finitely many compositions of transitions ε=⇒0,
a−→k and τ−→m where

m > 0. And for each λ the sets {λ′ : λ
a−→k λ′} and {λ′ : λ

τ−→m λ′} are finite
and bounded, from the BP process definition. Hence the important transitions
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involved in a decomposition are the ε=⇒0 transitions, which we now concen-
trate on. A transition of the form X

τ−→0 XA is a generating transition, and
a transition X

τ−→0 X is useless. Consider any configuration β0 and derivation
d = β0

τ−→0 β1
τ−→0 . . .

τ−→0 βn such that no transition in the derivation is
either a generating transition or a useless transition. For a fixed β0 there are only
finitely many such derivations, and therefore only finitely many configurations
appearing in any such derivation, {β0, . . . , βm}. This follows from condition (1)

earlier: if X
τ+

−→0 Y α and Y
τ+

−→0 Xδ and X 6= Y then Y is redundant because
of X (as N(α) = 0 = N(δ)). In fact a crude upper bound on the number of such
final configurations1 is |β0|×2|Γ |. For each derivation d of βi let d(βi) ⊆ Γ be the
subset of atoms which occur anywhere within the derivation, and let G(d(βi))
be the set

⋃{G(X) : X ∈ d(βi)}. There are only finitely many different such
sets associated with each βi. For each such subset we introduce a preliminary
extended configuration as follows. First if G(d(βi)) = ∅ for some derivation d
then one preliminary configuration is βi. Next if G(d(βi)) = {A1, . . . , Ak} then
another preliminary configuration is β′

iA
∗
1 . . . A∗

k where β′
i is the result of remov-

ing all occurrences of Aj from βi. There are only finitely many such preliminary
extended configurations associated with each βi. Preliminary extended configu-
rations are preliminary because they may not yet be in normal form. However
it is easy to see that if β0

ε=⇒0 δ then either δ = βi or δ = β′
iA

l1
1 . . . Alk

k for some
l1 ≥ 0, . . ., lk ≥ 0. Moreover if β′

iA
∗
1 . . . A∗

k is a preliminary extended configu-
ration then by Proposition 3.4 for all l1 ≥ 0, . . ., lk ≥ 0, β0

ε=⇒0 β′
iA

l1
1 . . . Alk

k .
We now complete the argument of the theorem. First if a = ε and n = 0 and
α = β0 then we merely tidy the preliminary extended configurations. If βi is
such a configuration then we let β′′

i = nf(βi), and if β′
iA

∗
1 . . . A∗

k is a configura-
tion then we let β′′

i = nf(β′
i) and we remove each A∗

j such that Aj ∈ G(X) when
X ∈ β′′

i . By the reasoning above the resulting finite set of extended configura-
tions, E(α, ε, 0), obey the theorem. Otherwise a 6= ε or n 6= 0. Assume the finite
set of preliminary extended forms associated with {α1 : α

ε=⇒0 α1}. Consider
the possible transitions a−→k from a preliminary extended form where a 6= τ or
k 6= 0. There are two cases. First if the form is βi then the required finite set is
{βij : βi

a−→k βij}. Second is that the preliminary form is β′
iA

∗
1 . . . A∗

k. We now
take the following finite set

{βijA
∗
1 . . . A∗

k : β′
i

a−→k βij} ∪ {β′
iδA

∗
1 . . . A∗

k : Aj
a−→k δ}

and then tidy their elements by removing any occurrences of Aj from βij and
δ. The result is a finite set of preliminary extended forms, with the crucial
property that if α

ε=⇒0 α1
a−→k α′

1 then either α′
1 is a preliminary form or

α′
1 = β′

ijA
l1
1 . . . Alk

k for some l1 ≥ 0, . . ., lk ≥ 0 and β′
ijA

∗
1 . . . A∗

k is a preliminary
form and for each such form and l1 ≥ 0, . . ., lk ≥ 0 there is an α1 such that
α

