DECIDING UNAMBIGUITY AND SEQUENTIALITY OF POLYNOMIALLY AMBIGUOUS MIN-PLUS AUTOMATA

DANIEL KIRSTEN ${ }^{1}$ AND SYLVAIN LOMBARDY ${ }^{2}$
${ }^{1}$ University Leipzig, Inst. for Computer Science, Postfach 1009 20, 04009 Leipzig, Germany
${ }^{2}$ IGM-LabInfo, Université Paris-Est Marne-la-Vallée, 77454 Marne-la-Vallée Cedex 2, France

Abstract

This paper solves the unambiguity and the sequentiality problem for polynomially ambiguous min-plus automata. This result is proved through a decidable algebraic characterization involving so-called metatransitions and an application of results from the structure theory of finite semigroups. It is noteworthy that the equivalence problem is known to be undecidable for polynomially ambiguous automata.

1. Introduction

Min-plus and max-plus automata are studied under various names in the literature, e.g. distance, finance, or cost automata. They have also appeared in various contexts: logical problems in formal language theory (star height, finite power property, star problem for traces) $[6,12,13,23,20]$, study of dynamics of some discrete event systems (DES) [1, 2], automatic speech recognition [21], and database theory [3].

The sequentiality/unambiguity problem is one of the most intriguing open problems for min-plus automata: decide (constructively) whether some given min-plus automaton admits a sequential/unambiguous equivalent. This problem is wide open despite the fact it was studied by several researchers, e.g. [15, 19, 21].

In 2004, Klimann, Lombardy, Mairesse, and Prieur showed that this problem is decidable for finitely ambiguous min-plus automata [15]. For the sequentiality problem, Mohri presented an imperfect algorithm (which is not a decision algorithm) in 1997 [21].

In the present paper, we show a new partial solution to the sequentiality/unambiguity problem: we show that this problem is decidable provided that the input automaton is polynomially ambiguous. Polynomially ambiguous min-plus automata are much more involved objects than finitely ambiguous ones, e.g. the equivalence problem is undecidable for polynomially, but decidable for finitely ambiguous min-plus automata [16, 8]. In fact, all the key ideas in [15] for finitely ambiguous min-plus automata (namely the decomposition technique and the pumping arguments) do not carry over to polynomially ambiguous minplus automata and we have to develop advanced proof techniques. We develop a theory of

Key words and phrases: min-plus automata, determinization, finite semigroups.
The main results of this paper were achieved during a three month stay of Daniel Kirsten at the Institute Gaspard Monge at the Université Paris-Est Marne-la-Vallée which was funded by the CNRS.
so-called metatransitions and establish a decidable algebraic characterization of the polynomially ambiguous min-plus automata which admit an unambiguous equivalent. To prove the characterization, we utilize some techniques from the limitedness problem for distance and desert automata $[18,24,12,13]$, results from the structure theory of finite semigroups as the factorization forest theorem along with various new ideas. The proof for the sufficiency of the construction leads to an intriguing combination of two Burnside problems.

2. Preliminaries

2.1. Notations

Let Σ be a finite alphabet. The notion of a \sharp-expression is due to [7]. Every $a \in \Sigma$ is a \sharp-expression. For \sharp-expressions r and s, the expressions $r s$ and r^{\sharp} are \sharp-expressions. For a \sharp-expression r and $k \geq 0$, let $r(k)$ be the word obtained by replacing every \sharp by k.

Let $\mathbb{N}=\{0,1, \ldots\}$. Let $\mathbb{Z}_{\omega}=(\mathbb{Z} \cup\{\omega, \infty\}$, $\min ,+, \infty, 0)$ be the semiring whereas min is the minimum for the ordering $\cdots \leq-1 \leq 0 \leq 1 \cdots \leq \omega \leq \infty$ and $m+n$ is defined as usual if $m, n \in \mathbb{Z}$ but as maximum of m and n if $m \in\{\omega, \infty\}$ or $n \in\{\omega, \infty\}$. The tropical semiring \mathbb{Z}_{∞} is the restriction of \mathbb{Z}_{ω} to $\mathbb{Z} \cup\{\infty\}$.

Let Q be a finite set. For $k \geq 1$, matrices $M_{1}, \ldots, M_{k}, M \in \mathbb{Z}_{\omega}^{Q \times Q}$, and $p_{0}, \ldots, p_{k} \in$ Q, we denote $M_{1}\left[p_{0}, p_{1}\right]+\cdots+M_{k}\left[p_{k-1}, p_{k}\right]$ by $\left(M_{1}, \ldots, M_{k}\right)\left[p_{0}, \ldots, p_{k}\right]$, and we denote $M\left[p_{0}, p_{1}\right]+\cdots+M\left[p_{k-1}, p_{k}\right]$ by $M\left[p_{0}, \ldots, p_{k}\right]$.

Let $M \in \mathbb{Z}_{\omega}^{Q \times Q}$. We set $\operatorname{mind}(M)=\min \{M[p, p] \mid p \in Q\}$. If some entry of M belongs to \mathbb{Z}, then $\min (M)($ resp. $\max (M))$ is the minimum (resp. maximum) of the set $\{M[p, q] \mid p, q \in$ $Q, M[p, q] \in \mathbb{Z}\}$, and $\operatorname{span}(M)=\max (M)-\min (M)$. Otherwise, $\operatorname{span}(M)=0$.

The boolean semiring is $\mathbb{B}=(\{0,1\},+, \cdot, 0,1)$, and we denote by $\alpha: \mathbb{Z}_{\omega} \rightarrow \mathbb{B}$ the morphism defined by $\alpha(\infty)=0$ and $\alpha(z)=1$ for $z \neq \infty$.

Given $P \subseteq Q$ and $M \in \mathbb{B}^{Q \times Q}$, we let $P \cdot M=\{q \in Q \mid$ there is some $p \in P$ such that $M[p, q]=1\}$ and $M \cdot P=\{q \in Q \mid$ there is some $p \in P$ such that $M[q, p]=1\}$.

We generalize all these notions (except mind) to matrices which are not quadratic.
Let T be a set and $\cdot: T \times T \rightarrow T$ be partial mapping. We assume that \cdot is associative, i.e., if for $p, q, r \in T$, either both products $(p q) r$ and $p(q r)$ are undefined or both products are defined and $(p q) r=p(q r)$. Let $T_{0}=T \cup\{0\}$. We extend \cdot to T_{0} by setting $p q=0$ for $p, q \in T$ for which $p q$ is undefined in T. Clearly, T_{0} is a semigroup with zero 0 .

2.2. Min-Plus Automata

A min-plus automaton is a tuple $\mathcal{A}=[Q, \mu, \lambda, \varrho]$ whereas Q is a nonempty, finite set of states, $\mu: \Sigma^{*} \rightarrow \mathbb{Z}_{\infty}^{Q \times Q}$ is a homomorphism, and $\lambda, \varrho \in \mathbb{Z}_{\infty}^{Q}$. A min-plus automaton \mathcal{A} computes a mapping $|\mathcal{A}|: \Sigma^{*} \rightarrow \mathbb{Z}_{\infty}$ by $|\mathcal{A}|(w)=\lambda \mu(w) \varrho$ for $w \in \Sigma^{*}$.

Two min-plus automata are equivalent if and only if they compute the same mapping. We call a state $q \in Q$ accessible (resp. co-accessible) if there is a $v \in \Sigma^{*}$ such that $(\lambda \mu(v))[q] \in \mathbb{Z}($ resp. $(\mu(v) \varrho)[q] \in \mathbb{Z})$. If every state is accessible and co-accessible, then we call \mathcal{A} trim.

Let $I=\{q \in Q \mid \lambda[q] \in \mathbb{Z}\}$ and $F=\{q \in Q \mid \varrho[q] \in \mathbb{Z}\}$. If $|I|=1$, and for every $a \in \Sigma$, $p \in Q$, there exists at most one $q \in Q$ satisfying $\mu(a)[p, q] \in \mathbb{Z}$, then we call \mathcal{A} sequential.

Let $w=a_{1} \cdots a_{|w|} \in \Sigma^{*}$. A sequence $p_{0}, \ldots, p_{|w|}$ is a path (in \mathcal{A}) from p_{0} to $p_{|w|}$ for w if $\left(\mu\left(a_{1}\right), \ldots, \mu\left(a_{|w|}\right)\right)\left[p_{0}, \ldots, p_{|w|}\right] \in \mathbb{Z}$. We call $p_{0}, \ldots, p_{|w|}$ accepting if $p_{0} \in I, p_{|w|} \in F$.

