
Decidable and Undecidable Problems in
Schedulability Analysis Using Timed Automata�

Pavel Krčál and Wang Yi

Uppsala University
Department of Information Technology

P.O. Box 337, S-751 05 Uppsala, Sweden
{pavelk,yi}@it.uu.se

Abstract. We study schedulability problems of timed systems with non-
uniformly recurring computation tasks. Assume a set of real time tasks
whose best and worst execution times, and deadlines are known. We use
timed automata to describe the arrival patterns (and release times) of
tasks. From the literature, it is known that the schedulability problem for
a large class of such systems is decidable and can be checked efficiently.

In this paper, we provide a summary on what is decidable and what is
undecidable in schedulability analysis using timed automata. Our main
technical contribution is that the schedulability problem will be unde-
cidable if these three conditions hold: (1) the execution times of tasks
are intervals, (2) a task can announce its completion time, and (3) a task
can preempt another task. We show that if one of the above three condi-
tions is dropped, the problem will be decidable. Thus our result can be
used as an indication in identifying classes of timed systems that can be
analysed efficiently.

1 Introduction

Timed automata [AD94] has been developed as a basic semantic model for
real time systems. Recently it has been applied to solve scheduling prob-
lems, such as job-shop scheduling [AM01,AM02,Abd02,Feh02,HLP01] and real
time scheduling [MV94,FPY02,AFM+02,FMPY03,WH03]. The basic idea be-
hind these works is to model real time tasks (or jobs) and scheduling strate-
gies of a system as variants of timed automata and then check the reachability
of pre-specified states. As the reachability problem of such automata is decid-
able, the scheduling problems can be solved automatically and in many cases
efficiently (e.g. for fixed priority scheduling [FMPY03]) using a model-checker
such as Kronos [Yov97], Uppaal [LPY97] or HyTech [HHWT97]. For pre-
emptive scheduling, stop-watch automata have been used to model preemption
[MV94,CL00,Cor94,AM02]. But since the reachability problem for this class of
� This work has been partially supported by the Swedish Research Council and the

European Research Training Network GAMES.

K. Jensen and A. Podelski (Eds.): TACAS 2004, LNCS 2988, pp. 236–250, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Decidable and Undecidable Problems in Schedulability Analysis 237

automata is undecidable [ACH+95] there is no guarantee for termination in the
general case.
We adopt the model presented in [EWY98]. The essential idea behind the model
is to use a timed automaton (control automaton) to describe the release (or ar-
rival) patterns of the tasks. Tasks are released when control automaton makes
a discrete transition. Each task has specified its computation (execution) time
and its deadline. Released tasks are stored in a task queue and executed on a
processor according to a scheduling strategy. There is a straightforward trans-
lation of such a system into a timed automaton for non-preemptive scheduling
strategies. For the preemptive case, the schedulability problem was suspected
to be undecidable due to the nature of preemption that may need the power of
stop-watch to model.
In the original work, tasks in the queue cannot send any information back to the
control automaton. The only communication between the control automaton and
the task queue is the release of tasks. Once a task has been released, the control
automaton has no possibility to find out any information about its execution.
In particular, the control automaton does not know whether a task has finished
or not. The behaviour of the control automaton is independent from the state
of the queue. We say that this is a system with one-way communication. In this
paper, we study systems where tasks can tell the control automaton that their
execution has been just finished (systems with two-way communication). As an
illustration, consider a company, where the boss assigns jobs to employees from
time to time. In the model with one-way communication, the employees do not
tell the boss when they finish their jobs whereas in the model with two-way
communication they do.
The execution time of a task can vary within an interval – only the best and
the worst execution time of each task is known. This is a natural assumption for
modeling, because in many cases we cannot establish the exact computation time
of a task (it depends on many circumstances from which the model abstracts),
but we can establish some bounds for it. In the schedulability analysis of the
systems with two-way communication we have to consider each possible finishing
time, because it can influence the future behaviour of the control automaton.
For instance, the boss can become too optimistic when several employees finish
their jobs quickly and he can assign too many jobs to other employees. Or on
the other hand, the boss can assign fewer jobs (or stop assigning new jobs at
all) when the processing of some old one takes too much time (e.g. exception
handling).
Recent results [FPY02,FMPY03] show that some of the schedulability problems
related to preemptive scheduling are decidable. The decidability of the schedula-
bility analysis has been proven for the following models. In [FPY02] only systems
with one-way communication are considered. However, the execution times of
tasks can be intervals though it is not stated clearly in this work. The best exe-
cution time is not important for the schedulability analysis of the systems with
one-way communication. In [FMPY03] tasks can update data variables shared
between them and the control automaton upon their completion (system with

