DECIGO: the Japanese Space Gravitational Wave Antenna

Masaki Ando^{1,*}, Seiji Kawamura², Takashi Nakamura³, Naoki Seto⁴, Kimio Tsubono¹, Kenji Numata⁵, Ryuichi Takahashi⁶, Mitsuru Musha⁷, Ken-ichi Ueda⁷, Ikkoh Funaki⁸, Shigenori Moriwaki⁹, Takeshi Takashima⁸, Shin-ichiro Sakai⁸, Takashi Sato¹⁰, Nobuyuki Kanda¹¹, Shigeo Nagano¹², Mizuhiko Hosokawa¹², Takehiko Ishikawa¹³, Shuichi Sato², Yoichi Aso¹, Mutsuko Y. Morimoto², Kazuhiro Agatsuma¹⁴, Tomomi Akutsu¹⁴, Tomotada Akutsu⁵6, Koh-suke Aoyanagi¹⁵, Koji Arai², Yuta Arase¹⁴, Akito Araya¹⁶, Hideki Asada¹⁷, Takeshi Chiba¹⁸, Toshikazu Ebisuzaki¹⁹, Motohiro Enoki²⁰, Yoshiharu Eriguchi²¹, Feng-Lei Hong³⁰, Masa-Katsu Fujimoto², Mitsuhiro Fukushima²², Toshifumi Futamase²³, Katsuhiko Ganzu³, Tomohiro Harada²⁴, Tatsuaki Hashimoto⁸, Kazuhiro Hayama²⁵, Wataru Hikida²⁶, Yoshiaki Himemoto²⁷, Hisashi Hirabayashi⁸, Takashi Hiramatsu²⁷, Hideyuki Horisawa²⁸, Kiyotomo Ichiki⁶, Takeshi Ikegami³⁰, Kaiki T. Inoue³¹, Kunihito Ioka³, Koji Ishidoshiro¹, Hiroyuki Ito¹², Yousuke Itoh³², Shogo Kamagasako¹⁴, Nobuki Kawashima³¹, Fumiko Kawazoe³³, Hiroyuki Kirihara¹⁴, Naoko Kishimoto⁸, Kenta Kiuchi¹⁵, Werner Klaus¹², Shiho Kobayashi³⁴, Kazunori Kohri³⁵, Hiroyuki Koizumi³⁶, Yasufumi Kojima³⁷, Keiko Kokeyama³³, Wataru Kokuyama¹, Kei Kotake¹⁵, Yoshihide Kozai³⁸, Hideaki Kudoh²⁷, Hiroo Kunimori¹², Hitoshi Kuninaka⁸, Kazuaki Kuroda¹⁴, Kei-ichi Maeda¹⁵, Hideo Matsuhara¹³, Yasushi Mino³⁹, Jun-ichi Miura⁷, Osamu Miyakawa⁴⁰, Shinji Miyoki¹⁴, Tomoko Morioka³³, Toshiyuki Morisawa²⁶, Shinji Mukohyama²⁷, Isao Naito⁴¹, Noriyasu Nakagawa¹⁴, Kouji Nakamura⁶, Hiroyuki Nakano¹, Kenichi Nakao¹¹, Shinichi Nakasuka³⁶, Yoshinori Nakayama⁴², Erina Nishida³³, Kazutaka Nishiyama⁸, Atsushi Nishizawa⁴³, Yoshito Niwa⁴³, Masatake Ohashi¹⁴, Naoko Ohishi⁴⁴, Masashi Ohkawa⁴⁵, Akira Okutomi¹⁴, Kouji Onozato¹, Kenichi Oohara⁴⁵, Norichika Sago⁴⁶, Motoyuki Saijo⁴⁷, Masaaki Sakagami⁴³, Shihori Sakata³³, Misao Sasaki²⁶, Masaru Shibata²¹, Hisaaki Shinkai⁴⁸, Kentaro Somiya⁴⁹, Hajime Sotani⁵⁰, Naoshi Sugiyama⁶, Hideyuki Tagoshi⁴⁶, Tadayuki Takahashi⁸, Ryutaro Takahashi², Kakeru Takahashi¹, Hirotaka Takahashi⁴⁹, Takamori Akiteru¹⁶, Tadashi Takano⁸, Takahiro Tanaka³, Keisuke Taniguchi⁵¹, Atsushi Taruya²⁷, Hiroyuki Tashiro³, Mitsuru Tokuda¹¹, Masao Tokunari¹⁴, Morio Toyoshima¹², Shinji Tsujikawa³⁸, Yoshiki Tsunesada⁵², Masayoshi Utashima⁸, Hiroshi Yamakawa⁵³, Kazuhiro Yamamoto¹⁴, Toshitaka Yamazaki², Jun'ichi Yokoyama²⁹, Chul-Moon Yoo¹¹, Shijun Yoshida⁵⁴, Taizoh Yoshino⁵⁵ ¹Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan, * E-mail: and o@granite.phys.s.u-tokyo.ac.jp ² TAMA Project, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan, ³Department of Physics, Kyoto University, Kyoto 606-8502, Japan, ⁴Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, U.S.A..⁵NASA Goddard Space Flight Center, Code 663, 8800 Greenbelt Rd., Greenbelt, MD20771, U.S.A.,⁶Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan, ⁷Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan, ⁸Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 229-8510, Japan, ⁹Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan, ¹⁰Department of Electrical and Electronic Engineering, Faculty of Engineering, Niigata 1

