# Deciding Full Branching Time Logic by Program Transformation 

Alberto Pettorossi (Univ. Tor Vergata, Rome, Italy),
Maurizio Proietti (IASI-CNR, Rome, Italy),
Valerio Senni (Univ. Tor Vergata, Rome, Italy)

## Our Goal

... is to establish by program transformation the correctness of
finite state concurrent systems with infinite behaviour (reactive systems) such as:

- communication protocols
- security protocols
- hardware controllers
- ...


## Related Work

- Proving first order formulas via unfold/fold rules [Kott 1982, P.P. 1999, Roychoudhury et al. 1999, P.P. 2000, ...]
- Verifying temporal properties of infinite state systems via specialization and unfold/fold rules [Leuschel 1999, 2000, Roychoudhury et al. 2000, Fioravanti et al. 2001, ...]


## Concurrent Systems and Properties

$\square$ Concurrent Systems as Kripke Structures

$\square$ Properties as Formulas in CTL*
Elem $=\{a, b, t t\}$
$\varphi=\mathrm{E}(\mathrm{a} \mathrm{U} \neg \mathrm{E}(\mathrm{tt} \mathrm{U} \neg(\mathrm{tt} \mathrm{U} \neg \mathrm{b})))$
LTL (linear-time temporal logic) $\subset$ CTL*
CTL (computational tree logic) $\subset C T L *$

## exists a path - next - until


$\underset{\text { (next) }}{\mathrm{X}} \boldsymbol{\sim}$

$\varphi \cup \psi$
(until)


## A Kripke Structure

$$
\mathrm{K}=\left\langle\Sigma, \mathrm{s}_{\text {in }}, \rho, \lambda\right\rangle
$$

$\Sigma=$ finite set of states
$\mathrm{S}_{\text {in }}=$ initial state
$\rho=$ total transition relation $\subseteq \Sigma \times \Sigma$
$\lambda=$ labelling function: $\Sigma \rightarrow 2^{\text {Elem }}$

A computation path $\pi=\left[\mathrm{s}_{0}, \mathrm{~S}_{1}, \ldots\right]$ is an infinite list of states.

## Formulas of CTL*

## elementary formulas :

## d $\in$ Elem

state formulas :

$$
\varphi=\mathbf{d}|\neg \varphi| \varphi \wedge \varphi \mid E \psi
$$

(exists a path)
path formulas :

$$
\begin{aligned}
& \psi=\varphi|\neg \psi| \psi \wedge \psi|\mathbf{X} \psi| \psi U \psi \\
& \text { (next) (until) }
\end{aligned}
$$

## Semantics of CTL*

Let K be a Kripke structure.
Let $\pi$ be the infinite list $\left[s_{0}, s_{1}, \ldots, s_{k}, \ldots, s_{n}, \ldots\right]$ of states.
Let $\mathbf{d}, \varphi, \psi$ be formulas of CTL*.

$$
\begin{aligned}
& K, \pi \vDash d \quad \text { iff } \quad d \in \lambda\left(s_{0}\right) \\
& \mathrm{K}, \pi \vDash \neg \varphi \text { iff } \mathrm{K}, \pi \vDash \varphi \text { does not hold } \\
& \mathrm{K}, \pi \equiv \varphi \wedge \psi \text { iff } \mathrm{K}, \pi \equiv \varphi \text { and } \mathrm{K}, \pi \equiv \psi \\
& \mathrm{~K}, \pi \vDash E \varphi \text { iff } \exists \pi^{\prime}=\left[\mathrm{s}_{0}, \ldots\right], \mathrm{K}, \pi^{\prime} \vDash \varphi \\
& \mathrm{K}, \pi \vDash \mathrm{X} \varphi \text { iff } \mathrm{K},\left[\mathrm{~s}_{1}, \ldots\right] \equiv \varphi \\
& K, \pi \vDash \varphi \cup \psi \text { iff } \exists \mathrm{n} \geq \mathbf{0}\left(\left(\forall \mathrm{k}, \mathbf{0} \leq \mathrm{k}<\mathrm{n}, \mathrm{~K},\left[\mathrm{~s}_{\mathbf{k}}, \cdots\right] \mathrm{F} \varphi\right)\right. \\
& \text { and } \left.K,\left[s_{n}, \ldots\right] \equiv \psi\right)
\end{aligned}
$$

