
 Open access Proceedings Article DOI:10.1109/ICED.2008.4786744

Decimal multiplication using compact BCD multiplier — Source link

Rekha K. James, T. K. Shahana, K.P. Jacob, Sreela Sasi

Institutions: Cochin University of Science and Technology, Gannon University

Published on: 01 Dec 2008 - International Conference on Electronic Design

Topics: Binary Integer Decimal, Decimal floating point, Multiplication algorithm, decimal128 floating-point format and
decimal32 floating-point format

Related papers:

 Binary-coded decimal digit multipliers

 A high performance binary TO BCD converter for decimal multiplication

 Decimal multiplication with efficient partial product generation

 Improving the Speed of Parallel Decimal Multiplication

 A New Family of High.Performance Parallel Decimal Multipliers

Share this paper:

View more about this paper here: https://typeset.io/papers/decimal-multiplication-using-compact-bcd-multiplier-
59r4oymch1

https://typeset.io/
https://www.doi.org/10.1109/ICED.2008.4786744
https://typeset.io/papers/decimal-multiplication-using-compact-bcd-multiplier-59r4oymch1
https://typeset.io/authors/rekha-k-james-bgg0ml6fne
https://typeset.io/authors/t-k-shahana-4mszh41tqu
https://typeset.io/authors/k-p-jacob-6hv40b37vs
https://typeset.io/authors/sreela-sasi-3nnowi28ts
https://typeset.io/institutions/cochin-university-of-science-and-technology-2jlbm8bu
https://typeset.io/institutions/gannon-university-2op1bbj5
https://typeset.io/conferences/international-conference-on-electronic-design-1v25bj26
https://typeset.io/topics/binary-integer-decimal-mgfu3m7r
https://typeset.io/topics/decimal-floating-point-34i3n6wk
https://typeset.io/topics/multiplication-algorithm-23mgpyla
https://typeset.io/topics/decimal128-floating-point-format-1j2mr6ke
https://typeset.io/topics/decimal32-floating-point-format-2cas6x51
https://typeset.io/papers/binary-coded-decimal-digit-multipliers-3y33bub0cp
https://typeset.io/papers/a-high-performance-binary-to-bcd-converter-for-decimal-2ptijynwvj
https://typeset.io/papers/decimal-multiplication-with-efficient-partial-product-22bf9x510e
https://typeset.io/papers/improving-the-speed-of-parallel-decimal-multiplication-y31mos8eyo
https://typeset.io/papers/a-new-family-of-high-performance-parallel-decimal-w9ulvm8r1h
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/decimal-multiplication-using-compact-bcd-multiplier-59r4oymch1
https://twitter.com/intent/tweet?text=Decimal%20multiplication%20using%20compact%20BCD%20multiplier&url=https://typeset.io/papers/decimal-multiplication-using-compact-bcd-multiplier-59r4oymch1
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/decimal-multiplication-using-compact-bcd-multiplier-59r4oymch1
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/decimal-multiplication-using-compact-bcd-multiplier-59r4oymch1
https://typeset.io/papers/decimal-multiplication-using-compact-bcd-multiplier-59r4oymch1

2008 International Conference on Electronic Design December 1-3, 2008, Penang, Malaysia

Decimal Multiplication using compact BCD Multiplier

REKHA K. JAMES, SHAHANA T. K, K. POULOSE JACOB,

Cochin University ofScience and Technology

Kochi, Kerala, India

{rekhajames, shahanatk, kpj}@cusat.ac.in

SREELASASI

Gannon University

Erie, PA, USA

sasiOO1@gannon.edu

Abstract

Decimal multiplication is an integral part offinancial,

commercial, and internet-based computations. The basic

building block of a decimal multiplier is a single digit

multiplier. It accepts two Binary Coded Decimal (BCD)

inputs and gives a product in the range [0, 81] represented

by two BCD digits. A novel design for single digit decimal

multiplication that reduces the critical path delay and area

is proposed in this research. Out of the possible 256

combinations for the 8-bit input, only hundred

combinations are valid BCD inputs. In the hundred valid

combinations only four combinations require 4 x 4

multiplication, 64 combinations need 3 x 3 multiplication,

and the remaining 32 combinations use either 3 x 4 or 4 x

3 multiplication. The proposed design makes use of this

property. This design leads to more regular VLSI

implementation, and does not require special registers for

storing easy multiples. This is a fully parallel multiplier

utilizing only combinational logic, and is extended to a

Hex/Decimal multiplier that gives either a decimal output

or a binary output. The accumulation ofpartial products

generated using single digit multipliers is done by an array

of multi-operand BCD adders for an (n-digit x n-digit)

multiplication.