 $\mathbf{2}$

University, Niigata, Niigata 950-2181, Japan,

¹¹Department of Physics, Osaka City University, Osaka, Osaka 558-8585, Japan,

¹²National Institute of Information and Communications Technology (NICT), Koganei, Tokyo 184-8795, Japan,

¹³Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, 305-8505, Japan,

¹⁴Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582, Japan,

¹⁵Department of Physics, Science and Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan,

¹⁶Earthquake Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan,

¹⁷ Department of Earth and Environmental Sciences, Hirosaki University, Hirosaki, Aomori 036-8560, Japan,

¹⁸Department of Physics, College of Humanities and Sciences, Nihon University, Setagaya, Tokyo 156-8550, Japan,

¹⁹RIKEN, 2-1 Hirosawa Wako 351-0198, Japan,

²⁰Astronomical Data Center, National Astronomical Observatory of Japan 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan,

²¹Department of Earth Science and Astronomy, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan,

²²Advanced Technology Center, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan,

²³Astronomical Institute, Tohoku University, Sendai 980-8578, Japan,

²⁴Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501, Japan,

²⁵80 Fort Brown, Brownsville 78520, Texas, U.S.A.,

²⁶ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Kyoto 606-8502, Japan,

²⁷ Theoretical Astrophysics Group, Department of Physics, The University of Tokyo, Bunkyo-ku, 113-0033, Japan.

²⁸Department of Aeronautics and Astronautics, School of Engineering, Tokai University,

²⁹ Research Center for the Early Universe, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan,

³⁰National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaragi 305-8563, Japan.

³¹Kinki University School of Science and Engineering, Higashi-Osaka, Osaka 577-8502, Japan,

³² Physics Department, University of Wisconsin - Milwaukee, P.O. Box 413, 2200 E. Kenwood Blvd., Milwaukee, WI 53201-0413, U.S.A.,

³³Ochanomizu University Graduate School of Humanities and Sciences, Bunkyo, Tokyo, 112-8610 Japan.

³⁴Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead L41 1LD, UK,

³⁵Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, U.S.A.,

³⁶Department of Aeronautics and Astronautics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan,

³⁷ Hiroshima University, Graduate School of Science, Higashi-hiroshima, Hiroshima 739-8526, Japan,

³⁸ Gunma Astronomical Observatory, Agatsuma-gun, Gunma 377-0702, Japan,

³⁹ Theor. Astrophysics, California Institute of Technology, Pasadena, CA 91125, U.S.A.,

⁴⁰LIGO Laboratory, California Institute of Technology, M/C 18-34, Pasadena, CA 91125,

U.S.A.,

⁴¹Numakage, Saitama-shi, Saitama 336-0027 Japan,

⁴²Department of Aerospace Engineering, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka 239-8686, Japan,

⁴³ Faculty of Intergrated Human Studies, Kyoto University, Kyoto 606-8501, Japan,

⁴⁴MIRA Project, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan,

⁴⁵Department of Biocybernetics, Faculty of Engineering, Niigata University, Niigata, Niigata

3

950-2181, Japan,

⁴⁶Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, ⁴⁷ Highfield, Southampton SO17 1BJ, United Kingdom,

⁴⁸Department of Information Science, Osaka Institute of Technology, Kitayama 1-79-1,

Hirakata, Osaka 573-0196, Japan,

⁴⁹ Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1,

D-14476 Golm bei Potsdam, Germany,

⁵⁰Department of Physics, Section Astrophysics, Astronomy and Mechanics, Aristotle University of Thessaloniki, Thessaloniki 54124, GREECE,

⁵¹Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Loomis Laboratory of Physics, Urbana, IL 61801, U.S.A.,

⁵²Graduate School of Science and Engineering / Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan,

⁵³Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011. Japan.

⁵⁴Pure and Applied Physics, Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan,

⁵⁵Nakamura-minami, Nerima, Tokyo 176-0025, Japan,

⁵⁶Department of Astronomy, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

DECIGO (DECI-hertz interferometer Gravitational wave Observatory) is the future Japanese space gravitational wave antenna with observation band around 0.1 Hz. It aims at detecting gravitational waves from various kinds of sources, with sufficient sensitivity to establish the gravitational wave astronomy. In the pre-conceptual design, DECIGO is formed by three drag-free spacecraft, 1000 km apart from one another. The relative displacements between proof masses housed in these spacecraft are measured by Fabry-Perot interferometers. We plan to launch DECIGO in 2024 after research and development phase, including two milestone missions (DECIGO pathfinder and Pre-DECIGO) for verification of required technologies.

