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Abstract

In real-world crowd counting applications, the crowd

densities vary greatly in spatial and temporal domains. A

detection based counting method will estimate crowds ac-

curately in low density scenes, while its reliability in con-

gested areas is downgraded. A regression based approach,

on the other hand, captures the general density information

in crowded regions. Without knowing the location of each

person, it tends to overestimate the count in low density ar-

eas. Thus, exclusively using either one of them is not suf-

ficient to handle all kinds of scenes with varying densities.

To address this issue, a novel end-to-end crowd counting

framework, named DecideNet (DEteCtIon and Density Es-

timation Network) is proposed. It can adaptively decide the

appropriate counting mode for different locations on the im-

age based on its real density conditions. DecideNet starts

with estimating the crowd density by generating detection

and regression based density maps separately. To capture

inevitable variation in densities, it incorporates an attention

module, meant to adaptively assess the reliability of the two

types of estimations. The final crowd counts are obtained

with the guidance of the attention module to adopt suitable

estimations from the two kinds of density maps. Experimen-

tal results show that our method achieves state-of-the-art

performance on three challenging crowd counting datasets.

1. Introduction

The crowd counting task in the computer vision commu-

nity aims at obtaining number of individuals appearing in

specific scenes. It is the essential building block for high-

level crowd analysis, including crowd monitoring [3], scene

understanding [41] and public safety management [5].

Various methods have been proposed to tackle this prob-

lem. They could generally be classified into detection and

regression based approaches. The detection based meth-

ods [8, 18, 34, 10, 43, 13] employ object detectors to lo-

(a)                                                                                      (b)

(c)                                                                                                   (d)

Figure 1. Ablation studies of detection and regression based crowd

counting on the ShanghaiTech PartB (SHB) dataset [42]. Detec-

tion reliability decreases along with the increased crowd density,

resulting in underestimated counts in those areas. Counts from

density estimation tend to be overestimated in scenes with low

densities. (a) Visualization of the detection results on a image

from a Faster R-CNN [25] detector. (b) The density map on the

same image from a CNN regression network [28]. (c) The median

object detection scores from the detector used in (a) versus the

ground-truth counts. (d) The predictions from the network used in

(b) versus the true crowd counts.

calize the position for each person. The number of de-

tections is then treated as the crowd count. Early works

[8, 34, 10] employ low-level features as region descriptors,

followed by a classifier for classification. Benefiting from

the recent progress in object detection using deep neural

networks [14, 25, 24, 12], in ideal images with relatively

large individual sizes and sparse crowd densities, detection

based counting could surpass human performance. Dif-

ferent from crowd counting by detection, regression based

methods [19, 23, 40, 28, 42, 2] obtain the crowd count with-

out explicitly detecting and localizing each individual. Pre-
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liminary works directly learn the mapping between features

of image patches to crowd counts [19, 23, 40]. Recent re-

gression based works improve the performance with Convo-

lutional Neural Network (CNN) [2, 28, 42, 21, 22] to output

density maps of image patches. Integrating over the map

will give the count for the patch. Regression based methods

usually work well in crowded patches since they can cap-

ture the general density information by benefiting from the

rich context in local patches.

In real-world counting applications, the crowd density

varies enormously in spatial and temporal domains. In

the spatial aspect, even in a same image, the density in

some regions may be much higher than those of others.

In some background regions, there may even be no person

present. Meanwhile, it is also natural for the crowd volume

to change along with time: a business street may have very

high crowd volumes during the workdays, while the week-

ends counterparts are much lower. Intuitively, here comes

a question: can crowd counting exclusively based on either

regression or detection be enough to simultaneously handle

high and low density scenes?

To answer this question, we study the performance of

two types of approaches on the ShanghaiTech PartB (SHB)

dataset [42] collected from real street scenes with great vari-

ation in crowd densities. The result is illustrated in Figure 1.

Figure 1(a) gives the detections from a fine-tuned Faster R-

CNN head detector on a specific image: with the distance to

the camera increasing, the crowd density and the number of

missed detections rises. Figure 1(c) shows the relationship

between median detection scores and ground-truth counts

for 10,000 image patches with sizes of 256×128. It is clear

that the score drops rapidly with the rise of the ground-

truth count. We may therefore find that the reliability of

detection based counting, reflected by the detection score,

is highly correlated to the crowd density. In scenes with

sparse crowds, the estimations are reliable, and the detec-

tion scores are also higher than those of congested scenes.