If there exists some polynomial $P: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $w \in \Sigma^{*}$, there are at most $P(|w|)$ accepting paths for w, then \mathcal{A} is called polynomially ambiguous. If the same condition is satisfied for a constant $n \in \mathbb{N}$, then \mathcal{A} is called finitely ambiguous. If there is at most one path for each word, then \mathcal{A} is called unambiguous. The mapping $f:\{a, b\}^{*} \rightarrow \mathbb{Z}_{\infty}$ defined as $f(w)=\min \left\{k \mid b a^{k} b\right.$ is a factor of $\left.w\right\}$ can be computed by a polynomially ambiguous min-plus automaton, but not by a finitely ambiguous min-plus automaton [14].

The following characterization is used implicitly in [10, 11, 22] (cf. Proof of Theorem 3.1 in [11] or Lemma 4.3 in [10]).

Theorem 2.1. A trim min-plus automaton \mathcal{A} is polynomially ambiguous if and only if for every state q and every $w \in \Sigma^{*}$, there is at most one path for w from q to q.

We need the following characterization.
Lemma 2.2. Let $\mathcal{A}=[Q, \mu, \lambda, \varrho]$ be a trim, unambiguous min-plus automaton. Let $w \in \Sigma^{*}$, $k \geq 1$, and $q_{0}, \ldots, q_{k} \in Q$ such that there is path for w from q_{i-1} to q_{i} for every $1 \leq i \leq k$.

There are $\pi_{1}, \pi_{2}, \pi_{3} \in Q^{*}$ such that $\left|\pi_{1} \pi_{3}\right| \leq|Q|,\left|\pi_{2}\right| \leq|Q|$, and $q_{0} \ldots q_{k} \in \pi_{1} \pi_{2}^{*} \pi_{3}$.

3. Overview

3.1. Metatransitions

The combination of a forward and backward parsing was one of the key ideas by HASHIGUCHI in various papers on the finite power property and distance automata (e.g. in $[4,5]$). Metatransitions formalize this idea in an algebraic fashion. Metatransitions form a semigroup, and the homomorphism $\alpha: \mathbb{Z}_{\omega} \rightarrow \mathbb{B}$ extends in a natural way to a homomorphism between the semigroups of metatransitions. Henceforth, we can utilize semigroup theoretic approaches by Simon, Leung, and Kirsten (e.g. [18, 23, 24, 12, 13]) on metatransitions. Consequently, the concept of a metatransition compromises the combinatorial approach by Hashiguchi and the algebraic approach by Simon and Leung in the research on min-plus automata. Several results in this section were already shown in [9].

Let Q be a finite set. A metatransition over \mathbb{Z}_{ω} and Q is a tuple $\left(\begin{array}{l}P_{0} \\ R_{0}\end{array} M_{R_{1}}^{P_{1}}\right.$), whereas MT1.: $P_{0}, P_{1}, R_{0}, R_{1} \subseteq Q$,
MT2.: $M \in \mathbb{Z}_{\omega}^{\left(P_{0} \cap R_{0}\right) \times\left(P_{1} \cap R_{1}\right)}$,
MT3.: $\left(P_{0} \cap R_{0}\right) \cdot \alpha(M)=\left(P_{1} \cap R_{1}\right)$ and $\left(P_{0} \cap R_{0}\right)=\alpha(M) \cdot\left(P_{1} \cap R_{1}\right)$.
Two metatransitions $\left(\begin{array}{c}P_{0} \\ R_{0}\end{array} M \begin{array}{c}P_{1} \\ R_{1}\end{array}\right)$ and $\left(\begin{array}{c}P_{0}^{\prime} \\ R_{0}^{\prime}\end{array} M^{\prime} \begin{array}{l}P_{1}^{\prime} \\ R_{1}^{\prime}\end{array}\right)$ are called concatenable if and only if $P_{1}=P_{0}^{\prime}$ and $R_{1}=R_{0}^{\prime}$. In this case, their product yields $\left(\begin{array}{ccc}P_{0} \\ R_{0}\end{array} M M^{\prime} \begin{array}{l}P_{1}^{\prime} \\ R_{1}^{\prime}\end{array}\right)$.

Let $\mathrm{MT}\left(\mathbb{Z}_{\omega}, Q\right)$ be the set consisting of all metatransitions over Q. Then, $\mathrm{MT}\left(\mathbb{Z}_{\omega}, Q\right)_{0}$ is a semigroup with a zero.

We define metatransitions over \mathbb{B} and Q in the same way. ${ }^{1}$ We extend the homomorphism $\alpha: \mathbb{Z}_{\omega} \rightarrow \mathbb{B}$ to $\alpha: \mathrm{MT}\left(\mathbb{Z}_{\omega}, Q\right)_{0} \rightarrow \mathrm{MT}(\mathbb{B}, Q)_{0}$ by setting

$$
\alpha\left(\left(\begin{array}{ccc}
P_{0} & M_{1} & P_{1} \\
R_{0} & R_{1} & R_{1}
\end{array}\right)\right)=\left(\begin{array}{ccc}
P_{0} & \\
R_{0}
\end{array} \alpha\left(M_{1}\right) \begin{array}{l}
P_{1} \\
R_{1}
\end{array}\right) \quad \text { and } \quad \alpha(0)=0 .
$$

[^0]Let $M^{\prime} \in \mathbb{Z}_{\omega}^{Q \times Q}$ and $P_{0}, R_{1} \subseteq Q$. Let $P_{1}=P_{0} \cdot \alpha\left(M^{\prime}\right), R_{0}=\alpha\left(M^{\prime}\right) \cdot R_{1}$, and let M be the restriction of M^{\prime} to $\left(P_{0} \cap R_{0}\right) \times\left(P_{1} \cap R_{1}\right)$. We denote $\left(\begin{array}{c}P_{0} \\ R_{0}\end{array} M_{R_{1}}^{P_{1}}\right.$) by $\llbracket P_{0}, M^{\prime}, R_{1} \rrbracket$ and call it the metatransition induced by P_{0}, M^{\prime}, R_{1}. We also say that $\llbracket P_{0}, M^{\prime}, R_{1} \rrbracket$ is induced by M^{\prime}.
Lemma 3.1. Let $t_{1}=\left(\begin{array}{ccc}P_{0} \\ R_{0}\end{array} M_{1} \begin{array}{l}P_{1} \\ R_{1}\end{array}\right), t_{2}=\left(\begin{array}{ccc}P_{1} & M_{2} & P_{2} \\ R_{1}\end{array}\right) \in \operatorname{MT}\left(\mathbb{Z}_{\omega}, Q\right)$ and $M_{1}^{\prime}, M_{2}^{\prime} \in \mathbb{Z}_{\omega}^{Q \times Q}$. If $t_{1}=\llbracket P_{0}, M_{1}^{\prime}, R_{1} \rrbracket$ and $t_{2}=\llbracket P_{1}, M_{2}^{\prime}, R_{2} \rrbracket$, then $t_{1} t_{2}=\llbracket P_{0}, M_{1}^{\prime} M_{2}^{\prime}, R_{2} \rrbracket$.

Let $k \geq 1$ and let $M_{1}^{\prime}, \ldots, M_{k}^{\prime} \in \mathbb{Z}_{\omega}^{Q \times Q}$. Let $P_{0}, R_{k} \subseteq Q$. As above, the matrices $M_{1}^{\prime}, \ldots, M_{k}^{\prime}$ induce with P_{0}, R_{k} a sequence of concatenable metatransitions: For $0<i \leq k$, let $P_{i}=P_{i-1} \cdot \alpha\left(M_{i}^{\prime}\right)$ and $R_{i-1}=\alpha\left(M_{i}^{\prime}\right) \cdot R_{i}$. Finally let M_{i} be the restriction of M_{i}^{\prime} to $\left(P_{i-1} \cap R_{i-1}\right) \times\left(P_{i} \cap R_{i}\right)$ and $t_{i}=\left(\begin{array}{c}P_{i-1} \\ R_{i-1}\end{array} M_{i} \begin{array}{c}P_{i} \\ R_{i}\end{array}\right)$ for $1 \leq i \leq k$.

