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Abstract

The problem of computing the chromatic number of a P5-free graph (a graph which contains no path on

5 vertices as an induced subgraph) is known to be NP-hard. However, we show that for every fixed integer k,

there exists a polynomial-time algorithm determining whether or not a P5-free graph admits a k-coloring, and

finding one, if it does.
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1 Introduction

A k-coloring of a graph is an assignment of k colors to its vertices so that no two adjacent vertices receive the

same color. The k-COLORABILITY problem is to determine whether or not a given graph G admits a k-coloring,

and to output one, if it does. The smallest k for which exists a k-coloring of a graph is called its chromatic

number. The algorithmic problem of computing it will be referred to as CHROMATIC NUMBER.

The k-COLORABILITY is one of the central problems of algorithmic graph theory with numerous applications

[4]. It is also one of the most difficult problems: it is NP-complete in general [12] and remains difficult in

many restricted graph families, for example in triangle-free graphs [17] or line graphs [11]. Moreover, even

approximating the chromatic number of a graph is hard [13].

On the other hand, the problem can be solved in polynomial time when restricted to some families of graphs such

as perfect graphs [8]. Efficient polynomial-time algorithms for coloring graphs in particular subclasses of perfect

graphs (including chordal graphs [6], weakly chordal graphs [9], and comparability graphs [5]) are available.

All the families of graphs mentioned above have the property that together with any graph G they contain all

induced subgraphs of G. Such classes are called hereditary. Every hereditary class of graphs can be described

by its forbidden induced subgraphs, i.e. the unique set of minimal graphs which do not belong to the class. A
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k\t 3 4 5 6 7 8 9 10 11 12 . . .

3 O(m) O(m) O(nα) O(mnα) ? ? ? ? ? ? . . .

4 O(m) O(m) ?? ? ? ? NPc NPc NPc NPc . . .

5 O(m) O(m) ?? ? ? NPc NPc NPc NPc NPc . . .

6 O(m) O(m) ?? ? ? NPc NPc NPc NPc NPc . . .

7 O(m) O(m) ?? ? ? NPc NPc NPc NPc NPc . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1: Known complexities for k-colorability of Pt-free graphs

comprehensive survey on coloring of graphs in hereditary classes can be found in [18]. An important line of

research on colorability of graphs in hereditary classes deals with Pt-free graphs. The induced path on t vertices

is called Pt, and a graph is called Pt-free if it does not contain Pt as an induced subgraph.

Sgall and Woeginger showed in [21] that 5-COLORABILITY is NP-complete for P8-free graphs and 4-COLORABI-

LITY is NP-complete for P12-free graphs. The last result was improved in [16]; the authors claim that modifying

the reduction from [21] 4-COLORABILITY can be shown to be NP-complete for P9-free graphs. On the other

hand, the k-COLORABILITY problem can be solved in polynomial time for P4-free graphs (since they are perfect).

For t = 5, 6, 7, the complexity of the problem is generally unknown, except for the case of 3-COLORABILITY of

P5-free [20, 21] and P6-free graphs [19]. Known results on the k-COLORABILITY problem in Pt-free graphs are

summarized in Table 1 (n is the number of the input graph, m the number of edges, and α is matrix multiplication

exponent known to satisfy 2 ≤ α < 2.376 [2]).

In this paper, we study the class of P5-free graphs. This is the minimal class from Table 1 where the complexity of

the k-COLORABILITY problem was not known. This class also proves resistant with respect to other graph prob-

lems. For instance, P5-free graphs is the unique minimal class defined by a single forbidden induced subgraph

with unknown complexity of the MAXIMUM INDEPENDENT SET and MINIMUM INDEPENDENT DOMINATING

SET problems. Many algorithmic problems are known to be NP-hard in the class of P5-free graphs, for example

DOMINATING SET [14] and CHROMATIC NUMBER [15]. In contrast to the NP-hardness of finding the chromatic

number of a P5-free graph, we show that k-COLORABILITY can be solved in this class in polynomial time for ev-

ery particular value of k. In the case of a positive answer, our algorithm returns a valid k-coloring. Along with the

mentioned result on 3-COLORABILITY of P5-free graphs, our solution generalizes several other previously stud-

ied special cases of the problem, such as 4-COLORABILITY of (P5, C5)-free graphs [16] and 4-COLORABILITY

of P5-free graphs containing a dominating clique on four vertices [10]. We also note the algorithm in [7] which

colors a (P5, P 5)-free graph using at most the square of its chromatic number of colors.