## CTL* Model Checking

Definition.
A state formula $\varphi$ holds in the Kripke structure $K$ with initial state $\mathrm{S}_{\mathrm{in}}$ :

$$
K \boldsymbol{k} \varphi \text { iff } \exists \pi=\left[s_{\mathrm{in}}, \ldots\right], \mathrm{K}, \pi \boldsymbol{F} \varphi
$$

CTL* Model Checking:
given K and $\varphi$, verify whether or not $\mathrm{K} \boldsymbol{F} \varphi$ holds.

## More Syntax

in the Future: $\mathrm{F} \varphi=\operatorname{tt} \cup \varphi$
Globally: $\quad G \varphi=\neg F \neg \varphi$
forAll : $\quad A \varphi=\neg E \neg \varphi$
$\mathrm{K},\left[\mathrm{s}_{0}, \ldots\right] \boldsymbol{=}$ AFa holds if


## An Example

K :


$$
\begin{aligned}
\varphi & =\mathrm{E}(\mathrm{a} \mathbf{U} \neg \mathrm{E}(\mathrm{tt} \mathrm{U} \neg(\mathrm{tt} \mathrm{U} \mathrm{~b}))) \\
& =\mathrm{E}(\mathrm{a} \mathbf{U} \mathrm{~A} G F \mathrm{~b})
\end{aligned}
$$

path witnesses: $\mathrm{S}_{0}^{+}\left(\mathrm{S}_{1}^{+} \mathrm{S}_{2}\right)^{\omega}$
Thus, $K=\varphi$

## Overview

$\checkmark$ - Modeling reactive systems and their properties via Kripke structures and CTL* formulas. K $=\varphi$.

- Encoding CTL* formulas as $\omega$-programs (programs on infinite lists)
- Transforming $\omega$-programs into monadic $\omega$-programs
- Proof system for monadic $\omega$-programs


## $\omega$-programs

- $\omega$-programs are a typed, locally stratified logic programs where [_|_] is interpreted as the constructor of infinite lists.
- Semantics of $\omega$-programs = perfect model constructed over infinite lists (= least Herbrand model for definite programs).

$$
\Sigma=\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}\right\} . \quad \mathrm{L} \text { ranges over }\left(\mathrm{s}_{0}+\mathrm{s}_{1}\right)^{\omega}
$$

- P: $p\left(\left[s_{0} \mid L\right]\right) \leftarrow q(L)$

$$
p(L) \in M(P) \text { iff } L \in s_{0}\left(s_{0}+s_{1}\right)^{\omega}
$$

$$
\mathrm{q}(\mathrm{~L}) \leftarrow
$$

- $\mathrm{P}: \mathrm{p}(\mathrm{L}) \leftarrow \neg \mathrm{q}(\mathrm{L})$
$p(L) \in M(P)$ iff $L \in s_{0}{ }^{\omega}$
$q\left(\left[s_{0} \mid L\right]\right) \leftarrow q(L)$
$q(L) \in M(P)$ iff $L \in s_{0}^{*} s_{1}\left(s_{0}+s_{1}\right)^{\omega}$
$q\left(\left[s_{1} \mid L\right]\right) \leftarrow$
Negation gives extra expressivity. For $\mathbf{P}: \mathbf{p}\left(\left[\mathrm{s}_{0} \mid \mathrm{L}\right]\right) \leftarrow \mathrm{p}(\mathrm{L}), \mathbf{M}(\mathbf{P})=\varnothing$.