Clearly, $t_{i}=\llbracket P_{i-1}, M_{i}^{\prime}, R_{i} \rrbracket$. Moreover, $P_{i} \cap R_{i} \neq \emptyset$ for some $0 \leq i \leq k$ if and only if $P_{i} \cap R_{i} \neq \emptyset$ for every $0 \leq i \leq k$. By Lemma 3.1, we obtain $t_{1} \cdots t_{k}=\llbracket P_{0}, M_{1} \cdots M_{k}, R_{k} \rrbracket$.

3.2. The Semigroup of Metatransitions of an Automaton

Let $\mathcal{A}=[Q, \mu, \lambda, \varrho]$ be a min-plus automaton, $I=\{q \in Q \mid \lambda[q] \in \mathbb{Z}\}$ and $F=\{q \in$ $Q \mid \varrho[q] \in \mathbb{Z}\}$.

Let $n \geq 1$ and $w_{1}, \ldots, w_{n} \in \Sigma^{*}$ be a sequence of words. As above, the matrices $\mu\left(w_{1}\right), \ldots, \mu\left(w_{n}\right)$ induce with $P_{0}=I$ and $R_{n}=F$ a sequence of concatenable metatransitions t_{1}, \ldots, t_{n}.

Let $q_{0}, \ldots, q_{n} \in Q$. If $\lambda\left[q_{0}\right]+\left(\mu\left(w_{1}\right), \ldots, \mu\left(w_{n}\right)\right)\left[q_{0}, \cdots, q_{n}\right]+\varrho\left[q_{n}\right] \in \mathbb{Z}$, then we have $q_{i} \in P_{i} \cap R_{i}$ for every $0 \leq i \leq k$. Conversely, for every $1 \leq i \leq k$ and every $q \in P_{i} \cap R_{i}, \mathcal{A}$ can read $w_{1} \cdots w_{i}$ from an initial state to q, and it can read $w_{i+1} \cdots w_{n}$ from q to an accepting state. In this sense, the metatransitions t_{1}, \ldots, t_{n} represent exactly the accepting paths for w in \mathcal{A}. The matrices inside t_{1}, \ldots, t_{n} are the matrices $\mu\left(w_{1}\right), \ldots, \mu\left(w_{n}\right)$ restricted to the entries which occur in accepting paths for $w_{1} \ldots w_{n}$.

We have $P_{i} \cap R_{i} \neq \emptyset$ for some $0 \leq i \leq k$ if and only if $P_{i} \cap R_{i} \neq \emptyset$ for every $0 \leq i \leq k$ if and only if \mathcal{A} accepts $w_{1} \ldots w_{n}$.

The most beautiful property is the following: let $0 \leq i<j \leq n$ and assume $P_{i}=P_{j}$ and $R_{i}=R_{j}$. We consider the sequence of words $w^{\prime}=w_{1}, \ldots, w_{i},\left(w_{i+1}, \ldots, w_{j},\right)^{k} w_{j+1}, \ldots, w_{n}$ for some $k \geq 0$. By applying μ to each word in w^{\prime}, we obtain a sequence of matrices. As above, these matrices induce with $P_{0}=I$ and $R_{n}=F$ a sequence of metatransitions. Clearly, we obtain the sequence $t_{1}, \ldots, t_{i},\left(t_{i+1}, \ldots, t_{j},\right)^{k} t_{j+1}, \ldots, t_{|w|}$.

Although this property looks quite obvious, it is of crucial importance since it enables us to apply pumping- and Burnside-techniques.

We associate to \mathcal{A} a subsemigroup of $\mathrm{MT}\left(\mathbb{Z}_{\omega}, Q\right)_{0}$. We call some set $S \subseteq Q$ a P-clone of \mathcal{A} (resp. an R-clone of \mathcal{A}) if there exists some word $v \in \Sigma^{*}$ such that $S=I \cdot \alpha(\mu(v))$ $($ resp. $S=\alpha(\mu(v)) \cdot F)$. Let $\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)=$

$$
\left\{\llbracket P_{0}, \mu(a), R_{1} \rrbracket \mid a \in \Sigma, P_{0} \text { is a P-clone, } R_{1} \text { is a R-clone, } P_{0} \cdot \mu(a) \cdot R_{1} \neq \infty\right\} .
$$

The condition $P_{0} \cdot \mu(a) \cdot R_{1} \neq \infty$ ensures that $\mu(a)$ does not restrict to a $\emptyset \times \emptyset$-matrix.
Let $\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}$ be the subsemigroup of $\mathrm{MT}\left(\mathbb{Z}_{\omega}, Q\right)_{0}$ generated by $\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right) \cup\{0\}$. By Lemma 3.1, we can show that $\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}$ consists of 0 and metatransitions of the form $\llbracket P_{0}, \mu(w), R_{1} \rrbracket$ for P-clones P_{0}, R-clones R_{1}, and words $w \in \Sigma^{+}$satisfying $P_{0} \cdot \mu(w) \cdot R_{1} \neq \infty$.

For every metatransition $t_{2} \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}$, there are $t_{1}, t_{3} \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}$ such that $t_{1} t_{2} t_{3} \neq 0$ and $t_{1} t_{2} t_{3}=\llbracket I, \mu(w), F \rrbracket$ for some word $w \in \Sigma^{*}$.

By removing the weights from \mathcal{A}, we can define in the same way a set $\mathrm{MT}(\mathbb{B}, \mathcal{A})$ and the subsemigroup $\langle\mathrm{MT}(\mathbb{B}, \mathcal{A})\rangle_{0}$ of $\mathrm{MT}(\mathbb{B}, \mathcal{A})$.

3.3. On Metatransitions with an Idempotent Structure

Let \mathcal{A} be a polynomially ambiguous min-plus automaton and let $e=\left({ }_{R}^{P} M_{R}^{P}{ }_{R}\right) \in$ $\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, Q\right)\right\rangle_{0}$ be a metatransition with an idempotent structure, i.e., assume $\alpha(e e)=\alpha(e)$. We define a relation \leq_{e} on $P \cap R$ by setting $p \leq_{e} q$ iff $M[p, q] \neq \infty$. This relation is "almost a partial order" in that it satisfies the three following properties.
i) Clearly, \leq_{e} is transitive.
ii) The relation \leq_{e} is antisymmetric. Let $p \neq q \in P \cap R$ such that $p \leq_{e} q \leq_{e} p$. Clearly, e is induced by $\mu(v)$ for some $v \in \Sigma^{*}$. Then, \mathcal{A} can read v^{2} from p to p in two paths. One path stays at p, the other path goes from p to q and back. This contradicts Theorem 2.1.
iii) For every $q \in P \cap R$, there exist $p, r \in P \cap R, p \leq_{e} q \leq_{e} r$ such that $p \leq_{e} p$ and $r \leq_{e} r$. By (MT3), there are $q_{1}, q_{2}, \ldots \in P \cap R$ such that $q \leq_{e} q_{1} \leq_{e} q_{2} \leq_{e} \cdots$ By transitivity and finiteness of $P \cap R$, there is some r among q_{1}, q_{2}, \ldots such that $q \leq_{e} r \leq_{e} r$. The proof for p is similar.

Lemma 3.2. Let $e=\left(\begin{array}{c}P \\ R\end{array} M_{R}^{P}\right) \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}$ with an idempotent structure. Let $k \geq 1$ and $p, q \in P \cap R$ such that $M^{k}[p, q] \neq \infty$.

There are $p=p_{0}, \ldots, p_{k}=q$ in $P \cap R$ such that $M^{k}[p, q]=M\left[p_{0}, \ldots, p_{k}\right]$. Moreover, if $k>|P \cap R|$, then we can choose p_{0}, \ldots, p_{k} such that there are $0 \leq i<j \leq k$ such that $p_{i}=p_{i+1}=\cdots=p_{j}$ and $p_{0}, \ldots, p_{i}, p_{j+1}, \ldots, p_{k}$ does not contain a cycle.

The last claim of Lemma 3.2 just says that for large k, one can choose the sequence p_{0}, \ldots, p_{k} to be almost constant up to a short cycle-free prefix and suffix. The total length of the prefix and the suffix is at most $|P \cap R|$.

It is important that for the antisymmetry of \leq_{e} and for Lemma 3.2, we do not need to assume $e \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}$, it suffices that $e \in \mathrm{MT}\left(\mathbb{Z}_{\omega}, Q\right)$ and $\alpha(e)=\alpha(e e) \in\langle\mathrm{MT}(\mathbb{B}, \mathcal{A})\rangle_{0}$.