On the other hand, in crowded scenes, the corresponding

object sizes tend to be very small. Detection in these scenes

is less reliable, leading to low detection scores and recall

rates. Consequently, the predicted crowd counts will be

underestimated; while the regression based counting meth-

ods could perform better on these occasions. Figure 1(b)

provides the crowd density map visualization on the same

image in (a), outputted by a 5-layer CNN based regression

network with similar structure employed in [28]. We find

that the estimations in remote congested areas are quite rea-

sonable. However, in background regions near the camera

viewpoint, there exist false alarm hot spots on the pave-

ment. The relationship between ground-truth counts and

corresponding predictions is plotted in Figure 1(d). Note

that the prediction dots for patches with lower ground-truth

counts are mostly above the dashed line. This indicates that

prediction counts in these scenes are mostly larger than the

ground-truth. Hence, being not aware of the location of

each individual, and directly applying the regression based

approaches to low density scenes may lead to overestimated

results.

Based on the above ablation analysis, we may find that

the detection and regression based counting approaches

have their different strengths on different crowd densities.

The regression based method is preferred for congested

scenes. Without localization information for each person,

applying them to low density scenes tends to overestimate

counts. The detection based approach could localize and

count each person precisely on these occasions since they

are expected settings for object detectors. However, its re-

liability degenerates in crowded scenes due to small target

sizes and occlusion.

Therefore, we may find that a conventional crowd count-

ing method which only relies on either detection or regres-

sion is limited when handling real scenes with unavoidable

density variations. An ideal counting method, on the other

hand, should have an adaptive ability to choose the appro-

priate counting mode according to the crowd density: in low

density scenes, it is expected to count by localizing as an ob-

ject detector; whereas in congested scenes, it should behave

in a regression manner. Motivated by this understanding,

we propose a novel crowd counting framework named as

DecideNet (DEteCtIon and Density Estimation Network),

as shown in Figure 2. To the best of our knowledge, Deci-

deNet is the first framework, which is capable of perceiving

the crowd density for each pixel in a scene and adaptively

deciding the relative weights for detection and regression

based estimations.

In detail, for a given scene, the DecideNet first estimates

two kinds of crowd densities maps by detecting individuals

and regressing pixel-wise densities, respectively. To capture

the subtle variation in crowd densities, an attention module

QualityNet is proposed to assess the reliability of two types

of density maps with the additional supervision of detection

scores. The final count is obtained under guidance from

QualityNet to allocate adaptive attention weights for the two

density maps. Parameters in our proposed DecideNet are

end-to-end learnable by minimizing a joint loss function.

In summary, we make the following contributions:

• We find that real-world crowd counting occasions are

frequently faced with great density variations. While

existing estimation methods, which either rely exclu-

sively on detection or regression, are unable to provide

precise estimations along the whole density range.

• Based on the complementary property of two types of

crowd counting methods, we design a novel frame-

work DecideNet, which can capture this variation and

estimate optimal counts by assigning adaptive weights

for both detection and regression based estimations.
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• Experimental results reveal that our method achieves

state-of-the-art performance on public datasets with

varying crowd densities.

2. Related works

Crowd counting by detection. Early works addressing

the crowd counting problem major follow the counting by

detection framework. Region proposal generators [9, 33]

are firstly used to propose potential regions that include per-

sons. Low-level features [8, 18, 27, 34] are then used for

feature representation. Different binary classifiers including

Naive Bayes [4], Random Forest [23] and their variations

[40, 11] are trained with these features. The crowd count is

the number of positive samples outputted by the classifier

on a test image. Global detection scores are employed to

estimate crowd densities and utilized for object tracking in

[26]. Recent approaches seek the end-to-end crowd count-

ing solution by CNN based object detectors [14, 25, 24, 7]

and greatly improve the counting accuracy. Though detec-

tion based crowd counting is successful for scenes with low

crowd density, its performance on highly congested envi-

ronments is still problematic. On these occasions, usually

only partial of the whole objects are visible, posing great

challenge to object detectors for localization. Therefore,

part and shape based models are introduced in [10, 20, 39],

where ensembles of classifiers are built for specific body

parts and regions. Although these methods mitigate the is-

sue in some degree, counting in evident crowded scenes

still remains challenging, since objects in those areas are

too small to be detected.