## Encoding the Satisfaction Relation $\vDash$ (1)

```
\mp@subsup{P}{K,\varphi}{\prime}
sat([S|X], D) \leftarrow elem(D,S)
sat(X, not F)}\leftarrow\neg\operatorname{sat}(F,S
sat(X, and}(\mp@subsup{F}{1}{},\mp@subsup{F}{2}{}))\leftarrow\operatorname{sat}(X,\mp@subsup{F}{1}{})\wedge\operatorname{sat}(X,\mp@subsup{F}{2}{}
sat([S|X], e(F))\leftarrow exists-sat(S,F)
exists-sat(S,F) \leftarrow path([S|Y]) ^ sat([S|Y], F)
sat([S|X], x(F))}\leftarrow\operatorname{sat}(X,F
sat(X,u(F ( , F F ) ) < sat(X,F F )
sat([S|X],u(F F , F F )) \leftarrow sat([S|X], F F ) ^ sat(X,u(F F , F F ))
path(X)}\leftarrow\neg\mathrm{ notpath(X)
notpath([S (, S S | X]) \leftarrow\neg transition(S ( , S S )
notpath([S|X]) \leftarrow notpath (X)
```


## Encoding the Satisfaction Relation $\vDash$


elem $\left(\mathrm{a}, \mathrm{s}_{0}\right) \leftarrow$
elem $\left(\mathrm{b}, \mathrm{s}_{1}\right) \leftarrow$ elem $\left(\mathrm{a}, \mathrm{s}_{2}\right) \leftarrow$ elem(tt, X) $\leftarrow$
transition $\left(\mathrm{s}_{0}, \mathrm{~s}_{0}\right) \leftarrow$ transition $\left(\mathrm{s}_{0}, \mathrm{~s}_{1}\right) \leftarrow$ transition $\left(\mathrm{s}_{1}, \mathrm{~s}_{1}\right) \leftarrow$ transition $\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right) \leftarrow$ transition $\left(\mathrm{s}_{2}, \mathrm{~s}_{1}\right) \leftarrow$

$$
\begin{aligned}
\varphi & =\mathrm{E}(\mathrm{a} \mathrm{U} \neg \mathrm{E}(\mathrm{tt} \mathrm{U} \neg(\mathrm{tt} \mathrm{U} \mathrm{~b}))) \\
\lceil\varphi\rceil & =\mathrm{e}(\mathrm{u}(\mathrm{a}, \operatorname{not}(\mathrm{e}(\mathbf{u}(\mathrm{tt}, \operatorname{not}(\mathrm{u}(\mathrm{tt}, \mathrm{~b})))))))
\end{aligned}
$$

## Correctness of the Encoding

## Theorem 1. $\mathrm{K}=\varphi$ iff $\mathbf{M}\left(\mathbf{P}_{\mathrm{K}, \varphi}\right) \boldsymbol{=}$ prop

How to check whether or not $\mathbf{M}\left(\mathbf{P}_{\mathrm{K}, \varphi}\right)$ F prop ?

- Top-down evaluation of the query prop does not terminate.
- Bottom-up construction of $\mathbf{M}\left(\mathbf{P}_{\mathrm{K}, \varphi}\right)$ does not terminate, because of infinite lists.


## Overview

$\checkmark$ - Modeling reactive systems and their properties via Kripke structures and CTL* formulas. $\mathrm{K} \vDash \varphi$.
$\checkmark$ Encoding CTL* formulas as $\omega$-programs (programs on infinite lists)

- 1. Transforming $\omega$-programs into monadic $\omega$-programs
- 2. Decision algorithm for monadic $\omega$-programs