ε=⇒0 α1
a−→k β′

ijA
l1
1 . . . Alk

k . The argument is now repeated, so that there is a
finite set of preliminary extended forms which characterise the set {α2 : α

ε=⇒0

α1
a−→k α′

1
ε=⇒2}, and so on. Because there can be only finitely many different

1 The size of a configuration δ, |δ|, is its number of occurrences of atoms.
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indices involved in a decomposition of the transition a=⇒n it follows that there
is a finite set of preliminary extended forms which characterise {δ : α

a=⇒n δ}.
This finite set is then tidied into a set of extended forms, E(α, a, n), as described
earlier. 2

Theorem 1 offers a finite symbolic characterisation of the infinite branching
of normed BP processes. Moreover its proof shows how a finite set of extended
configurations E(α, a, n) which characterises {δ : α

a=⇒n δ} is computed.

Example 1 Consider E(U, c, 0) where U is from Example 2 of the previous
section. There is only one decomposition of the transition c=⇒0 in this example,
U

ε=⇒0 α1
c−→0 α′

1
ε=⇒0 δ. First consider the preliminary extended configu-

rations for {α1 : U
ε=⇒0 α1}. This consists of the singleton set {UD∗}. Next

we examine the c−→0 transitions, and there are two possibilities U
c−→0 U and

U
c−→0 C. Hence {UD∗, CD∗} contains the preliminary extended configurations

for {α′
1 : α

ε=⇒0 α1
c−→0 α′

1}. This is the same set of preliminary extended con-
figurations for {δ ; α

c=⇒0 δ}. Now we tidy this set. Because D ∈ G(U) the
resulting set E(U, c, 0) is {U, CD∗}. We show that this set obeys the three condi-
tions of Theorem 1. Suppose U

c=⇒0 δ. There are two cases. First U
c=⇒0 UDn

and because D ∈ G(U) it follows that U = nf(UDn) and U ∈ E(U, c, 0). Sec-
ond is that U

c=⇒0 CDn and UD∗ ∈ E(U, c, 0). This establishes condition 1 of
Theorem 1. For 2 note that U

c=⇒0 U . And for condition 3, U
c=⇒0 CDn for

all n ≥ 0. In contrast the set E(V, c, 0), where V is also from Example 2 of the
previous section, is the singleton set {CD∗}. 2

4 The Decidability Result

Given a normed BP process definition it is easy to find its redundant atoms,
and to remove them. The sets G(X) for each atom X is easily computable.
Moreover for each configuration α, a and n ≤ K, one can compute a finite set
of extended configurations E(α, a, n) which characterises {δ : α

a=⇒n δ}, using
Theorem 1 of the previous section. The main problem with deciding whether or
not α ≈ β is their infinite branching. The technique for overcoming this is to
use the finite characterisation to show that we only need to examine boundedly
many transitions of α and β. However we are only able to show this for a subset
of normed BP processes which includes Examples 1 and 2 of section 2.

We restrict to the subset of normed BP process definitions which obey the
following condition.

If G(X) 6= ∅ and X
τ−→0 α then α = Xα′

Effectively this imposes the constraint that generators are “pure”, if X is a
generator then any transition X

τ−→0 α is a generating transition or is useless
(X τ−→0 X). Both Examples 1 and 2 of section 2 obey this condition. The next
result relies on this constraint.
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Proposition 1

1. If G(X) 6= ∅ and Xα
ε=⇒0 β then X ∈ β.

2. For each α the set {nf(δ) : α
ε=⇒0 δ} is finite.

The restriction on BP processes does not imply that the sets {δ : α
ε=⇒0 δ} and

{nf(δ) : α
a=⇒n δ and a 6= ε or n > 0} are finite2.