238 P. Krčál and W. Yi

two-way communication), but the computation time should be a known constant
for each task. The natural question is if schedulability analysis remains decidable
for systems with two-way communication and interval execution times.
Unfortunately, the answer is negative. As the main technical contribution of this
paper, we show that (1) the interval execution time of tasks, (2) the ability
of the control automaton to test the exact completion time of tasks, and (3)
preemption are sufficient and necessary to code the halting problem for two-
counter machines. We shall also summarise previous decidability results and
discuss other variants of the problem. Our goal is to identify as closely as possible
the borderline between decidable and undecidable problems in schedulability
analysis using timed automata. Hopefully, our result can be used as an indication
in determining which classes of real-time models can be analysed efficiently.
The rest of the paper is organised as follows. In Section 2 we formally introduce
our model, define the schedulability problem, and summarise previous decid-
ability results. Section 3 contains the undecidability proof of the schedulability
problem for our model. We discuss several variants of this model in Section 4.
Section 5 concludes the paper with a summary and future work.

2 Preliminaries

2.1 Timed Automata with Tasks

To model two-way communication, we assume that each automaton has a dis-
tinguished clock, that is reset whenever a task finishes. This allows each task
to announce its completion to the automaton. We have chosen reseting of the
clock because even this simple model of two-way communication between tasks
and the control automaton is sufficient for encoding of the two-counter machine.
Other models of two-way communication, such as updating shared data variables
upon completion are discussed later.

Syntax. Let P ranged over by P, Q denote a finite set of task types. A task type
may have different instances that are copies of the same program with different
inputs. Each task P is characterised as a pair ([B, W], D), where [B, W] is the
execution time interval and D is the deadline for P , B ≤ W ≤ D ∈ N0 and
W �= 0. The deadline D is relative, meaning that when task P is released, it
should finish within D time units. We use B(P), W (P), and D(P) to denote the
best execution time, the worst execution time, and the relative deadline of the
task P .
As in timed automata, assume a finite set of real-valued variables C for clocks.
We use B(C) ranged over by g to denote the set of conjunctive formulas of
atomic constraints in the form: a∼N or a − b∼M where a, b ∈ C are clocks,
∼ ∈ {≤, <,≥, >}, and N, M are natural numbers. We use BI(C) for the subset
of B(C) where all atomic constraints are of the form a∼N and ∼ ∈ {<,≤}. The
elements of B(C) are called clock constraints or guards.

Decidable and Undecidable Problems in Schedulability Analysis 239

Definition 1. A timed automaton extended with tasks, over clocks C and tasks
P is a tuple 〈N, l0, E, I, M, check〉 where

– 〈N, l0, E, I〉 is a timed automaton where
• N is a finite set of locations,
• l0 ∈ N is the initial location,
• E ⊆ N × B(C) × 2C × N is the set of edges, and
• I : N 	→ BI(C) is a function assigning each location with a clock con-

straint (a location invariant),
– M : N ↪→ P is a partial function assigning locations with a task type,1 and
– check ∈ C is the clock which is reset whenever a task finishes.

As a simplification we will use l
g,r−→ m to denote (l, g, r, m) ∈ E.

For convenience, in the rest of the paper we use extended timed automata (ETA)
or simply automata when it is understood from the context instead of timed
automata extended with tasks.