2 Background and Definitions

Coloring vertices. Graphs considered in this paper are simple and undirected. We denote the number of vertices

of a graph by n. If A is a subset of V , then G[A] is the subgraph of G induced by A. An independent set is a set

of mutually non-adjacent vertices. A set of vertices D is called a dominating set of the graph, if every vertex in

V belongs to D or has a neighbor in D. For notions not defined here, we refer the reader to [3].

Recall that a k-coloring of a graph is an assignment of numbers from the set {1, . . . , k} (called colors) to the

vertices of the graph in such a way that the endpoints of each edge receive different colors. For our purposes, it is

more convenient to study a generalization of k-coloring. In this variant of coloring, each vertex v has its palette,
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a subset of {1, . . . , k}, denoted by ℓ(v). For a subset of vertices W , the union of palettes of the vertices in W

will be denoted by ℓ(W ).

The k-restricted-coloring of a graph with respect to the palettes of its vertices, is a k-coloring such that each

vertex is assigned a color from its palette. Clearly, k-coloring is a special case of k-restricted-coloring, where all

palettes are equal to {1, . . . , k}. We say that an instance of k-restricted-coloring problem is k-colorable if there

exists a k-restricted-coloring of this instance. (Below, “k-colorable” will always mean “k-colorable with respect

to some instance of k-restricted-coloring”, unless stated otherwise.)

Notice that once a vertex is assigned a color, this color can be removed from the palettes of all its neighbors. Also,

when looking for a coloring of a graph, two adjacent vertices with disjoint palettes can be as well thought of as

non-adjacent. Essential are only those pairs of adjacent vertices whose palettes are not disjoint. This observation

motivates the following definition: two adjacent vertices are called essential if their palettes are not disjoint;

otherwise they are called non-essential. Notice that the relation of being an essential (a non-essential) neighbor is

symmetric. Assigning a color to a vertex does not change possible color choices for its non-essential neighbors.

Two disjoint sets of vertices are said to be separated if no vertex in one of them has an essential neighbor in the

other.

The main algorithmic problem studied in this paper is the k-RESTRICTED-COLORING problem. The input in-

stance is a graph together with palettes for all its vertices. The problem is to decide if the input instance is

k-colorable, and if so, return a k-restricted-coloring.

Dominating structure. Our algorithm is based on an interesting structural property of P5-free graphs that has

been described by Bacsó and Tuza in [1]. Following their terminology, we say that a graph H is dominating in G

if G contains a dominating set that induces a graph isomorphic to H . In particular, a dominating clique in G is a

dominating set which induces a complete graph. Similarly, a dominating P3 is a dominating set which induces a

path on 3 vertices.

THEOREM 1 (THEOREM 8 IN [1]) Every connected P5-free graph has a dominating clique or a dominating P3.

We will refer to a dominating set that induces a complete graph or P3 as a dominating structure. To give an

application of the theorem, let us consider the 3-RESTRICTED-COLORING problem in the class of P5-free graphs.

Notice that once a 3-coloring of the vertices in a dominating structure D is fixed, then the palettes of all vertices

in V − D can be truncated. For every fixed 3-coloring of D, the updated palettes of vertices contain at most

2 colors. The question whether the coloring of D can be extended to the whole graph, can be modeled as a

2-SAT instance and solved in polynomial time. Hence, considering all possible 3-colorings of D and checking

extendability of each, we can obtain a polynomial-time algorithm for 3-RESTRICTED-COLORING in the class of

P5-free graphs. (See [20] for more details.)

Given a dominating structure D, let us fix an ordering d1, d2, . . . , d|D| of vertices in D. Next, partition all vertices

of V −D into disjoint subsets depending on their neighborhood in D. Let F1 be the neighborhood of d1 in V −D,

and for i = 2, . . . , |D| let Fi be the set of vertices in V − D adjacent to di but not to any dj with j < i. The sets

Fi for i = 1, . . . , |D| will be referred to as fixed sets.

3 The Algorithm

We say that an instance G is compatible with a set of instances G if G is k-colorable if and only if at least one of

the instances in G is k-colorable. Notice that if G is compatible with G and some H ∈ G is compatible with H,
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then G is compatible with (G − H) ∪H.