3.4. Stabilization

Let \mathcal{A} be a polynomially ambiguous min-plus automaton. Let $e=\left(\begin{array}{r}P \\ R\end{array} M_{R}^{P}\right) \in$ $\mathrm{MT}\left(\mathbb{Z}_{\omega}, Q\right)$ such that $\alpha(e)=\alpha(e e) \in\langle\mathrm{MT}(\mathbb{B}, \mathcal{A})\rangle_{0}$. Assume $\operatorname{mind}(M)=0$.

We define M^{\sharp}, the stabilization of M. The idea of M^{\sharp} is to understand the sequence $\left(M^{k}\right)_{k \geq 1}$. Let $p, q \in P \cap R$.

If $M^{k}[p, q]=\infty$, for some $k \geq 1$, then $M^{k}[p, q]=\infty$ for every $k \geq 1$. In this case, we define $M^{\sharp}[p, q]=\infty$.

Assume $M[p, q] \neq \infty$. Lemma 3.2 is crucial to understand the sequence $\left(M^{k}[p, q]\right)_{k \geq 1}$. From $\operatorname{mind}(M)=0$, we can easily deduce a lower bound on $\left(M^{k}[p, q]\right)_{k \geq 1}$.

We say that some sequence $p_{0}, \ldots, p_{k} \in P \cap R$ satisfies (S1), if $p_{0}=p, p_{k}=q$, and $M\left[p_{0}, \ldots, p_{k}\right] \in \mathbb{Z}$. If p_{0}, \ldots, p_{k} satisfies (S1) and there exists some $0 \leq i \leq k$ such that $M\left[p_{i}, p_{i}\right]=0$, then we say that p_{0}, \ldots, p_{k} satisfies (S2).

Assume there exists a sequence which satisfies (S2). Then, there exists a sequence p_{0}, \ldots, p_{k} for some $k<|P \cap R|$ which satisfies (S2) such that $m=M\left[p_{0}, \ldots, p_{k}\right]$ is minimal
among all sequences which satisfy (S2). In this case, $\left(M^{k}[p, q]\right)_{k \geq 1}$ is ultimately constant m and we define $M^{\sharp}[p, q]=m$.

Assume that there does not exist a sequence which satisfies (S2) although $M[p, q] \neq \infty$. We can conclude that the sequence $\left(M^{k}[p, q]\right)_{k \geq 1}$ is either ultimately ω, or it tends to infinity, since (S1)-sequences cannot utilize the zeros on the main diagonal of M. In this case, we set $M^{\sharp}[p, q]=\omega$.

Consequently, $M^{\sharp}[p, q]$ describes the behaviour of $\left(M^{k}[p, q]\right)_{k \geq 1}$.
For $p \in P \cap R$ satisfying $M[p, p]=0$, we have $M^{\sharp}[p, p]=0$.
We generalize the definition of M^{\sharp} by weakening the assumption $\operatorname{mind}(M)=0$ to $\operatorname{mind}(M) \in \mathbb{Z}$. We still assume $\alpha(e)=\alpha(e e) \in\langle\mathrm{MT}(\mathbb{B}, \mathcal{A})\rangle_{0}$.

We normalize M. Let $m=\operatorname{mind}(M)$ and define \bar{M} by $\bar{M}[p, q]=M[p, q]-m$ for 2 $p, q \in P \cap R$. Clearly, $\alpha(\bar{M})=\alpha(M)$ and $\operatorname{mind}(\bar{M})=0$. We define $M^{\sharp}=\bar{M}^{\sharp}$.

For $k \geq 1$, we have $M^{k}[p, q]=k m+\bar{M}^{k}[p, q]$. Let $p, q, p^{\prime}, q^{\prime} \in P \cap R$. For $k \geq 1$, we have $M^{k}[p, q]-M^{k}\left[p^{\prime}, q^{\prime}\right]=\bar{M}^{k}[p, q]-\bar{M}^{k}\left[p^{\prime}, q^{\prime}\right]$, provided that $M^{k}[p, q] \in \mathbb{Z}$.

If $M^{\sharp}[p, q]$ and $M^{\sharp}\left[p^{\prime}, q^{\prime}\right]$ are integers, then the entries $[p, q]$ and $\left[p^{\prime}, q^{\prime}\right]$ are ultimately constant in $\left(\bar{M}^{k}\right)_{k \geq 1}$, i.e., the entries $[p, q]$ and $\left[p^{\prime}, q^{\prime}\right]$ grow or sink synchronized in the sequence $\left(M^{k}\right)_{k \geq 1}$ and for every k beyond some bound, we have $M^{k}[p, q]-M^{k}\left[p^{\prime}, q^{\prime}\right]=$ $M^{\sharp}[p, q]-M^{\sharp}\left[p^{\prime}, q^{\prime}\right]$.

However, if $M^{\sharp}[p, q]=\omega$ and $M^{\sharp}\left[p^{\prime}, q^{\prime}\right] \in \mathbb{Z}$, then either $\left(M^{k}[p, q]\right)_{k \geq 1}$ is ultimately ω, or the difference $\left(M^{k}[p, q]-M^{k}\left[p^{\prime}, q^{\prime}\right]\right)_{k \geq 1}$ tends to infinity.

Given $e=\left(\begin{array}{c}P \\ R\end{array} M_{R}^{P}\right) \in \mathrm{MT}\left(\mathbb{Z}_{\omega}, Q\right)$ satisfying $\alpha(e)=\alpha(e e) \in\langle\mathrm{MT}(\mathbb{B}, \mathcal{A})\rangle_{0}$ and $\operatorname{mind}(M) \in \mathbb{Z}$, we define its stabilization $e^{\sharp}=\left(\begin{array}{c}P \\ R\end{array} M^{\sharp}{ }_{R}^{P}\right) \in \operatorname{MT}\left(\mathbb{Z}_{\omega}, Q\right)$. We have $\alpha\left(e^{\sharp}\right)=$ $\alpha(e)$ and $e^{\sharp} \in \mathrm{MT}\left(\mathbb{Z}_{\omega}, Q\right)$.

Finally, let $t \in \mathrm{MT}\left(\mathbb{Z}_{\omega}, Q\right)$ and let M be the matrix in t. We define $\operatorname{span}(t)=\operatorname{span}(M)$ and generalize the notions min, max, and mind in the same way.
Lemma 3.3. (1) For concatenable $t_{1}, t_{2} \in \mathrm{MT}(\mathbb{Z}, Q)$, $\operatorname{span}\left(t_{1} t_{2}\right) \leq \operatorname{span}\left(t_{1}\right)+\operatorname{span}\left(t_{2}\right)$.
(2) For $e \in \operatorname{MT}\left(\mathbb{Z}_{\omega}, Q\right)$ for which e^{\sharp} is defined, we have $\operatorname{span}\left(e^{\sharp}\right) \leq|Q| \operatorname{span}(e)$.

3.5. Main Results, Conclusions, and Open Questions

Let \mathcal{A} be a polynomially ambiguous min-plus automaton and let $\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)$ as in Section 3.2. Let $\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp}$ be the least semigroup which
(1) contains $\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)$ and the zero of $\mathrm{MT}\left(\mathbb{Z}_{\omega}, Q\right)$,
(2) is closed under the product of metatransitions, and
(3) is closed under stabilization, i.e., for every $e \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp}$, we have $e^{\sharp} \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp}$, provided that e^{\sharp} is defined.
We state our main characterization:
Theorem 3.4. Let \mathcal{A} be a polynomially ambiguous min-plus automaton.
The following assertions are equivalent:
(1) There exists some metatransition $t \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp}$ such that every entry in t belongs to $\{\omega, \infty\}$.
(2) The min-plus automaton \mathcal{A} has no unambiguous equivalent.

[^1](3) Every unambiguous min-plus automaton $\tilde{\mathcal{A}}$ which accepts the same language as \mathcal{A} satisfies one of the following conditions:
(3a) There are $u, v, w \in \Sigma^{*}$ such that $u v^{k} w$ is accepted by \mathcal{A} and $\tilde{\mathcal{A}}$ for $k \geq 1$, and for growing k, the sequence $\left(|\tilde{\mathcal{A}}|\left(u v^{k} w\right)-|\mathcal{A}|\left(u v^{k} w\right)\right)_{k \geq 1}$ tends to infinity.
(3b) There is $a \sharp$-expression r such that $r(k)$ is accepted by \mathcal{A} and $\tilde{\mathcal{A}}$ for $k \geq 1$, and for growing k, the sequence $(|\mathcal{A}|(r(k))-|\tilde{\mathcal{A}}|(r(k)))_{k \geq 1}$ tends to infinity.
The reader might complain that (as seen in Section 3.4) one entry in the main diagonal of a stabilization e^{\sharp} is 0 , and hence, some matrix t as in Theorem 3.4(1) cannot exist. However, by applying both stabilization and multiplication, metatransitions in which every entry is either ω or ∞ may arise.