Operational Semantics. Extended timed automata may perform two types of
transitions just as standard timed automata. Intuitively, a discrete transition in
an automaton denotes an event triggering a task. Whenever a task is released,
it will be put in a scheduling (or task) queue for execution. A delay transition
corresponds to the execution of the running task with the highest priority and
idling for the other tasks waiting to run.

We represent the values of clocks as functions (called clock assignments) from
C to the non-negative reals. A state of an automaton is a triple (l, σ, q) where
l is the current control location, σ the clock assignment, and q is the current
task queue. We assume that the task queue takes the form: [P1(b1, w1, d1), . . . ,
Pn(bn, wn, dn)] where Pi(bi, wi, di) denotes a released instance of task type Pi

with remaining best computing time bi, remaining worst computing time wi,
and relative deadline di denoted by b(Pi), w(Pi) and d(Pi) respectively.

A queue reordering function is a sorting function which changes the ordering of
the task queue elements according to the task types and parameters. It takes a
task queue as an input and returns a task queue with the unmodified tasks that
may be sorted in a different order. A scheduling strategy (Sch) is a queue reorder-
ing function which changes the ordering of task types only, but never changes
the ordering of task instances of the same type. A non-preemptive strategy will
never change the position of the first element in a queue, whereas a preemptive
scheduling strategy may change the position of the first element in the queue
(the one which is currently executed). E.g. FPS (fixed priority scheduling) or
EDF (earliest deadline first) are preemptive scheduling strategies. For example,
EDF([P (3.1, 4.9, 10), Q(4, 4.5, 5.3))] = [Q(4, 4.5, 5.3), P (3.1, 4.9, 10))].
1 Note that M is a partial function meaning that some of the locations may have no

task.

240 P. Krčál and W. Yi

Run is a function which given a real number t and a task queue q returns the task
queue after t time units of execution on a processor. The result of Run(q, t) for
q = [P1(b1, w1, d1), P2(b2, w2, d2), . . . , Pn(bn, wn, dn)] is defined as q′ = [P1(b1 −
t, w1 − t, d1 − t), P2(b2, w2, d2 − t), . . . , Pn(bn, wn, dn − t)]. For example, let q =
[Q(2, 3, 5), P (4, 7, 10)]. Then Run(q, 3) = [Q(−1, 0, 2), P (4, 7, 7)] in which the first
task has been executed for 3 time units (and it will be removed from the queue).
A task P in the queue may finish when b(P) = 0 and w(P) ≥ 0, and it must
finish when w(P) = 0. Finished tasks are removed from the queue.
Further, for a non-negative real number t, we use σ + t to denote the clock
assignment which maps each clock a to the value σ(a) + t, σ |= g to denote that
the clock assignment σ satisfies the constraint g and σ[r] for r ⊆ C to denote
the clock assignment which maps each clock in r to 0 and agrees with σ for the
other clocks (i.e. C\r). We omit braces when r is a singleton.

Definition 2. Given a scheduling strategy Sch, the semantics of an extended
timed automaton 〈N, l0, E, I, M, check〉 with initial state (l0, σ0, q0) is a transi-
tion system defined by the following rules:

– (l, σ, q) 	−→Sch (m, σ[r], Sch(M(m) :: q)) if l
g,a,r−→ m, σ |= g, and σ[r] |= I(m)

– (l, σ, []) t−→Sch(l, σ + t, []) if (σ + t) |= I(l)
– (l, σ, P :: q) t−→Sch(l, σ + t, Run(P :: q, t)) if t ≤ w(P) and (σ + t) |= I(l)
– (l, σ, P :: q) 0−→Sch(l, σ[check], q) if b(P) ≤ 0 ≤ w(P) and σ[check] |= I(l)

where P :: q denotes the queue with the process P inserted in q (at the first
position), and [] denotes the empty queue.

2.2 Schedulability and Decidability

In this subsection we define the schedulability problem for ETA and give a
summary of the previous decidability results. Undecidability is discussed in the
following section. We first mention that we have the same notion of reachability
as for ordinary timed automata.