Our approach is based on a search tree technique. The nodes of the search tree are instances of the problem;

the root corresponds to the input instance, and the children of a node form a set of instances compatible with

the node. The leaves are instances which can be solved in an elementary way. In other words, an instance G is

replaced be a set of instances compatible with G but (in some sense) simpler than G. We proceed recursively

until all instances are easy to solve. Notice that if the degree of each node in the tree is polynomial (in n) and

the depth of the tree is constant, then the tree has at most a polynomial number of nodes. (Hence, a polynomial

number of leaves.)

The nature of our solution is also recursive in k. Designing the algorithm which solves the k-RESTRICTED-

COLORING problem, we assume there exist polynomial-time algorithms for the same problem with smaller values

of k. The problem can be easily solved for k = 1, 2, and as we have seen above, for k = 3; below we assume

that k is at least 4.

For the purpose of clarity, we split the presentation of the algorithm into four blocks: finding a dominating

structure, separating independent sets, separating fixed sets and the main algorithm.

Finding a dominating structure. First we find a dominating structure D of size at most k. (This can clearly

be done in polynomial time.) If no such set exists, then the instance does not admit a k-restricted-coloring.

Otherwise, we fix an ordering of the vertex set and consider the fixed sets with respect to this ordering. Even

though we consider different instances below, the fixed sets remain the same for the runtime of the algorithm.

Separating two independent sets. Let X and Y be two independent sets of a P5-free graph belonging to two

different fixed sets. Also, let X ′ (respectively Y ′) be the set of vertices of X (respectively Y ) that are essential

neighbors of some vertex of Y (respectively X). Note that X ′ is non-empty if and only if Y ′ is non-empty. We

also want to stress that the sets X and Y depend only on the graph (and not the palettes) but the sets X ′ and Y ′

depend on the instance (the palettes) and can change when a coloring of the graph is modified.

LEMMA 1 If X ′ 6= ∅, there exists a vertex in X ′ which is adjacent to all vertices in Y ′.

Proof. Let x1 be a vertex of X ′ with a maximal neighborhood in Y ′. Assume there exists a vertex y2 ∈ Y ′ that is

not adjacent to x1. Then, there must exist a vertex x2 ∈ X ′ (different than x1) adjacent to y2. Also, by the choice

of x1, there must exist a vertex y1 ∈ Y ′ that is adjacent to x1 but not x2. Remember that X ′ (Y ′) are independent

sets and so there is no edge between x1 and x2 (y1 and y2). Since X and Y belong to different fixed sets, there

exists a vertex v in the dominating set such that either v is adjacent to x1, x2 but not y1, y2, or v is adjacent to

y1, y2 but not x1, x2. But then G[{v, x1, x2, y1, y2}] is an induced P5; a contradiction. ✷

LEMMA 2 Let H be an instance of k-RESTRICTED-COLORING and X and Y be two independent sets of a graph

belonging to two different fixed sets. There exists a polynomial-time algorithm which outputs a set of instances

H compatible with H such that for every instance in H sets X and Y are separated.

Proof. We split the proof of the lemma into two steps. First we describe a polynomial-time recursive procedure

which outputs a set of instances G compatible with the input instance, such that for every instance in G the set X ′

is empty or the size of the palette of Y ′ is smaller than the size of the palette in the input instance.

Let us suppose that the procedure was called for an input instance G. Initialize G to be empty. If X ′ 6= ∅,

then there is nothing to be done. Otherwise, there exists a vertex v ∈ X ′ which dominates Y ′ (Lemma 1). For
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every color c ∈ ℓ(v) ∩ ℓ(Y ′), create a new instance by coloring v with c and removing c from the color lists of

the neighbors of v. Add all these instances to G and notice that for the new instances |ℓ(Y ′)| is strictly smaller

than |ℓ(Y ′)| in the original instance. Additionally, create an instance in which the color list of v is truncated,

ℓ(v) = ℓ(v) − ℓ(Y ′) (if non-empty), and run the procedure recursively for this instance. Add the result of the

recursive call to G and return G.

A run of the procedure can be seen as a search tree. At each level of recursion, we create at most k instances plus

the ones coming from the recursive call. As we decrease the size of X ′ at each level, the depth of recursion is at

most n. Hence, the number of instances created by the procedure is at most kn.