Crowd counting by regression. Different from counting

by detection, counting by regression estimates crowd counts

without knowing the location of each person. Preliminary

works employ edge and texture features such as HOG and

LBP to learn the mapping from image patterns to corre-

sponding crowd counts [19, 23, 40]. Multi-source informa-

tion is utilized [15] to regress the crowd counts in extreme

dense crowd images. An end-to-end CNN model adopted

from AlexNet is constructed [36] recently for counting in

extreme crowd scenes. Later, instead of direct regressing

the count, the spatial information of crowds are taken into

consideration by regressing the CNN feature maps as crowd

density maps [41] . Observing that the densities and ap-

pearances of image patches are of large variations, a multi-

column CNN architecture is developed for density map re-

gression [42]. Three CNN columns with different recep-

tive fields are explicitly constructed for counting crowds

with robustness to density and appearance changes. Sim-

ilar frameworks are also developed in [22], where a Hydra-

CNN architecture is designed to estimate crowd densities in

a variety of scenes. Better performance can be obtained by

further exploiting switching structures [31, 28, 17] or con-

textual correlations using LSTM [29]. Though counting by

regression is reliable in crowded settings, without object lo-

cation information, their predictions for low density crowds

tend to be overestimated. The soundness of such kind of

methods relies on the statistical stability of data, while in

such scenarios the instance number is too small to help ex-

plore the its intrinsic statistical principle.

…
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Figure 2. The architecture of our proposed DecideNet. Image

patches are sent to the RegNet and DetNet blocks for two types

of density maps D
reg
i and Ddet

i estimation. The final density map

D
final
i is outputted by the QualityNet, which adaptively decides

the attention weight between two density maps for each pixel.

Three blocks are jointly learned on the training data.

3. Crowd Counting by DecideNet

3.1. Problem formulation

Our solution formulates the crowd counting task as a

density map estimation problem. It requires N training im-

ages I1, I2, · · · , IN as inputs. For a specific image Ii, a col-

lection of ci 2D points P
gt
i = {P1, P2, · · · , Pci} is provided

by the dataset [6, 41, 42], indicating the ground-truth head

positions in the image Ii. The ground-truth crowd density

map D
gt
i of Ii is generated by convolving annotated points

with a Gaussian kernel N gt(p|µ, σ2) [22]. Therefore, the

density at a specific pixel p of Ii could be obtained by con-

sidering the effects from all the Gaussian functions centered

by annotation points, i.e.,

∀p ∈ Ii, D
gt
i (p|Ii) =

∑

P∈P
gt

i

N gt(p|µ = P, σ2). (1)

Summing over the density values of all pixels over the en-

tire image Ii, the total person count ci of Ii can be acquired:
∑

p∈Ii
D

gt
i (p|Ii) = ci. For a counting model parameter-

ized by Ω, its objective is to learn a non-linear mapping

for Ii, whereas the difference between the prediction den-

sity map Dout
i (p|Ii) and the ground-truth D

gt
i (p|Ii) is min-

imized.
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Traditional crowd counting by density estimation meth-

ods regress density maps by minimizing the pixel-wise Eu-

clidean loss to the ground-truth [36, 2, 42, 22]. However,

as we have analyzed in introduction, counting by purely

regression would result in the overestimation problem on

occasions with low crowd densities. Oppositely, counting

by detection works comparably better in those scenes, since

low crowd density is the expecting environment to an object

detector.

In practical applications, the crowd density varies both

spatially and temporally. Hence, deciding the crowd counts

exclusively based on either regression or detection is in-

sufficient. DecideNet is motivated by their complementary

property to address this problem. As shown in Figure 2, in-

stead of counting people either by merely regressing density

maps, or applying an object detector over the whole image,

DecideNet simultaneously estimates crowd counting with

both detection and regression modules. Later, an attention

block is utilized to decide which estimation result should be

adopted for a specific pixel. Three CNN blocks are included

in our framework: the RegNet, the DetNet and the Quali-

tyNet, parameterized by Ω = (Ωdet, Ωreg, Ωqua). The pa-

rameters for three CNN blocks could be jointly learned on

the training set.

3.2. The RegNet block

conv  

7×7

conv

×

conv

×

conv

×

conv

×

Figure 3. The RegNet block consisting of 5 fully convolutional

layers. It outputs the crowd density map D
reg
i of each pixel in

image patches without predicting the head locations.