Keywords: DECIGO, Gravitational waves, Astronomy, Space Mission

1. DECIGO

DECIGO (DECI-hertz interferometer Gravitational wave Observatory) is the future Japanese space gravitational wave (GW) antenna,¹ with observation frequency band of around 0.1 Hz (Fig. 1). This frequency band is the gap region between LISA (Laser Interferometer Space Antenna)² and terrestrial detectors such as Advanced $LIGO^3$ and LCGT (Large-scale Cryogenic Gravitational-wave Telescope).⁴ In addition, this band opens the possibility to observe GWs from cosmological distance, because it is free from the confusion noises, irresolvable GW signals, from too many white dwarf binaries in our Galaxy.

Main targets of DECIGO are GWs from binary inspirals of compact binaries, and from the early universe. DECIGO will have sufficient sensitivity to observe GWs from distant (redshift of $z \sim 1$) neutron-star binaries which are a few months to 5 years before merger. By resolving GW signals emitted from many (about 3×10^5) binaries in this range, we will obtain information of mass distribution of neutronstars, and thus, on the theory of the evolution of massive stars and on the equation of state of high-density matters. Moreover, observing distant binaries, which play

Fig. 1. Pre-conceptual design of DECIGO (left) and its design sensitivity (right).

as precise clocks, it will be possible to measure the acceleration of the expansion of the universe from their redshift change.¹ As for black-hole binaries, DECIGO will observe GWs from coalescences of intermediate-mass $(10^3 M_{\odot})$ black hole binaries, which could reveal the mechanism of the formation of super-massive black holes in the center of galaxies. The extremely good sensitivity of DECIGO would enable us to detect GWs from the very early universe, which could provide important information to understand the beginning of the universe.

2. Pre-conceptual design of DECIGO

In the pre-conceptual design, DECIGO is formed by three drag-free spacecraft, 1000 km apart from one another. Relative displacements of the proof masses (mirrors) inside the spacecraft are measured by Fabry-Perot interferometers (See Fig. 1). We adopted the Fabry-Perot configuration because it provides a better best sensitivity at 0.1 Hz band than an optical transponder configuration which is adopted by LISA. Although the Fabry-Perot configuration with shorter arm length has the larger acceleration noises by laser radiation-pressure noise and practical force fluctuations than transponder configuration with long arm length does, these noises would be still slightly lower than the confusion noise by Galactic binaries.

The distance between spacecraft (Fabry-Perot cavity arm length) was chosen to be 1000 km. This arm length was chosen so as to be short enough to avoid refraction losses of laser power, and to form Fabry-Perot cavities, and yet so as to be long enough to ensure the high sensitivity for GW signals. The mirrors forming the cavities, which works as proof masses in spacecraft, have a diameter of 1 m, with moderate reflectivity to realize the cavity finesse of 10. The mass of mirror (about 100 kg) was simply chosen to be the largest we could fabricate and handle. The laser source of DECIGO will have an effective power of 10 W with a wavelength of 532 nm. The orbit and constellation of DECIGO is to be determined, considering the gravity disturbances by the sun and planets, durability of the thruster fuels, solar power supply, and the required angle resolution for the GW source, and so on.

3. Milestone missions for DECIGO

Long and intensive development phase will be required in order to realize DECIGO. We plan to launch DECIGO in 2024 after design (a pre-conceptual design, a conceptual design, a preliminary design, and finally a final design) and prototype tests with the help of research and development with table top experiments. We also have two milestone missions, DECIGO pathfinder (DPF) and Pre-DECIGO, before the launch of DECIGO. DPF will be one small satellite consists of two proof mass mirrors, which form a short Fabry-Perot cavity. The cavity length is measured by a stabilized laser source, and the mirrors are kept in the satellite with a drag-free control. The target of DPF will the technical demonstrations: a drag free control, laser stabilization in space, precise measurement with Fabry-Perot cavity, and mirror clump system used at the launch of the satellite. In addition, since DPF will have a modest sensitivity for GW events, we expect some scientific results with continuous observation at the DECIGO frequency band. The objectives and a conceptual design of Pre-DECIGO will be determined during the research and development phase of DECIGO.

4. Conclusions

We have started a serious investigation to realize DECIGO by determining the preconceptual design. Although hard efforts will be required before its launch, DECIGO will provide fruitful scientific results by opening a new astronomy with gravitational waves. 6

References

- N. Seto, S. Kawamura, and T. Nakamura, Phys. Rev. Lett, 87 (2001) 221103, S. Kawamura et al., Class. Quantum Grav. 23 (2006) S125.
- 2. LISA: System and Technology Study Report, ESA document ESA-SCI (2000).
- 3. "LIGO II Conceptual Project Book", LIGO M990288-A-M (1999).
- 4. K. Kuroda, et al., Class. Quantum Grav. 19 (2002) 1237.