## Monadic $\omega$-programs

A monadic $\omega$-program is a stratified set of monadic $\omega$-clauses of the form:

$$
p_{0}\left(\left[s \mid X_{0}\right]\right) \leftarrow p_{1}\left(X_{1}\right) \wedge \ldots \wedge p_{k}\left(X_{k}\right) \wedge p_{k+1}\left(X_{k+1}\right) \wedge \ldots \wedge \neg p_{m}\left(X_{m}\right)
$$

where:
$\mathbf{S}$ is a constant of type state,
$\mathbf{X}_{\mathbf{0}}, \mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{X}_{\mathbf{k}}, \mathbf{X}_{\mathbf{k + 1}}, \ldots, \mathbf{X}_{\mathbf{m}}$ are variables of type infinite-list, and let a clause be $A_{0} \leftarrow \ldots \wedge L_{i} \wedge \ldots$
there exists a level mapping $h$ such that for $i=1, \ldots, m$, if vars $\left(\mathrm{L}_{\mathrm{i}}\right) \nsubseteq \operatorname{vars}\left(\mathrm{A}_{0}\right)$ and $1 \leq i \leq k$ then $h\left(\mathrm{~L}_{\mathrm{i}}\right)<\mathrm{h}\left(\mathrm{A}_{0}\right)$ else $h\left(\mathrm{~L}_{\mathrm{i}}\right) \leq \mathrm{h}\left(\mathrm{A}_{0}\right)$
(Recall that: If $L_{i}$ is $\boldsymbol{p}_{i}\left(X_{i}\right)$ then $h\left(L_{i}\right)=h\left(p_{i}\right)$. If $L_{i}$ is $\neg p_{i}\left(X_{i}\right)$ then $h\left(L_{i}\right)=h\left(p_{i}\right)+1$.) Some of the predicates $p_{i}$ 's may be nullary, and they may be the same. Some of the variables may be the same.

## From $\mathbf{P}_{\mathrm{K}, \varphi}$ to a Monadic $\omega$-program $\mathbf{T}$

By applying the strategy:
(instantiate ; unfold pos\&neg ; subsume; define-fold ${ }_{\text {pos\& } \& \text { neg }}^{*}$ )*
from $\mathbf{P}_{\mathrm{K}, \varphi}$ we get a monadic $\omega$-program $\mathbf{T}$.

Theorem 2. $\mathbf{M}\left(\mathbf{P}_{\mathrm{K}, \varphi}\right)$ F prop iff $\mathbf{M}(\mathbf{T})$ F prop
Proof. Extension of the rules in [Seki 91].

## Theorems

$$
\operatorname{prop} \leftarrow \operatorname{sat}\left(\left[\mathrm{s}_{0} \mid \mathrm{X}\right],\lceil\varphi\rceil\right)
$$

Theorem 1. $K=\varphi$ iff $\mathbf{M}\left(\mathbf{P}_{\mathrm{K}, \varphi}\right) \vDash$ prop

Theorem 2. $\mathbf{M}\left(\mathbf{P}_{\mathrm{K}, \varphi}\right)$ F prop iff $\mathbf{M}(\mathbf{T})$ F prop