The RegNet block counts crowds in the absence of local-

izing each individual. Without knowing the specific loca-

tion of each head in the input image patch, it directly esti-

mates the crowd density for all the pixels in Ii with a fully

convolutional network:

Freg(Ii|Ωreg) = D
reg
i (p|Ωreg, Ii). (2)

As shown in Figure 3, the RegNet block consists of 5 convo-

lutional layers. Because it is designed to capture the general

crowd density information, larger filters’ receptive fields

will grasp more contextual details, which is more beneficial

for modeling the density maps. Therefore, in our imple-

mented RegNet block, the “conv1” layer has 20 filters with

a 7×7 kernel size. 40 filters with a 5×5 kernel size are set as

the “conv2” layer. In order to capture scale and orientation

invariant person density features, the “conv1” and “conv2”

layers are followed by two 2 × 2 max-pooling layers. The

“conv3” and “conv4” layers both have 5×5 filter sizes with

20 and 10 filters, respectively. Since the density estimation

result could be viewed as a CNN feature map with only one

channel, we add a “conv5” layer with only one filter and a

“1 × 1” filter size. This layer is responsible to return the

regression based crowd density map D
reg
i , in which value

on each pixel represents the estimated count at that point. A

ReLU unit is applied after the “conv5” layer ensuring that

the output density map will not contain negative values.

3.3. The DetNet block

ox and s ore
ROI pooling

ox and s ore

ox and s ore Gaussian 
on olution

Faster R‐CNN  ith ResNet   a k one

…

*

Figure 4. The proposed DetNet block is built upon the Faster R-

CNN network. A Gaussian convolutional layer is plugged after

the bounding box outputs to generate the detection based crowd

density map Ddet
i .

To handle varying perspectives, crowd densities and ap-

pearances, existing density estimation methods [41, 42, 28,

17] consist of several CNN structures like the RegNet block.

However, without the prior knowledge about the exact posi-

tion of each person in the image patches, the network purely

decides the crowd density based on the raw image pix-

els. This regression methodology may be accurate in image

patches with relatively large crowd densities, while it tends

to overestimate the crowd counts in sparse or even “no-

person” (background) scenes. In our proposed DecideNet

architecture, the DetNet is designed to address this issue

by generating the “location aware” detection based density

map Ddet
i . The motivation is intuitive and simple: sparse

and non-crowded image patches are expected settings for

present CNN based object detectors. Therefore, compared

to use regression networks to count on these patches, using

the prior knowledge from outputs of object detectors should

substantially relieve the overestimation problem.

The DetNet block, illustrated in Figure 4 is built based

on the above assumption. It could be viewed as an exten-

sion of the Faster-RCNN network [14] for head detection

on the basis of the ResNet-101 architecture. To be specific,

we design a Gaussian convolutional layer and plug it after

the bounding box outputs of the original Faster-RCNN net-

work. The Gaussian convolutional layer employs a constant

Gaussian function N det(p|µ = P, σ2), to convolve over

the centers of detected bounding boxes Pdet
i on the origi-

nal image patch. The detection based density map Ddet
i is

obtained by this layer, i.e.,

Ddet
i (p|Ωdet, Ii) =

∑

P∈Pdet
i

N det(p|µ = P, σ2). (3)
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Since the pixel values of Ddet
i are obtained by considering

the impact from the points in detection output Pdet
i , Ddet

i is

a “location aware” density map. Compared to D
reg
i from

the output of RegNet, responses of Ddet
i are more concen-

trated on specific head locations. The difference between

them is obvious in D
reg
i of Figure 3 and Ddet

i of Figure 4.

3.4. Quality-aware density estimation

. . . .

. . . .

. …
…

…
…

.
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Figure 5. The QualityNet block: stacking two density maps and the

original image Ii as input, it outputs a probabilistic attention map

Ki(p|Ωqua, Ii). The final density estimation D
final
i is jointly de-

termined by Ki, D
reg
i and Ddet

i .

Herein, we have described the details about obtaining

two kinds of density maps: D
reg
i and Ddet

i for a given im-

age Ii. The detection based map Ddet
i employs object de-

tection results for density estimation. Therefore, it could

count persons precisely in sparse density scenes by local-

izing their head positions. However, counting via Ddet
i is

not accurate on crowded occasions due to the low detec-

tion confidence resulted from the small object size and oc-

clusion. On the contrary, the regression based map D
reg
i ,

which is unaware of individual locations, is the preferred

estimation for these scenes: the full convolutional network

is capable of capturing rich context crowd density informa-

tion. Intuitively, one may think that fusing D
reg
i and Ddet

i

by applying average or max pooling [37] may obtain bet-

ter results on varying density crowds. Nevertheless, even

in the same scene, the density may differ significantly in

different parts or time intervals. Therefore, the importance

between Ddet
i and D

reg
i also changes correspondingly for

instant pixel values in Ii. In DecideNet, we propose an at-

tention block QualityNet, shown in Figure 5 to model the se-

lection process for optimal counting estimations. It captures

the different importance weight of two density maps by dy-

namically assessing the qualities of them for each pixel.