Definition 3. We shall write (l, σ, q)−→Sch(l′, σ′, q′) if (l, σ, q) 	−→Sch (l′, σ′, q′)
or (l, σ, q) t−→Sch(l′, σ′, q′) for a delay t. For an automaton with initial state
(l0, σ0, q0) and for a scheduling strategy Sch, we say that (l, σ, q) is reachable
iff (l0, σ0, q0)(−→Sch)∗(l, σ, q).

Now we can formalise the notion of schedulability.

Definition 4. (Schedulability) A state (l, σ, q) where q = [P1(b1, w1, d1), . . . ,
Pn(bn, wn, dn)] is a failure denoted (l, σ, Error) if there exists i such that wi ≥ 0
and di < 0, that is, a task failed in meeting its deadline. Naturally an automa-
ton A with initial state (l0, σ0, q0) is non-schedulable with Sch iff (l, σ, Error) is

Decidable and Undecidable Problems in Schedulability Analysis 241

reachable for some l and σ. Otherwise, we say that A is schedulable with Sch. 2

More generally, we say that A is schedulable iff there exists a scheduling strategy
Sch with which A is schedulable.

The following decidability results apply to some simpler variants of the schedu-
lability problem for extended timed automata. By this we show, that whenever
preemption, clock resets, or interval execution times are not allowed, the problem
becomes decidable.

Theorem 1 ([EWY98]). The problem of checking schedulability for extended
timed automata with non-preemptive scheduling strategy is decidable.

Proof. The proof in [EWY98] handles only tasks with worst case execution time
and tasks without clock resets. But it can be easily modified for our model. ��
The schedulability problem is decidable even for preemptive scheduling strategies
when tasks are not allowed to communicate with an automaton (to reset clocks).
Execution times of tasks can be intervals.

Theorem 2 ([FPY02]). The problem of checking schedulability for extended
timed automata with one-way communication (tasks do not reset clocks) is de-
cidable.

Proof. It is easy to observe that we can consider only the worst case execution
time of each task and the proof is given in [FPY02]. ��
The schedulability is decidable even for extended timed automata with two-way
communication (tasks may reset clocks by the end of their execution) when the
computation time is a known constant for each task.

Theorem 3 ([FMPY03]). The problem of checking schedulability for extended
timed automata is decidable if B(P) = W (P) for all tasks P .

Proof. The proof is given in [FMPY03]. ��
When tasks have interval execution time in the system with two-way communi-
cation the computation of the control automaton can be influenced by the exact
completion time of a task. The control automaton can take into consideration
if a task has already finished or not and can proceed to different locations in
different cases. For example, if a task does not finish in a given time the ma-
chine stops (it deadlocks, or proceeds to some idle state, i.e. no new tasks are
released, just the already released tasks are computed). By this we can cut off
(e.g. deadlock) branches where a task had “wrong” computation time. In fact,
2 Note that the state might not be failure denoted when ETA is deadlocked and time

cannot progress, even if time flow would lead to a failure denoted state. Therefore,
a model where such states are reachable might still be schedulable. This is not
fundamental for our proof and these states could be prohibited. But it would induce
some technical difficulties making the proof less clear.

242 P. Krčál and W. Yi

we can construct an automaton which proceeds to a certain location if and only
if a task has been executed for some given exact (real) time.

Preemption enables us to sum up (accumulate) running times of tasks. Response
time of the preempted task is increased by running time of each preempting task.
This is sufficient to encode the two-counter machine.

3 Undecidability

Our main result in this paper is that the schedulability problem with fixed
priority scheduling strategy for the automata defined in the previous section
is undecidable. However, the proof does not depend on fixed priority schedul-
ing strategy and it can be easily modified for almost all preemptive scheduling
strategies (e.g. the proof holds for EDF without any modification).

Theorem 4. The problem of checking whether extended timed automaton (de-
fined in Definition 1) is schedulable with fixed priority scheduling strategy is
undecidable.