Assume that E(α, a, n) is the finite set of extended configurations given by
Theorem 1 of the previous section, which characterises {δ : α

a=⇒n δ}. Elements
of this set are either finite, of the form β, or infinite, of the form βA∗

1 . . . A∗
k. It

follows from the restriction on BP processes that if β is a finite element and
β

ε=⇒0 β′ then nf(β′) is also a finite element because if β contains a generator
X then β′ also contains X. Furthermore if β

ε=⇒0 β′ and nf(β′) 6= β and
β′ ε=⇒ β′′ then nf(β′′) 6= β (because otherwise β′ would contain a redundant
atom). Therefore the following holds because of the restriction on processes.

Fact 1 If β0 is a finite element of E(α, a, n) whose size |E(α, a, n)| = m and
β0

ε=⇒0 β1
ε=⇒0 . . .

ε=⇒0 βm then for some i < m, nf(βi) = nf(βi+1).

There is a similar property in the case of infinite elements. Assume that δ =
βAn1

1 . . . Ank

k is an instance of an infinite element βA∗
1 . . . A∗

k ∈ E(α, a, n) and
δ

ε=⇒0 δ′. Then δ′ ≈ λAl1
1 . . . Alk

k where each li ≤ ni and either nf(λ) = β or
nf(λ) 6= β and β

ε=⇒0 λ. Moreover in the case that nf(λ) 6= β and δ′ ε=⇒0

λ′Al′1
1 . . . A

l′k
k then nf(λ′) 6= β.

Fact 2 If δ0 = βAn1
1 . . . Ank

k and βA∗
1 . . . A∗

k ∈ E(α, a, n) and |E(α, a, n)| = m

and δ0
ε=⇒0 δ1

ε=⇒0 . . .
ε=⇒0 δm then for some i < m, δi ≈ λiA

l1
1 . . . Alk

k and

δi+1 ≈ λ′
iA

l′1
1 . . . A

l′k
k and nf(λi) = nf(λ′

i) and l′i ≤ li.

Stratified weak bisimulation approximants, ≈′
o, are now defined as follows.

Definition 1 The relations ≈′
o for ordinals o are defined inductively as follows,

where we assume that l is a limit ordinal (such as ω).

α ≈′
0 β

α ≈′
o+1 β iff

if α
ε=⇒0 α′ then ∃β′. β

ε=⇒0 β′ and α′ ≈′
o+1 β′

if β
ε=⇒0 β′ then ∃α′. α

ε=⇒0 α′ and α′ ≈′
o+1 β′

and for (a ∈ A and n ≤ K) or (a = ε and 1 ≤ n ≤ K)
if α

a=⇒n α′ then ∃β′. β
a=⇒n β′ and α′ ≈′

o β′

if β
a=⇒n β′ then ∃α′. α

a=⇒n α′ and α′ ≈′
o β′

α ≈′
l β iff ∀o < l. α ≈′

o β

2 It is possible to define hierarchies of BP processes according to finiteness of these
sets. At the lowest level are the totally normed processes, where for any α, a and n
the set {δ : α

a=⇒n δ} is finite.
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The definition of ≈′
o is unusual because we distinguish between ε=⇒0 transitions

and the remaining transitions a=⇒n for reasons that will become clearer in the
decision procedure. Because of Proposition 1 the definition is well-defined, as
there can only be finitely many “different” elements in the set {δ : α

ε=⇒0 δ}. For
each ordinal o, the relation ≈′

o is an equivalence relation. However for particular
ordinals o the relation ≈′

o may differ from ≈o as defined in section 2.

Proposition 2

1. α ≈ β iff for all ordinals o. α ≈′
o β.

2. For all ordinals o, α ≈′
o nf(α).

3. If α ≈′
o β then αδ ≈′

o βδ.