For a given Ii, the QualityNet block firstly upsamples

Ddet
i and D

reg
i to the same size of Ii. Then Ddet

i , D
reg
i

and Ii are stacked together as the QualityNet input with 5

channels. Four fully convolutional layers and a pixel-wise

sigmoid layer is followed to output a probabilistic atten-

tion map Ki(p|Ωqua, Ii). We define the specific value of

Ki(p|Ωqua, Ii) at the pixel p reflects the importance of the

detection based density map Ddet
i , compared to the regres-

sion counterpart D
reg
i . As a result, the QualityNet block

could decide the relative reliability (i.e., the quality) be-

tween Ddet
i and D

reg
i . A higher Ki(p|Ωqua, Ii) at pixel

p means a higher attention we should rely on the detection,

rather than the regression density estimation for p. Hence,

we could further define the final density map estimation

D
final
i (p|Ii) as a weighted sum between two density maps

D
reg
i and Ddet

i , guided by the attention map Ki:

D
final
i (p|Ii) =Ki(p|Ωqua, Ii)⊙Ddet

i (p|Ωdet, Ii)+

(J −Ki(p|Ωqua, Ii))⊙D
reg
i (p|Ωreg, Ii),

(4)

whereas ⊙ is the Hadamard product for two matrices and

the J is an all-one-matrix with the same size of Ki.

4. Model Learning

Parameters of DecideNet Ω consist of three parts: Ωreg ,

Ωdet and Ωqua. Hence, we generalize the training process

as a multi-task learning problem. The overall loss function

Ldecide, is given by Eq. (5):

Ldecide = Lreg + Ldet + Lqua, (5)

whereas the Lreg , Ldet and Lqua are the losses for Reg-

Net, DetNet and QualityNet, respectively. Ldecide could be

optimized via Stochastic Gradient Descent with annotated

training data. In each iteration, gradients for Lreg , Ldet and

Lqua are alternatively calculated and employed to update

corresponding parameters. To be specific, for the loss of the

RegNet component, we employ the pixel-wise mean square

error as the loss function. That is:

Lreg =
1

N

∑

i

∑

p∈Ii

[

D
reg
i (p|Ωreg, Ii)−D

gt
i (p|Ii)

]2

,

(6)

whereas N is the total number of training images.

For the DetNet block, different from the regression

counterpart, the responses on the density map Ddet
i mostly

concentrate on the detected head centers. Directly mini-

mizing the difference between Ddet
i and D

gt
i involves in

overwhelmed negative pixel samples, i.e., background pix-

els without head detections. Hence, instead of using the

pixel-wise Euclidean loss as error measurement, we employ

the bounding boxes as supervision. In this way, optimizing

Ωdet is equivalent to minimizing the classification and lo-

calization error in the original Faster R-CNN [25]:

Ldet =
1

N

∑

i

[

Lcls(P
det
i ,P

gt
i |Ωdet) + Lloc(P

det
i ,P

gt
i |Ωdet)

]

.

(7)

Due to the fact that only the centers of individuals’ heads

are provided as the annotation on crowd density estimation
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datasets, we manually label the bounding boxes on partial of

the training set points. Later, we employ the average width

and height of them for the bounding box supervision in Eq.

(7).

The loss function Lqua for the attention module Quali-

tyNet should measure two kinds of errors. One is the differ-

ence between the final crowd density map D
final
i and the

ground-truth density map D
gt
i . This error is similar to that

we have defined in Lreg . The second error measures the

quality of the output probabilistic map Ki in QualityNet.

Recall that Ki(p|Ωqua, Ii) is the confidence of how reliable

the detection result is at pixel p in the image Ii. As we

analyzed in Figure 1(c), this confidence could be reflected

by the object detection score Sdet(p|Ii) at p. Therefore,

we employ the Euclidean distances between the probabilis-

tic attention map Ki and object detection score map Sdet

as the second error component in Lqua. From another per-

spective, this error could be considered as a regularization

term over the QualityNet parameters Ωqua, by incorporating

detection scores as prior information. In experiment evalu-

ation, we will show that this regularization is indispensably

beneficial to the performance of our proposed DecideNet

architecture. Since the object detection qualities are brought

into this loss function, we name it as the “quality-aware”

loss. The final formulation of this loss Lqua is defined as

following:

Lqua =
1

N

∑

i

∑

p∈Ii

{

[

D
final
i (p|Ωqua, Ii)−D

gt
i (p|Ii)

]2

+

λ‖Ki(p|Ωqua, Ii)− Sdet(p|Ii)‖
2

}

, (8)

where λ is the hyper-parameter to balance the importance

between two errors.