The proof is done by reduction of the halting problem for two-counter machine to
the schedulability problem for ETA. A two-counter machine consists of a finite
state control unit and two unbounded non-negative integer counters. Initially,
both counters contain the value 0. Such a machine can execute three types
of instructions: incrementation of a counter, decrementation of a counter, and
branching based upon whether a specific counter contains the value 0. Note that
decrementation of a counter with the value 0 leaves this counter unchanged.
After execution of an instruction, a machine changes deterministically its state.
One state of a two-counter machine is distinguished as halt state. A machine
halts if and only if it reaches this state.

We present an encoding of a two-counter machine M using extended timed
automaton AM such that M halts if and only if AM is non-schedulable, based
on the undecidability proofs of [HKPV98]. In the construction, the states of M
correspond to specific locations of AM and each counter is encoded by a clock.
We shall show how to simulate the two-counter machine operations. First, we
adopt the notion of W-wrapping of [HKPV98].

Definition 5. An extended timed automaton over set of clocks C is W-wrapping
if for all states (l, σ, q) reachable from its initial state and for all clocks c ∈ C:
σ |= c ≤ W . A W-wrapping edge for a clock c and a location l is an edge from l
to itself that is labeled with the guard c = W and which resets the clock c. A clock
that is reset only by wrapping edges is called system clock.3 Each time period
between two consecutive time points at which any system clock contains value 0
is called W-wrapping period.
3 Note that all system clocks contain the same value.

Decidable and Undecidable Problems in Schedulability Analysis 243

We use wrapping to simulate discrete steps of two-counter machine. Each step
is modeled by several W-wrapping periods. We define the wrapping-value of
a clock to be the value of the clock when the system clock is 0. Note that a
clock is carrying the same wrapping value if it is not reset by another edge than
the wrapping edges. This principle is shown in Figure 1, where a is a system
clock and clock t contains the same wrapping-value when the automaton takes
transitions e1 and e3.

e1

e2

t = W → t := 0

a = 0
t ≤ W

a ≤ W

e2e1

0

at

e3

a = W → a := 0
e3

W

time

Fig. 1. The wrapping edge e2 makes clock t carry the same wrapping-value when the
transitions e1 and e3 are taken.

We shall encode a two-counter machine M with counters C and D using a 4-
wrapping automaton AM with one system clock denoted a and five other clocks
c, d, h, t and check . In particular, we encode counters C and D of M by clocks
c and d like this: counter value v corresponds to the clock wrapping-value 21−v.
We use the density of the continuous domain to encode arbitrarily large values
of the counters. Decrementation (incrementation) of a counter corresponds to
doubling (halving) the wrapping-value of the corresponding clock. Test for zero
corresponds to the check whether the clock wrapping-value equals to 2.
Now we show how to simulate the decrementation operation by doubling the
wrapping-value of the clock d. To do this, we use two tasks: short and long.
The task short has execution time within interval [0, 1] and deadline 50; the
task long has execution time within interval [8, 8] and deadline 100. The tasks
reset clock check by the end of their execution. Moreover, the priority of short
is higher than the priority of long, i.e. short always preempts long. Notice that
the execution time of task short can vary and the execution time of the task
long is fixed.
The basic idea of doubling a wrapping-value v ∈ (0, 1] of clock d is as follows:
we assume that the current wrapping-value of d is v. We copy it to clock t (that
is, to make the wrapping-value of clock t to be v). We release the task long non-
deterministically and reset d. The idea is to use d to record the response time
for long. We release two instances of short before long finishes, that is preempt
long twice by short. We make sure that the execution time of each of these two

244 P. Krčál and W. Yi

long

short

short

D:=D−1
(d:=2d)

e0

e1
e2

e3

e4

e5

e6

e7

li

lj

d, a, t ≤ 4

d, a, t ≤ 4

d = 4 ∧ a ≥ 3

d = 4 → d := 0

d = 4 → d := 0

t = 4 → t := 0

t = 4 → t := 0

t = 4 → t := 0

a = 4 → a := 0

a = 4 ∧ check = 0 → a := 0

a = 4 ∧ check = 0 → a := 0

a = 4 ∧ check = 0 → a := 0

t := 0
d := 0

d := 0
t < 4 t ≤ 4

t ≤ 4

a ≤ 4

a ≤ 4

a ≤ 4

a ≤ 4

d ≤ 4

t, d ≤ 4

a = 0 ∧ d = 2

Fig. 2. A part of reduction automaton corresponding to a decrementation of D. The
wrapping edges for clocks c, h, check, and for all clocks in locations li, lj are omitted.
The location invariants c ≤ 4, h ≤ 4, and check ≤ 4 are also omitted.