For illustration, let us consider Theorem 3.4 for the particular case that \mathcal{A} is unambiguous. Let $e=\left({ }_{R}^{P} M_{R}^{P}\right) \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp}$ be with an idempotent structure. Since P (resp. $R)$ is a P- (resp. R-clone), there are $u, v \in \Sigma^{*}$ such that $P=I \cdot \alpha(\mu(u))$ and $R=\alpha(\mu(v)) \cdot F$. If $|P \cap R|>1$, then we can construct two different accepting paths for $u v$. Hence, $P \cap R=1$ and M is a (1×1)-matrix. By (MT3), the entry of M cannot be ∞. If the entry of M is an integer, then $\operatorname{mind}(M)$ yields the only entry of M, and thus, the entry of the normalization \bar{M} is 0 , i.e., the entry of $M^{\sharp}=\bar{M}^{\sharp}$ is 0 . Consequently, ω 's cannot arise in the closure $\left\langle\operatorname{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp}$, and in particular, (1) in Theorem 3.4 is not satisfied.

Note that $(3) \Rightarrow(2)$ in Theorem 3.4 is obvious. We will prove $(1) \Rightarrow(3)$ in Section 4. We assume some t as in (1) and assume some $\tilde{\mathcal{A}}$ as in (3) which does not satisfy (3a). Then, we show (3b): as t is constructed from metatransitions in $\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)$ by using multiplication and stabilization, r is constructed from letters by using concatenation and \sharp-powers.

We will prove $(2) \Rightarrow(1)$ in Section 5. It leads to an intriguing combination of two Burnside problems over metatransitions which are remotely related to problems considered by Simon and Leung, e.g. [18, 23, 24].

Theorem 3.5. Given a polynomially ambiguous min-plus automaton \mathcal{A}, we can decide whether \mathcal{A} has an unambiguous equivalent, or whether it has a sequential equivalent.

Proof. To decide the existence of an unambiguous equivalent, one process searches for some $t \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp}$ as in Theorem 3.4(1). A simultaneous process enlists all unambiguous min-plus automata, and checks (using an algorithm in [17]) whether one of them is equivalent to \mathcal{A}. By Theorem 3.4, exactly one of the processes terminates. To decide the existence of a sequential equivalent, the algorithm decides at first whether there exists an unambiguous equivalent \mathcal{A}^{\prime}. If so, it applies an algorithm in $[15,21]$ to \mathcal{A}^{\prime}.

It is interesting to have by Theorem 3.5 a decidability result for a class of min-plus automata for which the equivalence problem is undecidable [16]. Many interesting questions arise from our approach and from the introduced proof techniques. The central question is of course whether or how our approach can be generalized to arbitrary min-plus automata. Another question is whether we can achieve complexity results or a practical algorithm.

Further questions are: can we characterize the existence of a sequential equivalent in terms of the stabilization closure $\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp}$? Is the existence of a finitely ambiguous (resp. finitely sequential) equivalent decidable? Is the membership problem of $\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp}$ decidable? Are our techniques helpful to decide the open equivalence problem between a polynomially and a finitely ambiguous min-plus automaton?

4. Necessity

We prove $(1) \Rightarrow(3)$ in Theorem 3.4. We assume some polynomially ambiguous minplus automaton $\mathcal{A}=[Q, \mu, \lambda, \varrho]$ which satisfies (1). We assume an unambiguous automaton $\tilde{\mathcal{A}}=[\tilde{Q}, \tilde{\mu}, \tilde{\lambda}, \tilde{\varrho}]$ which accepts the same language and show (3).

Since \mathcal{A} satisfies Theorem 3.4(1), there exists some $s \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp}$ such that every entry in s is ω or ∞. We can assume that s is of the form $s=\left(\begin{array}{c}I \\ F_{s}\end{array} M_{F}^{I_{s}}\right)$ for some $F_{s}, I_{s} \subseteq Q$ and some M. Since $\alpha(s) \in\langle\mathrm{MT}(\mathbb{B}, \mathcal{A})\rangle_{0}$, we have $I \cap F_{s} \neq \emptyset$ and $I_{s} \cap F \neq \emptyset$.

To explain the idea, let us assume that s is of the form $s=t_{1} e_{2}^{\sharp} t_{3} e_{4}^{\sharp} t_{5}$ for some metatransitions $t_{1}, e_{2}, t_{3}, e_{4}, t_{5} \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}$, i.e., there is no ω in $t_{1}, e_{2}, t_{3}, e_{4}, t_{5}$. Let $u_{1}, \ldots, u_{5} \in \Sigma^{*}$ such that $t_{1}, e_{2}, t_{3}, e_{4}, t_{5}$ are induced by $\mu\left(u_{1}\right), \ldots, \mu\left(u_{5}\right)$ with I and F. We denote by M_{1}, \ldots, M_{5} the matrices inside $t_{1}, e_{2}, t_{3}, e_{4}, t_{5}$.

Let ℓ be some extremely large multiple of $|\tilde{Q}|$!. We show that (3a) or (3b) is satisfied.
At first, we consider the output of \mathcal{A} on words $u_{1} u_{2}^{\ell k} u_{3} u_{4}^{\ell} u_{5}$ for large, growing k. The output of \mathcal{A} on such words for large k is mainly determined by $u_{2}^{\ell k}$. It should be clear that for large growing k, the output of \mathcal{A} grows by $\ell \cdot \operatorname{mind}\left(M_{2}\right)$ per k, i.e., the growth rate is $\ell \cdot \operatorname{mind}\left(M_{2}\right)$ per k.

Similarly, the output of \mathcal{A} on $u_{1} u_{2}^{\ell} u_{3} u_{4}^{\ell k} u_{5}$ for large, growing k has a growth rate of $\ell \cdot \operatorname{mind}\left(M_{4}\right)$ per k.

However, what happens for words $u_{1} u_{2}^{\ell k} u_{3} u_{4}^{\ell k} u_{5}$ for large, growing k. Assume the growth rate of the output of \mathcal{A} on this sequence is $\ell \cdot\left(\operatorname{mind}\left(M_{2}\right)+\operatorname{mind}\left(M_{4}\right)\right)$. Assume some extremely large k and consider some accepting path π for the word $u_{1} u_{2}^{\ell k} u_{3} u_{4}^{\ell k} u_{5}$. Assume that the weight of π yields $|\mathcal{A}|\left(u_{1} u_{2}^{\ell k} u_{3} u_{4}^{\ell k} u_{5}\right)$. We decompose π into π_{1}, \ldots, π_{5} which correspond to $u_{1}, u_{2}^{\ell k}, u_{3}, u_{4}^{\ell k}, u_{5}$, and denote the first and last states of π_{1}, \ldots, π_{5} by i_{0}, \ldots, i_{5}. For example π_{2} starts in i_{1}, ends in i_{2} and reads $u_{2}^{\ell k}$.

To achieve the growth rate of $\ell \cdot\left(\operatorname{mind}\left(M_{2}\right)+\operatorname{mind}\left(M_{4}\right)\right)$ per k, \mathcal{A} has to read almost every u_{2} with a weight of $\operatorname{mind}\left(M_{2}\right)$, and has read almost every u_{4} with a weight of $\operatorname{mind}\left(M_{4}\right)$. Hence, the paths π_{2} and π_{4} have to utilize the least entries on the main diagonal on M_{2} and M_{4}, respectively.