The procedure for deciding whether α ≈ β is given by a tableau proof system,
which is goal directed. One starts with the initial goal nf(α) = nf(β), to be
understood as “is α ≈ β?”, and then one reduces it to subgoals using a small
number of rules. Goal reduction continues until one reaches either obviously
true goals (such as δ = δ) or obviously false subgoals (such as γ = δ and
one of these processes has an a=⇒n transition which the other does not have).
Such a procedure was used for deciding strong bisimilarity between arbitrary BP
processes [4], and we will make use of this decidability proof.

Goals have the form α = γ where α = nf(α) and γ = nf(γ). There are four
reduction rules, reducing goals to subgoals. Let an(δ) = {nf(δ′) : δ

a=⇒n δ′}
where n ≤ K. The first tableau rule is for ε=⇒0 transitions, and by Proposition 1.2
the set ε0(δ) is a finite set.

α = γ

α1 = γ1 . . . αl = γl
C

where C is the following condition

(∀α′ ∈ ε0(α).∃i. α′ = αi) ∧ (∀i. αi ∈ ε0(α)) ∧
(∀γ′ ∈ ε0(γ). ∃i. γ′ = γi) ∧ (∀i. γi ∈ ε0(γ))

The rule is sound, if all the subgoals are true then so is the goal. A finer account
shows soundness with respect to approximants, if αi ≈′

o γi for all subgoals then
α ≈′

o γ. The rule is also complete in the sense that if the goal α = γ is true then
there is an application of the rule such that all subgoals αi = γi are also true.

Next we want a similar rule which covers the remaining transitions a=⇒n,
when n ≤ K and either a 6= ε or n > 0. A similar rule would reduce a goal α = γ
to only a finite set of subgoals. However a set an(δ) may be infinite. Therefore
we need a mechanism which shows that we only need to consider bounded finite
subsets of elements of an(α) and an(γ) for each a=⇒n. Lemmas 1 and 2 below
establish this. These results are quite involved, and so we delay their proofs until
the next section where they are presented in full. They constitute the heart of
the decidability result.

Although the set an(δ) may be infinite, the set E(δ, a, n) is not only finite but
also bounded. We show that we need only examine “small” elements of an(δ).



Decidability of Weak Bisimilarity for a Subset of Basic Parallel Processes 389

The first lemma covers the case when the goal α = γ is not true. Without loss
of generality assume α 6≈′

o+1 γ and α
a=⇒n α′ and for all γ′ such that γ

a=⇒n γ′,
α′ 6≈′

o γ′. Lemma 1, the bounded inequivalence lemma, shows that there is a
small α′ ∈ an(α) with this property. A small element of an(α) is either a finite
element of E(α, a, n) or is an element βAl1

1 . . . Alk
k where each li ≤ |E(γ, a, n)|+1

and βA∗
1 . . . A∗

k ∈ E(α, a, n).

Lemma 1 Let α 6≈′
o+1 γ and assume that α

a=⇒n α′ and for all γ′ such that
γ

a=⇒n γ′, α′ 6≈′
o γ′. Then either

1. nf(α′) is a finite element in E(α, a, n) or
2. α′ = δAn1

1 . . . Ank

k and βA∗
1 . . . A∗

k ∈ E(α, a, n) and nf(δ) = β and there exists
l1, . . . , lk such that each li ≤ |E(γ, a, n)|+1 and for all γ′ such that γ

a=⇒n γ′,
βAl1

1 . . . Alk
k 6≈′

o γ′.

Lemma 2, the bounded equivalence lemma, covers the case when α = γ is
true. It shows that small elements of an(α) can be matched with elements of
an(γ) which have bounded size.