The Monadic $\omega$-program T

$$
\begin{aligned}
& \text { T: } \quad \text { prop } \leftarrow \neg p_{1}(X) \wedge p_{2}(X) \\
& \text { prop } \leftarrow \neg p_{1}(X) \wedge \neg p_{3} \\
& p_{1}\left(\left[s_{0} \mid X\right]\right) \leftarrow p_{1}(X) \\
& p_{1}\left(\left[s_{1} \mid X\right]\right) \leftarrow p_{4}(X) \\
& p_{1}\left(\left[s_{2} \mid X\right]\right) \leftarrow \\
& p_{2}\left(\left[s_{0} \mid X\right]\right) \leftarrow \neg p_{3} \\
& \mathrm{p}_{\mathbf{2}}\left(\left[\mathrm{s}_{0} \mid \mathrm{X}\right]\right) \leftarrow \mathrm{p}_{\mathbf{2}}(\mathrm{X}) \\
& p_{2}\left(\left[s_{1} \mid X\right]\right) \leftarrow \neg p_{5} \\
& p_{2}\left(\left[s_{2} \mid X\right]\right) \leftarrow \neg p_{6} \\
& \mathrm{p}_{\mathbf{2}}\left(\left[\mathrm{s}_{2} \mid \mathrm{X}\right]\right) \leftarrow \mathrm{p}_{2}(\mathrm{X}) \\
& p_{3} \leftarrow \neg p_{1}(X) \wedge \neg p_{7}(X) \\
& p_{3} \leftarrow \neg p_{1}(X) \wedge p_{8}(X) \\
& p_{4}\left(\left[s_{0} \mid X\right]\right) \leftarrow \\
& p_{4}\left(\left[s_{1} \mid X\right]\right) \leftarrow p_{4}(X) \\
& p_{4}\left(\left[s_{2} \mid X\right]\right) \leftarrow p_{9}(X) \\
& p_{5} \leftarrow \neg p_{4}(X) \wedge p_{8}(X) \\
& p_{6} \leftarrow \neg p_{9}(X) \wedge \neg p_{7}(X) \\
& p_{6} \leftarrow \neg p_{9}(X) \wedge p_{8}(X) \\
& \mathrm{p}_{7}\left(\left[\mathrm{~s}_{0} \mid \mathrm{X}\right]\right) \leftarrow \mathrm{p}_{7}(\mathrm{X}) \\
& \mathrm{p}_{7}\left(\left[\mathrm{~s}_{1} \mid \mathrm{X}\right]\right) \leftarrow \\
& \mathrm{p}_{7}\left(\left[\mathrm{~s}_{2} \mid \mathrm{X}\right]\right) \leftarrow \mathrm{p}_{7}(\mathrm{X}) \\
& p_{8}\left(\left[s_{0} \mid X\right]\right) \leftarrow \neg p_{7}(X) \\
& \mathrm{p}_{8}\left(\left[\mathrm{~s}_{0} \mid \mathrm{X}\right]\right) \leftarrow \mathrm{p}_{8}(\mathrm{X}) \\
& \mathrm{p}_{8}\left(\left[\mathrm{~s}_{1} \mid \mathrm{X}\right]\right) \leftarrow \mathrm{p}_{8}(\mathrm{X}) \\
& p_{8}\left(\left[s_{2} \mid X\right]\right) \leftarrow \neg p_{7}(X) \\
& \mathrm{p}_{8}\left(\left[\mathrm{~s}_{2} \mid \mathrm{X}\right]\right) \leftarrow \mathrm{p}_{8}(\mathrm{X}) \\
& \mathrm{P}_{9}\left(\left[\mathrm{~s}_{0} \mid \mathrm{X}\right]\right) \leftarrow \\
& p_{9}\left(\left[s_{1} \mid X\right]\right) \leftarrow p_{4}(X) \\
& \mathrm{P}_{9}\left(\left[\mathrm{~s}_{2} \mid \mathrm{X}\right]\right) \leftarrow
\end{aligned}
$$

## Completeness of the Algorithm

Let $\mathbf{T}$ be a monadic $\omega$-program.
Let F be a formula in $\mathcal{F}$.

Theorem 3. $\mathbf{M}(\mathbf{T})=\mathrm{F}$ iff F has a proof.

■ Derivation Tree: - w.r.t. a program T

- an AND-tree
- constructed level-by-level.
- Proof and Refutation.


## Derivation Tree: Basic Ideas

■ Finiteness.

Every literal at level m also occurs at level c.


- Positive loops.



## Derivation Tree

true | false

> monadic literals: $\quad M=q(X) \quad \mid \neg q(X)$
> literals:
> M | $\quad$ p | $\quad$ p
> $\mathrm{F} \in \mathcal{F}$
> $\mathcal{F}=p \quad \mid \exists X\left(M_{1} \wedge \ldots \wedge M_{n}\right)$
> $L \in \mathcal{L}$
> $\mathcal{L}=\mathbf{M}|\mathcal{F}| \neg \mathcal{F}$
complement: $\quad \bar{F}=\neg F \quad$ (with cancellation of $\neg \neg$ )