Decidable and Undecidable Problems in Schedulability Analysis 245

4

0

short
long

d

d ddt tta aaa

e1

e2 e3 e4 e5 e6 e7

Fig. 3. Time chart of the doubling procedure.

instances of short is exactly v time units. Note that v can be any real number
within the interval (0, 1]. Then the response time for long is exactly 8+2v. Note
that if long finishes at a time point when the system clock a is reset to 0, the
wrapping-value of d is 2v. As long is released non-deterministically, there will
be surely one such computation.

In Figure 2, we show the part of AM that doubles the wrapping-value of clock
d. Figure 3 illustrates the time chart of the doubling process. Assume that a
two-counter machine M is currently in state si and that it wants to decrease
the counter D and then move to state sj . The locations li and lj of AM cor-
respond to the states si and sj respectively. Note that the dashed edge shows
the transition of the two-counter machine (it is not a transition of AM). Note
also that the decrementation operation leaves a counter with value 0 unchanged;
the automaton can move from li directly to lj through the transition e0 when
d contains the wrapping-value 2 (which corresponds to the counter value 0).
Otherwise, the following steps are taken to double the wrapping-value of d.

Firstly, the wrapping-value of d is copied to clock t (by transition e1), that is, t
carries the same wrapping-value as d. Then the automaton non-deterministically
guesses the doubled wrapping-value of d (note that when d is reset, it will carry
a new wrapping-value). It resets d at nondeterministically chosen time instant
and at the same time it releases the task long (transition e2).

The automaton waits until clock t reaches time 4, then resets t and releases
short (transition e3), which preempts long. Note that the wrapping-value of t
will remain to be v and at this time point the value of the system clock a is
4 − v. Therefore a will reach 4 in v time units.

The next transition e4 is guarded by two constraints: a = 4, check = 0. To satisfy
these constraints, the automaton has to wait in this location for v time units,
and task short must finish at this time point, which resets the clock check .4

4 We have to make sure that check is not reset by a wrapping edge when it is tested
by a guard of the automaton. This causes no technical difficulties and it is omitted
from Figure 2.

246 P. Krčál and W. Yi

By this we make short run (and prevent long from running) exactly for v time
units. Now we repeat this procedure again. That is, the automaton waits until
t = 4. Then it releases the task short and forces it to run exactly for v time
units (transitions e5 and e6).
Now, if the non-deterministic guess of the doubled wrapping-value of d was
correct, task long must finish when a = 4, which makes the guard on e7 become
true and the automaton moves to location lj .
So if the location lj is reachable, the wrapping-value of d is 2v. This is stated in
the following lemma.

Lemma 1. Let (li, σ, q) be an arbitrary state of the automaton shown in Figure 2
where σ(d) = v and v ∈ (0, 1], and q is empty. Then (lj , σ′, q′) is reachable for
some σ′ and q′ and if (lj , σ′, q′) is reachable, it must be the case that q′ = [], and
σ′(d) = 2v.

Proof. The proof is obvious from the construction in Figure 2.