Lemma 2 Assume α ≈ γ. Then for each a and n

1. if α
a=⇒n α′ and nf(α′) ∈ E(α, a, n) then

a) either γ
a=⇒n γ′ and nf(γ′) ∈ E(γ, a, n) and nf(α′) ≈ nf(γ′)

b) or γ
a=⇒n λBs1

1 . . . Bsm
m and λ′B∗

1 . . . B∗
m ∈ E(γ, a, n) and nf(λ) = λ′ and

each si ≤ |E(α, a, n)| and nf(α′) ≈ λ′Bs1
1 . . . Bsm

m ,
2. if α

a=⇒n δAn1
1 . . . Ank

k and βA∗
1 . . . A∗

k ∈ E(α, a, n) and β = nf(δ) and each
ni ≤ |E(γ, a, n)| + 1 then
a) either γ

a=⇒n γ′ and nf(γ′) ∈ E(γ, a, n) and βAn1
1 . . . Ank

k ≈ nf(γ′)
b) or γ

a=⇒n λBs1
1 . . . Bsm

m and λ′B∗
1 . . . B∗

m ∈ E(γ, a, n) and nf(λ) = λ′ and
each si ≤ ∑

ni + |E(α, a, n)| and βAn1
1 . . . Ank

k ≈ λ′Bs1
1 . . . Bsm

m .

Consequently the second tableau proof rule has a similar form to the ε=⇒0
transition rule except that the condition C is that for all an, n ≤ K and a 6= ε
or n > 0,

∀ small α′ ∈ an(α).∃i. α = αi ∧ ∀i.∃an. αi ∈ an(α) and αi has bounded size ∧
∀ small γ′ ∈ an(γ).∃i. γ′ = γi ∧ ∀i.∃an. γi ∈ an(γ) and γi has bounded size

where the precise notion of bounded size is given in Lemma 2.2 part (b). Lemma 1
guarantees that the rule is sound, if the goal α = γ is false and so α 6≈′

o+1 γ then
for at least one of the subgoals αi = γi it is the case that αi 6≈′

o γi (where the
approximant index decreases). Lemma 2 justifies completeness, if the goal α = γ
is true then there is an application of the rule such that all subgoals αi = γi are
also true.

The final two rules SUB(L) and SUB(R) are taken from the tableau decision
procedure for strong bisimulation equivalence for arbitrary BP processes [4]. We
assume a fixed linear ordering < on the atoms Γ which is defined so that if
atom Y ∈ G(X) and Y 6= X then X < Y . The ordering < is extended to
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configurations, as the lexicographical ordering. Assume X1 < X2 < . . . < Xn.
Consequently

Xk1
1 . . . Xkn

n < X l1
1 . . . X ln

n iff there is an i ≥ 1 such that ki < li
and for all j < i. kj = lj .

Clearly, nf(α) ≤ α and if α < γ then nf(αβ) < nf(γβ).
The SUB rules are given below, where SUB(L) is the left rule and SUB(R)

is the right rule.

α = γ γ = α
... γ < α and at least one

... γ < α and at least one
... application of a=⇒n

... application of a=⇒n

αδ = λ λ = αδ
nf(γδ) = λ λ = nf(γδ)

We explain the rule SUB(L). If the current goal is αδ = λ and in the proof
tree above the goal on the path to the root there is the goal α = γ and γ < α
and there is at least one application of the rule a=⇒n where a 6= ε or n > 0 along
this path then we reduce the goal to the subgoal nf(γδ) = λ. Note that this has
the effect of reducing the size of the left configuration, as nf(γδ) < αδ. The SUB
rules are sound and complete.

Fact 3

1. If αδ 6≈′
o λ and α ≈′

o γ then nf(γδ) 6≈′
o λ

2. If α ≈ γ and αδ ≈ λ then nf(γδ) ≈ λ

One builds a proof tree starting from an initial goal α = γ and repeatedly
applying the tableau proof rules as follows. First one applies the ε=⇒0 rule and
then one applies the a=⇒n rule to all the resulting subgoals. Call this a simple
block. And then one repeatedly applies the SUB rules to the subgoals of a block,
until they no longer apply. At which point the whole process is repeated. One
applies the ε=⇒0 rule to all subgoals and so on.