We can factorize π_{2} into ℓk factors such that each factor reads u_{2}. Let us denote by $r_{0}, \ldots, r_{\ell k}$ the first and last states of these factors, in particular, $i_{1}=r_{0}$ and $r_{\ell k}=i_{2}$. Since, π_{2} utilizes a least entry on the main diagonal of $M_{2}, r_{0}, \ldots, r_{\ell k}$ utilize a 0 on the main diagonal of the normalization \bar{M}_{2}, i.e., $r_{0}, \ldots, r_{\ell k}$ satisfy (S2). Hence, $M_{2}^{\sharp}\left[i_{1}, i_{2}\right]=$ $\bar{M}_{2}^{\sharp}\left[i_{1}, i_{2}\right] \in \mathbb{Z}$. By the same argument, we obtain $M_{4}^{\sharp}\left[i_{3}, i_{4}\right] \in \mathbb{Z}$. Consequently, $s\left[i_{0}, i_{5}\right] \leq$ $\left(M_{1}, M_{2}^{\sharp}, M_{3}, M_{4}^{\sharp}, M_{5}\right)\left[i_{0}, \ldots, i_{5}\right] \in \mathbb{Z}$, i.e., $s\left[i_{0}, i_{5}\right] \in \mathbb{Z}$ which contradicts the choice of s.

Consequently, the growth rate of the output of \mathcal{A} on words $u_{1} u_{2}^{\ell k} u_{3} u_{4}^{\ell k} u_{5}$ for large, growing k is strictly larger than $\ell \cdot\left(\operatorname{mind}\left(M_{2}\right)+\operatorname{mind}\left(M_{4}\right)\right)$.

Next, we analyze how $\tilde{\mathcal{A}}$ reads $u_{1} u_{2}^{\ell} u_{3} u_{4}^{\ell} u_{5}$. Let π be the unique accepting path of $u_{1} u_{2}^{\ell} u_{3} u_{4}^{\ell} u_{5}$ in $\tilde{\mathcal{A}}$. As above, we decompose π into π_{1}, \ldots, π_{5} which correspond to $u_{1}, u_{2}^{\ell}, u_{3}, u_{4}^{\ell}, u_{5}$, and denote the first and last states of π_{1}, \ldots, π_{5} by i_{0}, \ldots, i_{5}.

For the structure of π_{2} and π_{4}, Lemma 2.2 is very helpful. Since ℓ is extremely larger than $|\tilde{Q}|, \pi_{2}$ consists mainly of a short cycle π_{2}^{\prime} which is looped many times. Let n_{2} be the number of u_{2} 's which are read in this cycle. Let m_{2} the weight of π_{2}^{\prime} divided by n_{2}. The value m_{2} can be understood as the relative cycle weight of π_{2}.

Now, we consider the output of $\tilde{\mathcal{A}}$ on words $u_{1} u_{2}^{\ell k} u_{3} u_{4}^{\ell} u_{5}$ for large, growing k. Since the factors u_{2} are read in many looped π_{2}^{\prime} cycles, the growth rate of the output of $\tilde{\mathcal{A}}$ is $\ell k m_{2}$ per k.

By applying the same argument on π_{4} we obtain some m_{4}, and the growth rate of the output of $\tilde{\mathcal{A}}$ on words $u_{1} u_{2}^{\ell} u_{3} u_{4}^{\ell k} u_{5}$ for large, growing k is $\ell k m_{4}$ per k.

Since $\tilde{\mathcal{A}}$ is unambiguous, the growth rate of the output of $\tilde{\mathcal{A}}$ on words $u_{1} u_{2}^{\ell k} u_{3} u_{4}^{\ell k} u_{5}$ for large, growing k is $\ell k\left(m_{2}+m_{4}\right)$ per k.

Now, at least one of the following three cases occurs:

- $k m_{2}>\operatorname{mind}\left(M_{2}\right) \quad$ Then, on words $u_{1} u_{2}^{\ell k} u_{3} u_{4}^{\ell} u_{5}$ for growing k, the output of $\tilde{\mathcal{A}}$ grows faster than the output of \mathcal{A}. Hence, we have (3a) by using $u_{1}, u_{2}^{\ell}, u_{3} u_{4}^{\ell} u_{5}$ as u, v, w.
- $k m_{4}>\operatorname{mind}\left(M_{4}\right) \quad$ Like the previous case.
- $k m_{2} \leq \operatorname{mind}\left(M_{2}\right)$ and $k m_{4} \leq \operatorname{mind}\left(M_{4}\right) \quad$ We consider words $u_{1} u_{2}^{\ell k} u_{3} u_{4}^{\ell k} u_{5}$ for growing k. The growth rate of \mathcal{A} on these words is strictly larger than $\ell \cdot\left(\operatorname{mind}\left(M_{2}\right)+\right.$ $\left.\operatorname{mind}\left(M_{4}\right)\right)$ per k, whereas the growth rate of $\tilde{\mathcal{A}}$ is less than $\ell k\left(m_{2}+m_{4}\right)$ per k. Hence, we have (3b) by using $u_{1}\left(u_{2}^{\ell}\right)^{\sharp} u_{3}\left(u_{4}^{\ell}\right)^{\sharp} u_{5}$ as r.
Thus, we have shown (3) in the particular case that s is of the form $t_{1} e_{2}^{\sharp} t_{3} e_{4}^{\sharp} t_{5}$. It is straightforward to generalize this argument for s which are of the form $t_{1} e_{2}^{\sharp} t_{3} \ldots e_{n-1}^{\sharp} t_{n}$ for some n. However, this generalization is not sufficient. The real technical challenge is to prove (3) for some s which is generated by nesting stabilizations, e.g., if s is of the form $t_{1}\left(e_{2}^{\sharp} t_{3} e_{4}^{\sharp}\right)^{\sharp} t_{5}$ or if s is generated by arbitrarily many nested stabilizations.

To deal with these cases, we have to develop the same argumentation as above in a tree-like fashion. As above, we assume by Theorem 3.4(1) some $s \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp}$ which is of the form $s=\left(\begin{array}{c}I \\ F_{s}\end{array} M_{F}^{I_{s}}\right.$) whereas every entry in M belongs to $\{\omega, \infty\}$.

We define the notion of a \sharp-tree. Its nodes are labeled with triples $\left(w, t, t^{\prime}\right)$ whereas $w \in \Sigma^{*}, t \in\langle\mathrm{MT}(\mathbb{Z}, \mathcal{A})\rangle_{0}^{\sharp}$, and $t^{\prime} \in\langle\mathrm{MT}(\mathbb{Z}, \mathcal{A})\rangle_{0}$, satisfying $\alpha(t)=\alpha\left(t^{\prime}\right)$.

Let $k \geq 1$. We define now \sharp-trees of rank k. For every $a \in \Sigma$, every P-clone P and every R -clone R, there is a \sharp-tree which consists of a single node labeled with (a, t, t), whereas $t=\llbracket P, \mu(a), R \rrbracket$.

Let T_{1}, T_{2} be \sharp-trees and assume that their roots are labeled with $\left(w_{1}, t_{1}, t_{1}^{\prime}\right)$ and $\left(w_{2}, t_{2}, t_{2}^{\prime}\right)$, respectively. If t_{1} and t_{2} are concatenable, then we construct a \sharp-tree as follows: its root is labeled with $\left(w_{1} w_{2}, t_{1} t_{2}, t_{1}^{\prime} t_{2}^{\prime}\right)$. Its successors are T_{1} and T_{2}.

Let T_{1} be a \sharp-tree and assume that its root is labeled with $\left(w_{1}, t_{1}, t_{1}^{\prime}\right)$. If t_{1}^{\sharp} is defined, then we construct another \sharp-tree: its root is labeled with $\left(w_{1}^{k}, t_{1}^{\sharp}, t_{1}^{\prime k}\right)$ and has k copies of T_{1} as successors.

For every $t \in\langle\mathrm{MT}(\mathbb{Z}, \mathcal{A})\rangle_{0}^{\sharp}$, there are some $w \in \Sigma^{*}, t^{\prime} \in\langle\mathrm{MT}(\mathbb{Z}, \mathcal{A})\rangle_{0}$, and a \sharp-tree whose root is labeled with $\left(w, t, t^{\prime}\right)$.

Consequently, there are $w \in \Sigma^{*}, s^{\prime} \in\langle\mathrm{MT}(\mathbb{Z}, \mathcal{A})\rangle_{0}$, and a \sharp-tree whose root is labeled with $\left(w, s, s^{\prime}\right)$. We can naturally associate a \sharp-expression r to this \sharp-tree in a bottom-upmanner, and we have $r(k)=w$.

We can then prove various conditions in a bottom-up induction over the nodes of the \sharp tree. The key argumentation is as follows: we assume that w does not admit a factorization into three words which prove (3a). Under this assumption, we can show that $|\mathcal{A}|(w)$ is much larger than $|\tilde{\mathcal{A}}|(w)$, and we can show in particular that r can be used to prove (3b).