To increment a counter we need to halve a wrapping-value of a clock, say c. For
this, we use the clock h to copy the wrapping-value of c. The new wrapping-value
v of c is nondeterministically guessed and it is checked by the above doubling
procedure. If the wrapping-value of h (the original wrapping-value of c) is 2v,
then the automaton can proceed to the location corresponding to the destination
state in an increment instruction.
To simulate branching, we construct two transitions outgoing from a location
with guards a = 0 ∧ c = 2 and a = 0 ∧ c �= 2. The initial state of M corresponds
to a location where both c and d contain the wrapping-value 2. This can be
achieved by integer guards and resets.
The halt state corresponds to the location halt with unguarded self-loop releas-
ing the task long whenever it is visited. It follows that the automaton AM is
schedulable if and only if the location halt is unreachable, i.e. the two-counter
machine M does not halt.

4 Variants of the Problem

The proof can be easily modified even for some variants of the original setting.
By this we want to show that the only sufficient conditions for undecidability are
the following: the execution times of tasks are within intervals, an automaton
can test the exact completion time of tasks, and one task can be preempted by
another one.
The schedulability problem is undecidable if we use data variables to model two-
way communication as described in [FMPY03] instead of a distinguished clock.
Tasks can assign values to the variables shared between them and the control
automaton. The automaton can use these variables in assignments and guards.

Decidable and Undecidable Problems in Schedulability Analysis 247

In our construction, tasks assign the value 1 to the data variable A upon com-
pletion. The edges e4 and e6 in the original construction are substituted by the
edges e′, e′′ and by the location lint from Figure 4. The location where the task
short is released is left exactly after t time units, but short is not finished yet
(A = 0). However, the time does not flow in the location lint. Just the task
short can finish here. When this happens the edge e′′ becomes enabled and the
automaton can proceed. In fact, an automaton AM uses interleaving at the time
instant when a task finishes to enforce and to measure correct execution time.

short
e′ e′′

lint

a = 4 ∧ A = 0
A = 1 → A := 0

a = 0a := 0

d = 4 → d := 0

t ≤ 4
a ≤ 4

d ≤ 4

Fig. 4. Substitution of the clock resets by interleaving and data updates.

The schedulability problem is also undecidable if the tasks can only be released at
integer time points. In this case, we encode a counter value v as a clock wrapping-
value 4 − 21−v. Decrementing (incrementing) of a counter does not correspond
to doubling (halving) a clock wrapping-value anymore. Both instructions cor-
respond to more complicated operations. Otherwise, the construction becomes
even simpler. We do not need auxiliary clock t. Both long and short are released
when a = 0. The task short should finish when d = 0 and we reset the clock d to
obtain the doubled wrapping-value when the task long finishes. Synchronisation
can be forced either by clock resets or by data variable updates. Figure 5 shows
the time chart of the doubling procedure.

4

0

long
short

d d d dda aaa

Fig. 5. The time chart of the doubling procedure for integer release points.

248 P. Krčál and W. Yi

Schedulability will also remain undecidable if we prohibit B(P) = W (P), i.e. no
task is allowed to have a constant computation time. Then we use the task long1
with the execution interval [7, 8] instead of long. The guessed wrapping-value of
d can be less or equal to the correctly doubled value, because the task long can
finish sooner. However, we repeat the whole doubling procedure with the task
long2 which has the execution interval [8, 9]. Now the automaton does not guess
new wrapping-value of d, but uses the wrapping-value from the previous step.
Therefore, this verifying procedure can succeed only if the wrapping-value of d
was guessed correctly in the first doubling procedure.
It is sufficient to use just one preemption for doubling a clock value. Therefore,
even for systems where each task can be preempted only once during its execution
the schedulability problem turns out to be undecidable. Figure 6 shows the time
chart of the doubling procedure. The task short has the execution time within
interval [3, 4] and the task long has the execution time within [4, 4]. New doubled
value is nondeterministically guessed and the guess is verified by the procedure.

4

0

short
long

d

d ddt tta aaa

Fig. 6. Time chart of the doubling procedure using just one preemption.

Moreover, we present yet another variant of the extended timed automata for
which we suspect the schedulability problem to be decidable.
Consider the extended timed automata with the following modification. The
clock used for the task completion announcement (check) can appear only in the
guards of the form N∼check∼M or N∼check where ∼ ∈ {≤, <}, N, M ∈ N ,
and N �= M . This means that we prohibit equality checking for this clock. The
automaton can only decide upon whether the value of check lies in a non-singular
interval. For this setting, it is an open problem whether the schedulability check-
ing is decidable or not.