There is also the important notion of when a goal is a final goal. Final goals
are either successful or unsuccessful. A successful final goal has the form α = α
and an unsuccessful final goal has the form δ = λ and for some a and n either
an(δ) = ∅ and an(λ) 6= ∅ or an(δ) 6= ∅ and an(λ) = ∅. Clearly a successful final
goal is true and an unsuccessful final goal is false.

A successful tableau proof for α = γ is a finite proof tree whose root is α = γ
and all of whose inner subgoals are the result of an application of one of the
rules, and all of whose leaves are successful final goals. The following results
establish decidability of ≈ between restricted BP processes. The proofs of these
results are minor variants of proofs in [3,4].

Theorem 1 Every tableau for α = γ is finite and there is only a finite number
of tableau for α = γ.
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Theorem 2 α ≈ γ iff there is a successful tableau for α = γ.

Therefore the main result follows that ≈ is decidable between restricted BP
processes. We now examine how this result shows equivalence and inequivalence
for the examples from section 2.

Example 1 We show that Y ≈ Z where these atoms are from Example 1 of
section 2. Assume Y < Z. We build a tableau with root Y = Z. First we apply
the ε=⇒ rule which results in the same goal Y = Z. Then we apply the a=⇒n

rule. In this example K = 1 and so we need to consider the four transitions ε=⇒1,
a=⇒−1,

a=⇒0 and a=⇒1.

ε0(Y ) = {Y A} a−1(Y ) = {A} a0(Y ) = {A, Y } a1(Y ) = {Y A, AA}
ε0(Z) = {ZA} a−1(Z) = {A} a0(Z) = {A, Z} a1(Z) = {ZA, AA}

So the goal Y = Z reduces to the following subgoals, (1)Y A = ZA, (2)A = A,
(3)Y = Z and (4)AA = AA. Goals (2) and (4) are successful leaves. In the cases
of (1) and (3) because Y < Z and Y = Z appears on their paths to the root,
and in both cases there is at least one application of the rule a=⇒n, we can apply
SUB(R) to yield (1′) Y A = Y A and (3′) Y = Y , which completes the successful
tableau. 2

Example 2 We show that U 6≈ V where U , V are from Example 2 of sec-
tion 2 even though U ≈′

n V for all n ≥ 0. There are only finitely many tableaux
for this goal and all are unsuccessful. Assume that U < V . The starting goal is
U = V . First we apply the ε=⇒0 rule, which yields the same goal U = V . For this
example K = 0. Next we apply the a=⇒n rule and there are two possible transi-
tions c=⇒0 and d=⇒0. We only examine the first of these. E(U, c, 0) = {U, CD∗}
and E(V, c, 0) = {CD∗}. The small elements of c0(U) = {U, C, CD, CD2} and
the small elements of c0(V ) = {C, CD, CD2, CD3}. Therefore we must find
a matching of small elements with bounded elements. The easy subgoals are
C = C, CD = CD, CD2 = CD2 and CD3 = CD3. The problem case is a match
for the small element U ∈ c0(U). By Lemma 2 because U is a finite element of
E(U, c, 0) the matching element must be CDs where s ≤ 2. Thus we must have
one of the following subgoals (1)U = C, (2)U = CD, (3)U = CD2. Assume
it is (3). We apply the ε=⇒0 rule to this goal, ε0(CD2) = {C, CD, CD2} and
ε0(U) = {U}. So in fact we must have all the subgoals (1), (2) and (3). But now
we have an unsuccessful leaf (1), because d0(U) = {U} and d0(C) = ∅. 2

5 Proofs of the Main Lemmas

In this section we prove the two boundedness lemmas of the previous section.