## Derivation Tree of $\mathrm{F} \in \mathcal{F}$

## 1. Explicit existential quantifiers

$$
\begin{aligned}
& \mathrm{q}([\mathrm{~s} \mid \mathrm{X}]) \leftarrow \ldots \wedge \quad \mathrm{q}_{1}(\mathrm{Y}) \wedge \mathrm{q}_{2}(\mathrm{Y}) \wedge \ldots \\
& \\
& \\
& \\
& \\
& \mathrm{q}([\mathrm{~s} \mid \mathrm{X}]) \leftarrow \ldots \\
& \\
& \\
&
\end{aligned}
$$

## Derivation Tree of $\mathrm{F} \in \mathcal{F}$

2. AND-tree, constructed level-by level.

- The root is $F$.

If the root $F$ is $\exists X\left(M_{1} \wedge \ldots \wedge M_{n}\right)$ expand it:


■ Stop if: true, false, $\exists X\left(M_{1} \wedge \ldots \wedge M_{n}\right), \neg \exists X\left(M_{1} \wedge \ldots \wedge M_{n}\right)$, literals at level $d \subseteq$ literals at level $c$, with $c<d$

- Nondeterministically expand every literal Lat lowest level. Choose a state s.


## Derivation Tree of $\mathrm{F} \in \mathcal{F}$

- positive literal L:

Choose a clause for $L$ :
$\left[q([s \mid X]) \leftarrow F_{1} \wedge \ldots \wedge F_{n}\right.$


If $\mathrm{n}=0$ : $\underset{\text { |rue }}{\mathrm{L}}$

■ negative literal L:
All clauses for L:
$\left[\begin{array}{cc}q([s \mid X]) & \leftarrow B_{1} \\ \cdots \\ q([s \mid X]) & \leftarrow B_{n}\end{array}\right.$
Choose $F_{1} \in B_{1}, \ldots, F_{n} \in B_{n} \quad\left(\right.$ all $F_{n}$ 's in $\mathcal{L}$ ):


If $n=0: \underset{\text { true }}{L} \mid$ If $\exists i B_{i}=$ true : $L$

## Proof and Refutation of $\mathrm{F} \in \mathcal{F}$ w.r.t. T (5)

- A proof of $\mathrm{F} \in \mathcal{F}$ is a derivation tree
- with root $F$
- every leaf is: true, $p, \neg p, q(X), \neg q(X)$,
$\exists X\left(M_{1} \wedge \ldots \wedge M_{n}\right)$ which has a proof w.r.t. $T$
$\neg \exists X\left(M_{1} \wedge \ldots \wedge M_{n}\right)$ which has a refutation w.r.t. $T$
- for every leaf at $m$ with a positive literal $L, r^{+}(L, L)$ does not hold, where $r\left(L_{c}, L_{m}\right)$ holds iff
a node $N_{c}$ at $c$ has label $L_{c}$, a node $N_{m}$ at $m$ has label $L_{m}$, and $N_{c}$ is ancestor of $N_{m}$ in $T$.

■ $\mathrm{F} \in \mathcal{F}$ has a refutation w.r.t. T iff F has no proof w.r.t. T.

## Theorems

$$
\text { prop } \leftarrow \operatorname{sat}\left(\left[\mathbf{s}_{0} \mid \mathrm{X}\right],\lceil\varphi\rceil\right)
$$

## Theorem 1. $\mathrm{K}=\varphi$ iff $\mathbf{M}\left(\mathbf{P}_{\mathrm{K}, \varphi}\right) \boldsymbol{=}$ prop

Theorem 2. $\mathbf{M}\left(\mathbf{P}_{\mathrm{K}, \mathrm{\varphi}}\right)$ Fprop iff $\mathbf{M}(\mathbf{T})$ F prop

Theorem 3. $\mathbf{M}(\mathbf{T})=$ prop iff F has a proof.

## Proof of prop w.r.t. T



## Refutation of $\neg \exists X\left(\neg p_{4}(X) \wedge p_{8}(X)\right)$ w.r.t. T



## Future Work

- Use of constraints to avoid explicit state representation
- Infinite state model checking