5 Conclusions and Future Work

We have studied timed systems where preemption can occur at any real time
point. For these systems, the schedulability checking problem is decidable if

Decidable and Undecidable Problems in Schedulability Analysis 249

either the computation time of each task is a known constant or the control
automaton cannot test the exact completion time of the tasks. We have showed
that the scheduling problem becomes undecidable if both of these restrictions
are dropped. By comparing this result with known decidability results, we try to
identify the borderline between decidable and undecidable problems in schedu-
lability analysis for these systems.

As future work, we will try to identify a class of systems where only partial
information about completion time of a task can be obtained by the control unit
such that the schedulability problem will become decidable. We have presented
a model of such class of systems in Section 4 as a candidate.

References

[Abd02] Y. Abdeddäım. Scheduling with Timed Automata. PhD thesis, Verimag,
2002.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138(1):3–34, 1995.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[AFM+02] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times -
a tool for modelling and implementation of embedded systems. In Proc.
TACAS’02, volume 2280 of LNCS, pages 460–464. Springer, 2002.

[AM01] Y. Abdeddäım and O. Maler. Job-shop scheduling using timed automata.
In Proc. CAV’01, volume 2102 of LNCS, pages 478–492. Springer, 2001.

[AM02] Y. Abdeddäım and O. Maler. Preemptive job-shop scheduling using stop-
watch automata. In Proc. TACAS’02, volume 2280 of LNCS, pages 113–
126. Springer, 2002.

[CL00] F. Cassez and F. Laroussinie. Model-checking for hybrid systems by quo-
tienting and constraints solving. In Proc. CAV’00, volume 1855 of LNCS,
pages 373–388. Springer, 2000.

[Cor94] J. Corbett. Modeling and analysis of real-time ada tasking programs. In
Proc. IEEE RTSS’94, pages 132–141, 1994.

[EWY98] C. Ericsson, A. Wall, and W. Yi. Timed automata as task models for
event-driven systems. In Proceedings of Nordic Workshop on Program-
ming Theory, 1998.

[Feh02] A. Fehnker. Citius, Vilius, Melius - Guiding and Cost-Optimality in Model
Checking of Timed and Hybrid Systems. PhD thesis, KU Nijmegen, 2002.

[FMPY03] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedulability
analysis using two clocks. In Proc. TACAS 2003, volume LNCS 2619,
pages 224–239. Springer–Verlag, 2003.

[FPY02] E. Fersman, P. Pettersson, and W. Yi. Timed automata with asyn-
chronous processes: Schedulability and decidability. In Proc. TACAS’02,
volume 2280 of LNCS, pages 67–82. Springer, 2002.

[HHWT97] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker
for hybrid systems. International Journal on Software Tools for Technol-
ogy Transfer, 1(1–2):123–133, 1997.

250 P. Krčál and W. Yi

[HKPV98] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decid-
able about hybrid automata? Journal of Computer and System Sciences,
57:94–124, 1998.

[HLP01] T. Hune, K.G. Larsen, and P. Pettersson. Guided Synthesis of Control
Programs using Uppaal. Nordic Journal of Computing, 8(1):43–64, 2001.

[LPY97] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal
on Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

[MV94] J. McManis and P. Varaiya. Suspension automata: A decidable class of
hybrid automata. In Proc. CAV’94, volume 818, pages 105–117. Springer,
1994.

[WH03] L. Waszniowski and Z. Hanzálek. Analysis of real time operating system
based applications. In Proc. FORMATS’03, 2003.

[Yov97] S. Yovine. Kronos: A verification tool for real-time systems. International
Journal on Software Tools for Technology Transfer, 1(1–2):110–122, 1997.

	Introduction
	Preliminaries
	Timed Automata with Tasks
	Schedulability and Decidability

	Undecidability
	Variants of the Problem
	Conclusions and Future Work