5. Sufficiency

We show $(2) \Rightarrow(1)$ in Theorem 3.4 by contraposition. We assume a polynomially ambiguous min-plus automaton $\mathcal{A}=[Q, \mu, \lambda, \varrho]$ which does not satisfy (1), and we construct an equivalent unambiguous automaton. We assume that the entries of λ and ϱ are 0 or ∞.

The construction of an unambiguous equivalent relies on the following proposition:
Proposition 5.1. Let \mathcal{A} be a polynomially ambiguous min-plus automaton, and assume that \mathcal{A} does not satisfy (1) in Theorem 3.4.
There is some $Y \geq 0$ such that the following assertion is true:
For every $t=\left(\begin{array}{cc}P & P_{R}^{\prime} \\ R^{\prime}\end{array}\right) \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}$, there is some $t^{\prime}=\left(\begin{array}{rl}P \\ R\end{array} M^{\prime}{ }_{R^{\prime}}^{\prime}\right) \in\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp}$ satisfying:
(A1): $\alpha(t)=\alpha\left(t^{\prime}\right)$
(A2): For every $p \in P \cap R, q \in P^{\prime} \cap R^{\prime}$, satisfying $M[p, q] \neq \infty$ and

$$
M[p, q] \geq \min (M)+Y, \quad \text { we have } \quad M^{\prime}[p, q]=\omega
$$

The proof of Proposition 5.1 leads us to an intriguing combination of two Burnside problems for metatransitions. The main proof of Proposition 5.1 utilizes an inductive argument via the factorization forest theorem for the homomorphism $\alpha:\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp} \rightarrow$ $\langle\mathrm{MT}(\mathbb{B}, \mathcal{A})\rangle_{0}$. The induction step for metatransitions with an idempotent structure leads us to another Burnside problem itself. To solve this inner Burnside problem, we consider subsemigroups $T_{e}=\left\langle\mathrm{MT}\left(\mathbb{Z}_{\omega}, \mathcal{A}\right)\right\rangle_{0}^{\sharp} \cap \alpha^{-1}(e)$ for idempotents $e \in\langle\mathrm{MT}(\mathbb{B}, \mathcal{A})\rangle_{0}$. This inner Burnside problem is then shown by methods which are remotely related to techniques by Simon and Leung for the limitedness problem of distance automata [18, 23, 24].

To prove Proposition 5.1 by an induction via the factorization forest theorem, we have to add two more technical conditions to get a stronger inductive hypothesis.

One can deduce Y from the proof of Proposition 5.1. It is elementary but superexponential. Knowing Y is not required to show the decidability in Theorem 3.5.

We construct now an unambiguous equivalent \mathcal{A}^{\prime} of \mathcal{A}.
For every R-clone R satisfying $R \cap I \neq \emptyset$, we add an initial state (I, δ, R) to \mathcal{A}^{\prime}, whereas δ is a $(0, \ldots, 0)$ tuple of dimension $I \cap R$.

Next, we construct for every state of \mathcal{A}^{\prime} the outgoing transitions and the follow state.
Let (P, δ, R) be some already constructed state of \mathcal{A}^{\prime}. For every $a \in \Sigma$ and every R-clone R^{\prime} satisfying $R=\alpha(\mu(a)) \cdot R^{\prime}$, we add a transition and a state to \mathcal{A} as follows:
(1) Let $t=\left(\begin{array}{cc}P \\ R\end{array} M_{R^{\prime}}^{P^{\prime}}\right)$ be the metatransition induced by $\mu(a)$ with P and R^{\prime}.
(2) Let $\hat{\delta}=\delta \cdot M$. Hence, $\hat{\delta}$ is a tuple of dimension $\left(P^{\prime} \cap R^{\prime}\right)$.
(3) We normalize $\hat{\delta}$. For every $q \in P^{\prime} \cap R^{\prime}$, we set $\delta^{\prime}[q]=\hat{\delta}[q]-\min (\hat{\delta})$.
(4) We introduce a transition from (P, δ, R) to ($P^{\prime}, \delta^{\prime}, R^{\prime}$).
(5) The label and the weight of this transition are a and $\min (\hat{\delta})$, respectively.

In this way, we can construct the entire min-plus automaton \mathcal{A}^{\prime}. At this point of the construction, the set of states might become infinite.

Some state (P, δ, R) is an accepting state if $R=F$. The accepting weight is 0 .
Consider some word $w=a_{1} \ldots a_{n} \in \Sigma^{*}$ which is accepted by \mathcal{A}^{\prime}. Denote the states of the accepting path for w in \mathcal{A}^{\prime} by $\left(P_{i}, \delta_{i}, R_{i}\right)$ for $i \in\{0, \ldots, n\}$. In particular, $P_{0}=I$ and $R_{n}=F$. For $i \in\{1, \ldots, n\}$, denote by m_{i} the transition weight of the i-th transition of π.

Let $1 \leq i \leq n$. By an induction on i, we can show that for every $q \in P_{i} \cap R_{i}$, the sum $m_{1}+\cdots+m_{i}+\delta_{i}[q]$ is exactly $\left(I \cdot \mu\left(a_{1} \ldots a_{i}\right)\right)[q]$. The sum $m_{1}+\cdots+m_{n}$ is then the minimum of $(I \cdot \mu(w))[q]$ for $q \in F$, i.e., the sum $m_{1}+\cdots+m_{n}$ is $\lambda \mu(w) \varrho=\mathcal{A}(w)$.

Conversely, consider some word $w=a_{1} \ldots a_{n} \in \Sigma^{*}$ which is accepted by \mathcal{A}. We can construct an accepting path for w in \mathcal{A}^{\prime} as follows. Let t_{1}, \ldots, t_{n} be the metatransitions induced by $\mu\left(a_{1}\right), \ldots, \mu\left(a_{n}\right)$ with I and F. Denote $t_{i}=\left(\begin{array}{c}P_{i-1} \\ R_{i-1}\end{array} M_{i} P_{R_{i}}\right)$. The state $\left(P_{0}, \delta, R_{0}\right)$ (whereas δ is the $(0, \ldots, 0)$ tuple of dimension $P_{0} \cap R_{0}$) is the first state of the constructed path. Then, we proceed along the above steps (1) to (5) for each a_{i} and each R_{i} for $i \in$ $\{1, \ldots, n\}$ and obtain an accepting path for w in \mathcal{A}^{\prime}. We can apply the above argumentation to show that the sum of the transition weights is exactly $\lambda \mu(w) \varrho=\mathcal{A}(w)$.

Consequently, $|\mathcal{A}|$ and $\left|\mathcal{A}^{\prime}\right|$ are equivalent, and it is easy to verify that \mathcal{A}^{\prime} is unambiguous. However, a major problem remained: we cannot show that \mathcal{A}^{\prime} has finitely many states. We overcome this problem by changing step (3) in the construction above as follows:
(3') We normalize $\hat{\delta}$. For every $q \in P^{\prime} \cap R^{\prime}$, we set $\delta^{\prime \prime}[q]=\hat{\delta}[q]-\min (\hat{\delta})$. Then, we construct δ^{\prime} by replacing in $\delta^{\prime \prime}$ every non- ∞ entry which is larger than $2 Y$ by ω.
By using (3') instead of (3), the set of states of \mathcal{A}^{\prime} will be finite. We have to show that the construction of \mathcal{A}^{\prime} is still correct, that is that every entry that becomes too large can be replaced by ω.

Let $u_{1}, u_{2} \in \Sigma^{*}$ and assume that \mathcal{A} accepts $u_{1} u_{2}$. Let $I=\{q \in Q \mid \lambda[q] \in \mathbb{Z}\}$ and $F=\{q \in Q \mid \varrho[q] \in \mathbb{Z}\}$. We denote $t_{1}=\llbracket I, \mu\left(u_{1}\right), \alpha\left(\mu\left(u_{2}\right)\right) \cdot F \rrbracket=\left(\begin{array}{cc}I \\ R_{0} & M_{1}\end{array} P_{R_{1}}\right)$ and $t_{2}=\llbracket I \cdot \alpha\left(\mu\left(u_{1}\right)\right), \mu\left(u_{2}\right), F \rrbracket=\left(\begin{array}{c}P_{1} \\ R_{1}\end{array} M_{2} \underset{F}{P_{2}}\right.$). Then, $t_{1} t_{2}=\left(\begin{array}{c}I \\ R_{0}\end{array} M_{1} M_{2} \begin{array}{c}P_{2} \\ F\end{array}\right)$, and moreover, $|\mathcal{A}|\left(u_{1} u_{2}\right)$ is the least entry in $M_{1} M_{2}$, i.e., $|\mathcal{A}|\left(u_{1} u_{2}\right)=\min \left(M_{1} M_{2}\right)$.