5. Experimental Results

5.1. Evaluation settings

Our proposed method is evaluated on three major crowd

counting datasets [6, 41, 42] collected from real-world

surveillance cameras. For all datasets, DecideNet is opti-

mized with 40k steps of iterations. We set the initial learn-

ing rate at 0.005 and cut it by half in each 10k steps. Then

the best model is selected over the validation data. Instead

of sending the whole image to DecideNet during training,

we follow the strategy used in [28, 2, 22] to crop images

into 4 × 3 patches. In this way, the number of samples for

training the regression network is boosted. Each patch is

then augmented by random vertical and horizontal flipping

with a probability of 0.5. We also add uniform noise rang-

ing in [−5, 5] on each pixel in the patch with a probabil-

ity of 0.5 for data augmentation. To optimize the param-

eters for the RegNet and the QualityNet, the ground-truth

density maps are obtained by applying the Gaussian kernel

N gt(p|µ, σ2) with σ = 4.0 and a window size of 15. In

each iteration, the object detection score map Sdet(p|Ii) is

acquired by evaluating Ii on the DetNet. For each pixel p

in the detected bounding boxes, the value of Sdet(p|Ii) is

filled with corresponding detection score. For the rest of

pixels which are not included in any bounding boxes, they

are filled with a default value set at 0.1. The score map is

downsampled to the same size of Ki in order to calculate

the “quality-aware” loss Lqua. We follow the convention

of existing works [32, 41, 23] to use the mean absolute er-

ror (MAE) and mean squared error (MSE) as the evaluation

metric. The MAE metric reveals the accuracy of the algo-

rithm for crowd estimation, while the MSE metric indicates

the robustness of estimation.

5.2. The Mall dataset

The Mall dataset [6] contains 2000 frames, collected

in a shopping mall. Each frame has a fixed resolution of

320 × 240. We follow the pre-defined settings to use the

first 800 frames as the training set and the rest 1200 frames

as the test set. The validation set is selected randomly from

100 images in the training set. We compare our DecideNet

with both detection based approaches: SquareChn Detector

[1], R-FCN [7], Faster R-CNN [25]; and regression based

approaches: Count Forest [23], Exemplary Density [38],

Boosting CNN [35], MoCNN [17], Weighted VLAD [30].

The evaluation results are exhibited in Table 1.

Method MAE MSE

SquareChn Detector [1] 20.55 439.1

R-FCN [7] 6.02 5.46

Faster R-CNN [25] 5.91 6.60

Count Forest [23] 4.40 2.40

Exemplary Density [38] 1.82 2.74

Boosting CNN [35] 2.01 N/A

MoCNN [17] 2.75 13.40

Weighted VLAD [30] 2.41 9.12

DecideNet 1.52 1.90

Table 1. Comparison results of different methods on the Mall

dataset. The MAE and MSE error of our proposed DecideNet is

significant lower than other approaches.

From Table 1, we can observe the detection based ap-

proaches [1, 7, 25] generally perform worse than the re-

gression counterparts. Even the most recent CNN based

object detectors [7, 25] still have a large performance gap

to the CNN based regression approaches [35, 17, 30]. Our

proposed DecideNet obtains the minimum error on both

MAE and MSE metrics. Compared to the best approach

“Boosting CNN”, which based on regression, DecideNet

reveals 0.49 point improvement on MAE metric. This is

achieved without using the ensemble scheme employed by

the “MoCNN” and “Boosting CNN” methods. Moreover,

the MSE metric of the DecideNet is merely 1.90. This is sig-

nificantly lower than other state-of-the-art methods, which

either use detection or regression approach. This gain ratio-

nally results from our density estimations formulated from
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both detection and regression results.

5.3. The ShanghaiTech PartB dataset

Method MAE MSE

R-FCN [7] 52.35 70.12

Faster R-CNN [25] 44.51 53.22

Cross-scene [41] 32.00 49.80

M-CNN [42] 26.40 41.30

FCN [21] 23.76 33.12

Switching-CNN [28] 21.60 33.40

CP-CNN [31] 20.1 30.1

DecideNet 21.53 31.98

DecideNet+R3 20.75 29.42

Table 2. Comparison results of different methods on the Shang-

haiTech PartB dataset.

We also perform the evaluation experiments on the Shang-

haiTech PartB (SHB) [42] crowd counting dataset, which is among

the largest datasets captured in real outdoor scenes. It consists of

716 images taken from business streets in Shanghai, in which 400

of them are pre-defined training set and the rest are the test set.