Proof of Lemma 1: Assume α
a=⇒n α′ and α′ 6≈′

o γ′ for all γ′ such that
γ

a=⇒n γ′. Consider the sets E(α, a, n) and E(γ, a, n). By Theorem 1 of section 3
either nf(α′) ∈ E(α, a, n) or α′ = δAn1

1 . . . Ank

k and βA∗
1 . . . A∗

k ∈ E(α, a, n) and
nf(δ) = β. If the first holds then the result is proved. Assume therefore that



392 C. Stirling

βAn1
1 . . . Ank

k 6≈′
o γ′ for all γ′ such that γ

a=⇒n γ′. Let β′
1 = βAn2

2 . . . Ank

k , and
consider the least m1 such that β′

1A
m1
1 6≈′

o γ′ for all γ′ such that γ
a=⇒n γ′.

If m1 ≤ |E(γ, a, n)| + 1 then the result is proved for l1 = m1. The argu-
ment is then repeated for other Ai. Let β′

2 = βAm1
1 An3

3 . . . Ank

k and consider
the least m2 such that β′

2A
m2
2 6≈′

o γ′ for all γ′ such that γ
a=⇒n γ′. There-

fore without loss of generality assume that β′
1A

m1
1 6≈′

o γ′ for all γ′ such that
γ

a=⇒n γ′ and m1 > |E(γ, a, n)| + 1. Hence there is a γ′ such that γ
a=⇒n γ′

and β′
1A

m1−1
1 ≈′

o γ′. By Theorem 1 of section 3 either nf(γ′) ∈ E(γ, a, n) or
γ′ = λBs1

1 . . . Bsm
m and λ′B∗

1 . . . B∗
m ∈ E(γ, a, n) and nf(λ) = λ′. Assume the

first case, that nf(γ′) = γ′′
0 ∈ E(γ, a, n). Hence β′

1A
m1−1
1 ≈′

o γ′′
0 . However

β′
1A

m1−1
1

ε=⇒0 β′
1A

m1−2
1

ε=⇒0 . . .
ε=⇒0 β′

1A
0
1. So therefore γ′′

0
ε=⇒0 γ′′

1
ε=⇒0

. . .
ε=⇒0 γ′′

m1−1 and γ′′
j ≈′

o β′
1A

m1−(j+1)
1 . By Fact 1 of the previous section

there is an i, nf(γ′′
i ) = nf(γ′′

i+1) and therefore β′
1A

m1−(i+2)
1 ≈′

o β′
1A

m1−(i+1)
1 .

Because ≈′
o is a congruence it follows that β′

1A
m1−(i+2)
1 ≈′

o β′
1A

m1
1 which

is a contradiction. Next we consider the other case, β′
1A

m1−1
1 ≈′

o γ′
0 and

γ′
0 = λBs1

1 . . . Bsm
m and λ′B∗

1 . . . B∗
1 ∈ E(γ, a, n) and nf(λ) = λ′. The argu-

ment proceeds as above. β′
1A

m1−1
1

ε=⇒0 β′
1A

m1−2
1

ε=⇒0 . . .
ε=⇒0 β′

1A
0
1 There-

fore γ′
0

ε=⇒0 γ′
1

ε=⇒0 . . .
ε=⇒0 γ′

m1−1 and γ′
j ≈′

o β′
1A

m1−(j+1)
1 . By Fact 2 of the

previous section for some i, γ′
i ≈ λiB

t1
1 . . . Btm

m and γ′
i+1 ≈ λ′

iB
t′
1

1 . . . B
t′
m

m and
t′i ≤ ti and nf(λi) = nf(λ′

i). γ′
i+1 ≈′

o β′
1A

m1−(i+2)
1 and γ′

i ≈′
o β′

1A
m1−(i+1)
1 . Let

η = B
t1−t′

1
1 . . . B

tm−t′
m

m . By congruence, γ′
i+1η ≈′

o β′
1A

m1−(i+2)
1 η ≈′

o β′
1A

m1−(i+1)
1 .