Let $p_{0} \in I \cap R_{0}$, let $p_{1} \in P_{1} \cap R_{1}$, and let $p_{2} \in P_{2} \cap F$. Assume $\left(M_{1}, M_{2}\right)\left[p_{0}, p_{1}, p_{2}\right] \in \mathbb{Z}$.
Moreover, assume that $M_{1}\left[p_{0}, p_{1}\right] \geq \min \left(M_{1}\right)+2 Y$, (the Y from Proposition 5.1) but nevertheless $\left(M_{1}, M_{2}\right)\left[p_{0}, p_{1}, p_{2}\right]=\min \left(M_{1} M_{2}\right)$. Intuitively, the path along p_{0}, p_{1}, p_{2} has after reading u_{1} from p_{0} to p_{1} a very large weight (in comparison to the path which has a weight of $\min \left(M_{1}\right)$), but nevertheless, by reading u_{2} from p_{1} to p_{2} the weight of the path becomes smaller and smaller and finally the path has a weight of $\min \left(M_{1} M_{2}\right)$, i.e., it is the path with the least weight.

Let $q_{0} \in I \cap R_{0}$, let $q_{1} \in P_{1} \cap R_{1}$, and let $q_{2} \in P_{2} \cap F$. Assume $\left(M_{1}, M_{2}\right)\left[q_{0}, q_{1}, q_{2}\right] \in \mathbb{Z}$.
We have $\left(M_{1}, M_{2}\right)\left[q_{0}, q_{1}, q_{2}\right] \geq \min \left(M_{1} M_{2}\right)=\left(M_{1}, M_{2}\right)\left[p_{0}, p_{1}, p_{2}\right]$. Hence, we have $M_{1}\left[q_{0}, q_{1}\right] \geq M_{1}\left[p_{0}, p_{1}\right]-Y$ or $M_{2}\left[q_{1}, q_{2}\right] \geq M_{2}\left[p_{1}, p_{2}\right]+Y \geq \min \left(M_{2}\right)+Y$. However, $M_{1}\left[q_{0}, q_{1}\right] \geq M_{1}\left[p_{0}, p_{1}\right]-Y$ implies $M_{1}\left[q_{0}, q_{1}\right] \geq \min \left(M_{1}\right)+Y$ (by the above assumption on $\left.M_{1}\left[p_{0}, p_{1}\right]\right)$. Consequently, we have $M_{1}\left[q_{0}, q_{1}\right] \geq \min \left(M_{1}\right)+Y$ or $M_{2}\left[q_{1}, q_{2}\right] \geq \min \left(M_{2}\right)+Y$.

Now, let t_{1}^{\prime} and t_{2}^{\prime} be the matrices which exist by Proposition 5.1. By (A2), we have $M_{1}^{\prime}\left[q_{0}, q_{1}\right]=\omega$ or $M_{2}^{\prime}\left[q_{1}, q_{2}\right]=\omega$ whereas M_{1}^{\prime} resp. M_{2}^{\prime} are the matrices in t_{1}^{\prime} resp. t_{2}^{\prime}.

Since this argumentation holds for every q_{0}, q_{1}, q_{2} (in particular for p_{0}, p_{1}, p_{2}) every entry of $t_{1}^{\prime} t_{2}^{\prime}$ is ω or ∞, i.e., $t_{1}^{\prime} t_{2}^{\prime}$ shows that (1) in Theorem 3.4 is satisfied, which is a contradiction.

Consequently, the above assumed p_{0}, p_{1}, p_{2} cannot exist.
Let $w \in \Sigma^{*}$, and let π be an accepting path. Assume the weight of π is $|\mathcal{A}|(w)$. By the above observation, π can intermediately not have a much larger (i.e. $2 Y$ larger) weight than another accepting path.

Acknowledgement

The authors thank anonymous referees for their useful remarks.

References

[1] S. Gaubert. On the Burnside problem for semigroups of matrices in the (max, +) algebra. Semigroup Forum, 52:271-292, 1996.
[2] S. Gaubert and J. Mairesse. Modeling and analysis of timed Petri nets using heaps of pieces. IEEE Trans. Aut. Cont., 44(4):683-698, 1998
[3] G. Grahne and A. Thomo. Approximate reasoning in semi-structured databases. In M. Lenzerini et al., ed., KRDB2001 Proceedings, vol. 45 of CEUR Workshop Proceedings, 2001.
[4] K. Hashiguchi. A decision procedure for the order of regular events. Theor. Comp. Sc., 8:69-72, 1979.
[5] K. Hashiguchi. Limitedness theorem on finite automata with distance functions. Journal of Computer and System Sciences, 24:233-244, 1982.
[6] K. Hashiguchi. Algorithms for determining relative star height and star height. Information and Computation, 78:124-169, 1988.
[7] K. Hashiguchi. Improved limitedness theorems on finite automata with distance functions. Theoretical Computer Science, 72(1):27-38, 1990.
[8] K. Hashiguchi, K. Ishiguro, and S. Jimbo. Decidability of the equivalence problem for finitely ambiguous finance automata. International Journal of Algebra and Computation, 12(3):445-461, 2002.
[9] N. Haubold. The similarity and equivalence problem for finitely ambiguous automata over the tropical semiring. Master's thesis, Technische Universität Dresden, Institut für Algebra, 2006.
[10] J. Hromkovič, J. Karhumäki, H. Klauck, G. Schnitger, and S. Seibert. Communication complexity method for measuring nondeterminism in finite automata. Inf. and Comp., 172(2):202-217, 2002.
[11] O. Ibarra and B. Ravikumar. On sparseness, ambiguity and other decision problems for acceptors and transducers. In B. Monien, G. Vidal-Naquet, STACS'86, LNCS 210, p. 171-179. Springer-Verlag, 1986.
[12] D. Kirsten. Distance desert automata and the star height problem. R.A.I.R.O. - Informatique Théorique et Applications, special issue of selected best papers from FoSSaCS 2004, 39(3):455-509, 2005.
[13] D. Kirsten. Distance desert automata and star height substitutions. Habilitationsschrift, Universität Leipzig, Fakultät für Mathematik und Informatik, 2006.
[14] D. Kirsten. A Burnside approach to the termination of Mohri's algorithm for polynomially ambiguous min-plus-automata. R.A.I.R.O. - ITA, special issue on "JM'06", 42:553-581, 2008.
[15] I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. Deciding unambiguity and sequentiality from a finitely ambiguous max-plus automaton. Theoretical Computer Science, 327(3):349-373, 2004.
[16] D. Krob. The equality problem for rational series with multiplicities in the tropical semiring is undecidable. International Journal of Algebra and Computation, 4(3):405-425, 1994.
[17] D. Krob. Some consequences of a Fatou property of the tropical semiring. Journal of Pure and Applied Algebra, 93:231-249, 1994.
[18] H. Leung. The topological approach to the limitedness problem on distance automata. In J. Gunawardena, editor, Idempotency, pages 88-111. Cambridge University Press, 1998.
[19] S. Lombardy and J. Sakarovitch. Sequential? Theoretical Computer Science, 356:224-244, 2006.
[20] Y. Métivier and G. Richomme. New results on the star problem in trace monoids. Information and Computation, 119(2):240-251, 1995.
[21] M. Mohri. Finite-state transducers in language and speech processing. Computational Linguistics, 23:269-311, 1997.
[22] H. Seidl and A. Weber. On the degree of ambiguity of finite automata. Th. C. Sc., 88:325-349, 1991.
[23] I. Simon. Recognizable sets with multiplicities in the tropical semiring. In M. P. Chytil et al., editors, MFCS' 88 Proceedings, volume 324 of LNCS, pages 107-120. Springer-Verlag, Berlin, 1988.
[24] I. Simon. On semigroups of matrices over the tropical semiring. R.A.I.R.O. - Informatique Théorique et Applications, 28:277-294, 1994.

[^0]: ${ }^{1} \mathrm{In}(\mathrm{MT} 3), \alpha(M)$ is replaced by M.

[^1]: ${ }^{2}$ Whereas $\infty-m=\infty$ and $\omega-m=\omega$.