Compared to the Mall dataset, it poses very diverse scene and per-

spective types over greatly changing crowd densities. We use 50

randomly selected images in the training set for validation. Since

the resolution of each image is 768×1024, the patches are cropped

from the original image with a size of 256 × 256 during training.

Our evaluation result and the comparison to other state-of-the-art

methods are shown in Table 2. Due to the large variation in den-

sity and object size on the SHB dataset, the detection based ap-

proaches [7, 25] perform worse than the others relying on regres-

sion. Specifically, the ensemble and fusion strategy is employed

by the M-CNN [42], Switching-CNN [28], CP-CNN [31] in Ta-

ble 2. Compared to the Mall dataset, the challenging SHB dataset

leads to much higher MAE and MSE on all the methods. Even

though, our proposed method (DecideNet; DecideNet+R3, which

trained with an additional R3 stream in Switching-CNN) is very

competitive to existing approaches.

5.4. The WorldExpo’10 dataset

The WorldExpo’10 dataset [41] includes 1132 annotated video

sequences collected from 103 different scenes in the World Expo

2010 event. There are a total number of 3980 frames with sizes

normalized to 576 × 720. The patch size we used for training

is 144 × 144. The training set consists of 3380 frames and the

rests are used for testing. Since the Region Of Interest (ROI) are

provided for test scenes (S1-S5), we follow the fashion of previ-

ous method [32] to only count persons within the ROI area. We

use the same metric, namely MAE, suggested by the author [41]

for evaluation. The results of our proposed approach on each test

scene and the comparisons to other methods are listed in Table 3.

Method
MAE

S1 S2 S3 S4 S5 Ave

Cross-scene [41] 2.00 29.50 9.70 9.30 3.10 12.90

M-CNN [42] 3.40 20.60 12.90 13.00 8.10 11.60

Local&Global [29] 7.80 15.40 15.30 25.60 4.10 11.70

CNN-pixel [16] 2.90 18.60 14.10 24.60 6.90 13.40

Switching-CNN [28] 4.40 15.70 10.00 11.00 5.90 9.40

DecideNet 2.00 13.14 8.90 17.40 4.75 9.23

Table 3. Comparison results of different methods on 5 scenes in

the WorldExpo’10 dataset.

From Table 3, we can notice that our proposed approach

achieves an average MAE at 9.23 across all 5 scenes. This is the

best performance among those obtained by all compared methods,

revealing 0.17 improvement on the second best “Switching-CNN”

approach. It is not that significant, because our error on S4 is

a little bit higher. The reason may lie on the fact that people in

S4 majorly gather in crowds at remote areas, posing great chal-

lenge for the DetNet to output meaningful estimations. There-

fore, the estimation on S4 are mostly relied on the outputs from

RegNet. While without the ensemble regression structure, using

the RegNet only may not be able to exhibit the superior counting

precision. We can also notice that the prediction counts of dif-

ferent state-of-the-art methods alter considerably on the 5 scenes,

revealing different approaches have their own strengths to specific

scenes. However, DecideNet obtains three minimum MAE errors

when compared to other approaches. This indicates DecideNet

having a good generalization ability and prediction robustness on

different scenes.

Method
MAE MSE

Mall SHB Mall SHB

RegNet only 3.37 42.85 4.22 63.63

DetNet only 4.50 44.90 5.60 73.18

RegNet+DetNet (Late Fusion) 3.93 38.63 4.96 65.27

RegNet+DetNet+QualityNet 1.83 24.93 2.27 41.86

RegNet+DetNet+QualityNet (quality-aware loss) 1.52 21.53 1.90 31.98

Table 4. Qualitative results of different DecideNet components on

the Mall and SHB dataset.

5.5. Effects of different components in DecideNet

To analyze effects of each components of the proposed Deci-

deNet, we conduct ablation studies on the Mall and SHB dataset.

The qualitative results are listed in Table 4, which shows sev-

eral interesting observations. First, using the estimations exclu-

sively from either the RegNet (“RegNet only”), or DetNet (“DetNet

only”) only obtains fair results on both datasets. The estimations

from the RegNet have lower error than the detection counterparts.