Therefore by congruence γ′
i+1η

i+2 ≈′
o β′

1A
m1
1 which is a contradiction. 2

Proof of Lemma 2: Assume α ≈ γ. First also assume that α
a=⇒n α′ and

nf(α′) ∈ E(α, a, n). Hence γ
a=⇒n γ′ and nf(α′) ≈ γ′. By Theorem 1 of sec-

tion 3 either nf(γ′) ∈ E(γ, a, n) and nf(α′) = nf(γ′), or γ′ = λBs1
1 . . . Bsm

m and
λ′B∗

1 . . . B∗
m ∈ E(γ, a, n) and nf(λ) = λ′ and nf(α′) = λ′Bs1

1 . . . Bsm
m . We show

that each si can be chosen so that si ≤ |E(α, a, n)|. The strategy for proving
this is similar to the proof of Lemma 1 above. Let λ′′ = λ′Bs2

2 . . . Bsm
m and let

m1 be the smallest index such that nf(α′) ≈ λ′′Bm1
1 . If m1 ≤ |E(α, a, n)| then

we let s1 = m1 and repeat the argument for the other indices si. Therefore
assume that m1 > |E(α, a, n)|. However λ′′Bm1

1
ε=⇒0 λ′′Bm1−1

1
ε=⇒0 . . .

ε=⇒0

λ′′B0
1 . Therefore assuming α0 = nf(α′), α0

ε=⇒0 α1
ε=⇒0 . . .

ε=⇒0 αm1 and
αj ≈ λ′′Bm1−j

1 . By Fact 1 of the previous section for some i, nf(αi) = nf(αi+1)
and so λ′′Bm1−i

1 ≈ λ′′Bm1−(i+1)
1 . Therefore by congruence, λ′′Bm1−(i+1)

1 ≈
λ′′Bm1

1 which is a contradiction. Next assume that α
a=⇒n δAn1

1 . . . Ank

k and
βA∗

1 . . . A∗
k ∈ E(α, a, n) and β = nf(δ) and each ni ≤ |E(α, a, n)| + 1. Be-

cause α ≈ γ it follows that γ
a=⇒n γ′ and βAn1

1 . . . Ank

k ≈ γ′. By Theorem 1
of section 3 either nf(γ′) ∈ E(γ, a, n) and therefore βAn1

1 . . . Ank

k ≈ nf(γ′),
or γ′ = λBs1

1 . . . Bsm
m and λ′B∗

1 . . . B∗
m ∈ E(γ, a, n) and nf(λ) = λ′ and

βAn1
1 . . . Ank

k ≈ λ′Bs1
1 . . . Bsm

m . We show that each si can be chosen so that
si ≤ ∑

ni + |E(γ, a, n)|. Let λ′′ = λ′Bs2
2 . . . Bsm

m and let m1 be the smallest
index such that βAn1

1 . . . Ank

k ≈ λ′′Bm1
1 . If m1 ≤ ∑

ni + |E(γ, a, n)| then we let
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s1 = m1 and repeat the argument for the other indices. Therefore assume that
m1 >

∑
ni + |E(γ, a, n)|. However λ′′Bm1

1
ε=⇒0 λ′′Bm1−1

1
ε=⇒0 . . .

ε=⇒0 λ′′B0
1 .

Therefore let η0 = βAn1
1 . . . Ank

k , and so η0
ε=⇒0 η1

ε=⇒0 . . .
ε=⇒0 ηm1 and

ηj ≈ λ′′Bm1−j
1 . Because m1 >

∑
ni + |E(γ, a, n)| it follows via fact 2 of the

previous section that for some i, ηi ≈ ηi+1 and so λ′′Bm1−(i+1)
1 ≈ λ′′Bm1−i

1 and
therefore by congruence λ′′Bm1

1 ≈ λ′′Bm1−(i+1)
1 which contradicts that m1 is a

least index. 2
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10. Hüttel, H., and Stirling, C. (1991). Actions speak louder than words: proving
bisimilarity for context free processes. Proceedings 6th Annual Symposium on
Logic in Computer Science, IEEE Computer Science Press, 376-386.
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