It follows easily from the search tree structure of the algorithm that at each level of recursion, the node is com-

patible with the set of its children. Hence, by the fact that an instance can be replaced with its compatible set (as

mentioned in the beginning of this section) the input instance G is compatible with the output set G.

The time spent at every node is clearly polynomial and the number of nodes of the search tree is also polynomial,

thus the procedure runs in polynomial time.

Calling the procedure described above recursively until for all instances X ′ is empty builds another search tree.

Every node of this search tree is an instance of the problem, the root corresponds to the input instance H and in

the leaves sets X and Y are separated. Notice that the degree of every node is at most kn and the depth of the

tree is also at most k (we decrease the palette of Y ′ at every step). Hence, the number of nodes is at most (kn)k.

The correctness follows from the correctness of the procedure presented above. ✷

Separating fixed sets. Now we are ready to present an algorithm which produces a set of instances (compatible

with the input instance) such that in all instances every pair of fixed sets is separated.

LEMMA 3 Let H be an instance of k-RESTRICTED-COLORING. There exists a polynomial-time algorithm which

outputs a set of instances H compatible with H such that for every instance in H all pairs of fixed sets are

separated.

Proof. First let us notice that if an instance admits a k-restricted-coloring, then the underlying graph is k-colorable

in the usual sense. Since all vertices of every fixed set Fi are adjacent to the same vertex in D, then if H admits

a k-restricted-coloring, then the graphs H[Fi] must be (k − 1)-colorable in the usual sense. Using our recursive

assumption we can find in polynomial time a (k − 1)-coloring of H[Fi] for every fixed set Fi. Let us find these

colorings for all fixed sets Fi. If some fixed set is not (k − 1)-colorable (in the usual sense), then H does not

admit a k-restricted-coloring. We will use (k − 1)-colorings of the fixed sets only for the purpose of partitioning

these sets and the colorings found have nothing to do with the final restricted colorings of each of the sets.

Now we will present a procedure which for a given input instance G and two distinct fixed sets Fi and Fj outputs

a set of instances G such that for every instance in G the sets Fi and Fj are separated. Each color class is an

independent set and for each pair of color classes – one from G[Fi] and from G[Fj ] – we can run the algorithm

separating two independent sets. Let us do it recursively until all pairs of color classes are separated, and hence

sets Fi and Fj are separated. The procedure will create at most ((kn)k)k2

= (kn)k3

instances compatible with

G.

Now, we can run the procedure for the input instance H and then recursively until all pairs of fixed sets are

separated. There is at most k2 different pairs of fixed sets, so the number of output instances is at most (kn)k5

.

Each node requires a polynomial-time processing time, so the total running time of the algorithm is polynomial.

The correctness follows recursively from the correctness of the procedure which separates two given fixed sets.

✷
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Main algorithm. Now we are ready to put all the components of the algorithm together.

THEOREM 2 The k-RESTRICTED-COLORING problem can be solved in polynomial time in the class of P5-free

graphs.

Proof. First find a dominating structure D. Choose an ordering of vertices of D and partition V − D into fixed

sets. This can be done in polynomial time. Consider all possible colorings of D (there is at most kk of them) and

for each coloring: separate all pairs of fixed sets. This, as shown in Lemma 3, can be done in polynomial time.

Now all the instances have all pairs of fixed sets separated.

Let G be an instance in which all pairs of fixed sets are separated. Notice that G is k-colorable if and only

if for every fixed set Fi the graph G[Fi] induced by Fi is (k − 1)-colorable. Running the (k − 1)-coloring

algorithm (which exists by our inductive assumption) for each G[Fi], we obtain a polynomial-time algorithm for

the k-RESTRICTED-COLORING problem. This step can be done in polynomial time, and hence k-RESTRICTED-

COLORING can be solved in polynomial time in the class of P5-free graphs. ✷

4 Open problems

The algorithm presented in this paper narrows the gap in Table 1 between the cases solvable in NP-complete and

polynomial time solvable cases. Here we would like to suggest some open problems which are in our opinion

should be addressed next:

• Is 3-coloring of P7-free graphs solvable in polynomial-time?

• Is 4-coloring of P6-free graphs solvable in polynomial-time?

• Can k-coloring of P5-free graphs be solved in FPT time?

• Is MAXIMUM INDEPENDENT SET (and MINIMUM INDEPENDENT DOMINATING SET) solvable in polynomial-

time on P5-free graphs?
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