This is possibly due to the fact that most of the image regions

are with high crowd density on both datasets. Further, late fusion

by averaging two classes of density maps (“RegNet+DetNet (Late

Fusion)”) exhibits improvements than “RegNet only” and “Det-

Net only” on that SHB dataset. While on the Mall dataset, it only

achieves a mediocre result between two kinds of density estima-

tions. This indicates that direct late fusion is not robust enough

to obtain better results across all kinds of datasets. Second, with

DecideNet, even training without the object detection scores reg-

ularization (“RegNet+DetNet+QualityNet”), we obtain significant

MAE and MSE decrease as compared with those obtained by the

previous methods. Compared to late fusion, it almost decreases

the MAE by half on two datasets, revealing the power of the atten-

tion mechanism. Last but not least, adopting the “quality-aware”

loss during training (“RegNet+DetNet+QualityNet (quality-aware

loss)”), the MAE and MSE errors are further reduced on two

datasets. In particular, the MSE decreases from 41.86 to 31.98 on

SHB dataset: this shows that the loss can substantially increase the

prediction stability on challenging datasets with great variations.

In Figure 6, we show the relationships between different crowd

count predictions and the ground-truth crowd counts on the test

sets of two datasets. Note that the horizontal axes “image id” are

sorted in ascending order by the number of ground-truth crowd
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Figure 6. Prediction and the ground-truth crowd counts on the test

sets of the Mall (left) and SHB (right) datasets.

counts. Clearly, when the numbers of ground-truth crowd count

are small, the regression based results from the RegNet overesti-

mate the estimations: the blue lines are above the ground-truth

red lines in the first half part of the horizontal axis in both fig-

ures. On the opposite, the detection based result curves (the green

lines) fit the red lines well at that region on two datasets. How-

ever, when the numbers of ground-truth count increase, the esti-

mations of the detection based density map become considerably

lower than the red lines, particularly after the second half parts of

the horizontal axis. The blue lines fit the ground-truth lines best

in the middle part of the horizontal axes. This verifies our ob-

servation that regression based estimations are more suitable for

high crowded patches. Directly applying the late fusion (the pur-

ple curves) helps to a certain extent, while its predicted counts are

not stable along all images. At last, the cyan lines, which rep-

resent DecideNet outputs, indicate the smallest differences to the

ground-truth curves along all parts of the horizontal axes. That is,

the DecideNet trained with “quality-aware” loss exhibits the best

estimation results for all kinds of crowd densities on two datasets.

5.6. Visualization on density maps

To better understand what is learned in our proposed model,

we visualize three categories of crowd density maps in the SHB

dataset from three blocks: RegNet, DetNet and QuialityNet in Fig-

ure 7 (best viewed in color).

Regressio   ased de sity  ap   Dete tio   ased de sity  ap  Fi al de sity  ap 

Predicted count  GT:       .                                              .                                                      .

Predicted count  GT:      .                                                      .    .

Predicted count  GT:       .                                                     .     .

Figure 7. The visualization results of three types of density maps

on the SHB dataset (best viewed in color).

We can discover that the outputs of regression based density

maps D
reg
i (on the most left column) exhibit diffused density esti-

mations along the image regions. For the remote areas with highly

congested crowds, such predictions from the RegNet are reliable.

However, when it comes to the nearby regions with lower crowd

density, the results are not satisfactory: some single person bod-

ies are erroneously predicted with very high density. The predic-

tion counts of the D
reg
i are also larger than the ground-truth (GT)

counts, implying the occurrence of overestimation issue. Com-

pared to D
reg
i , the detection based density maps Ddet

i (the middle

column) are very different: the predicted peak regions are concen-

trated on the center of heads. This is resulted from the fact that

these maps are generated from outputs of head detectors. We can

further observe that the detection based density results are pretty

good in nearby low density regions of the given image, while not

all the heads are marked with high prediction peaks in the remote

areas. The underestimated predicted counts of Ddet
i also reflect

this phenomenon. With the attention information from the Qual-

ityNet, final density maps in the right column reveal very good

characteristics: in the nearby region, the estimation prefers the de-

tection results. Persons in those areas share very similar estimation

patterns with Ddet
i . Oppositely, in remote and congested regions,

instead of the “concentrated dot” patterns, the density maps are

diffused. DecideNet considers the regression based results D
reg
i

are more reliable for those cases. This confirms that the Quali-

tyNet block is able to assess the reliability of the corresponding

density map value for a specific pixel.

6. Conclusion

In this paper, a novel end-to-end crowd counting architecture

named DecideNet has been proposed. It is motivated by the com-

plementary performance of detection and regression based count-

ing methods under situations with varying crowd densities. To the

best of our knowledge, DecideNet is the first framework to esti-

mate crowd counts via adaptively adopting detection and regres-

sion based count estimations under the guidance from the atten-

tion mechanism. We evaluate the framework on three challenging

crowd counting benchmarks collected from real-world scenes with

high variation in crowd densities. Experimental results confirm

that our method obtains the state-of-the-art performance on three

public datasets.
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