1: INTRODUCTION

Nowadays, decimal arithmetic is receiving significant

attention in the financial, commercial, and internet-based

applications. These applications often store data in decimal

format. Currently, general purpose computers do decimal

computations using binary arithmetic. But, a number of

decimal numbers such as 0.2 cannot be represented

precisely in binary. In this world of precision, such errors

generated by conversion between decimal and binary

formats are no more tolerable. Recently, support for

decimal arithmetic has received increased attention due to

the growing importance in financial analysis, banking, tax

calculation, currency conversion, insurance, telephone

billing and accounting which cannot tolerate such errors.

978-1-4244-2315-6/08/$25.00 ©2008 IEEE.

This can be overcome by using a decimal arithmetic and

logic unit (ALU). Decimal arithmetic operations are

typically more complex, slower and occupy more area

leading to more power and less speed when implemented in

hardware. Hence, the major consideration while

implementing decimal arithmetic is to enhance its speed and

reduce area as much as possible. Due to the growing

importance of decimal arithmetic, standard specifications

are recently added to the draft revision of the IEEE 754

Standard for Floating-Point Arithmetic.

Decimal multipliers are typically implemented using an

iterative approach because of their complexity. Usually, the

entire multiplicand is multiplied by one multiplier digit to

generate a partial product in each cycle. The partial product

is added to an intermediate product register that holds the

previously accumulated partial products. In an iterative

decimal multiplier presented in [1], decimal partial products

are generated by creating two partial products for each

multiplier digit. Multiplying two n-digit Binary Coded

Decimal (BCD) numbers requires n iterations, where all

iterations consist of two binary carry-save additions and

three decimal corrections. After n iterations, the carry and

sum are added using a decimal carry-propagate adder to
produce the final product. The multiplier presented in [2]

generates the partial products by the retrieval of product of

BCD digits from look-up tables. Several existing designs

for decimal multiplication generate and store multiples of

the multiplicand before partial product generation, and then

use the multiplier digits to select the appropriate multiple as

the partial product [3, 4]. The multiplier presented in [4]

makes use of a secondary set of multiples generated using

combinational logic. Iterative additions are performed in

two pipeline stages, which allows for a higher frequency of

operation. The latency of this multiplier is (n + 4) cycles

and a new multiplication can begin every (n + 1) cycle. The

multiplier in [5] stores intermediate product digits in a less

restrictive, redundant format called the overloaded decimal

representation that reduces the delay of the iterative portion

of the multiplier. These approaches are based on either slow

accumulation of easy multiples or costly retrieval ofproduct

of BCD digits from look-up tables. An alternative approach

is to generate the partial product as needed. Generating the

A. Binary Multiplier

either 8(10002) or 9(1001 2). This restricts the binary

product bits to P(6-0).

0 0 Xo X

Y2 YI Yo

Yo 0 0 xoYo

YI 0 0 XOYI

Y2 0 0 XoY2

The binary multiplier consists of a 3 x 3 multiplier, a 4 x

3 multiplier, a 3 x 4 multiplier, and a 4 x 4 multiplier.

Figures 1, 2, 3 and 4 show the 3 x 3, 4 x 3, 3 x 4 and 4 x 4

multiplication for BCD inputs respectively. In 4 x 3

multiplication for BCD inputs, one of the inputs is either

8(10002) or 9(10012). So, the 4 x 3 multiplier or a 3 x 4

multiplier gets simplified to three 2-input AND gates. In 4

x 4 multiplication for BCD inputs, both inputs are either

8(10002) or 9(1001 2). So the 4 x 4 multiplier gets simplified

to a half adder (a 2-input AND gate and a 2-input XOR

gate) as seen in Figure 4.

x

Po

xoYo

Xo

Yo

PI

XlYO

XOYI

Xl

YI

Figure. 1: 3 x 3 Multiplication

Ps

partial products as needed is an ideal approach for three

reasons as enumerated in [6]. The use of decimal digit-by­

digit multipliers for partial product generation leads to less

number of cycles, less wiring and do not require registers to

store multiples of the multiplicand. The algorithm presented

in [6] reduces the complexity of partial product generation

by employing a recoding scheme to restrict the magnitude

range of the operand digits. Further, by restricting the range

of each digit in the partial product, the complexity of partial

product accumulation is also significantly reduced. An

integral building block of a decimal digit by digit multiplier

is the single digit multiplier. The single digit multiplier in

[7] uses a standard 4 x 4 unsigned binary multiplier that

generates an 8-bit binary output which needs to be corrected

to two BCD digits.

This paper presents a novel design for single digit

decimal multiplication to reduce the critical path delay and

area, which allows for a fast multiplier design. The

accumulation of partial products generated using single

digit multipliers is done by an array of multi-operand BCD

adders for an (n-digit x n-digit) multiplication. This is a

fully parallel multiplier utilizing only combinational logic,

and can be extended for floating point multiplication of

decimal digits.

The organization of the paper is as follows: Initially, a

new approach for single digit multiplication is discussed.

The design is then extended to a HexlDecimal multiplier

that gives either a decimal output or a binary output

depending on the requirement. A decimal fixed point

multiplier is then proposed using single digit decimal

multipliers. Finally, the paper concludes by tabulating a

comparison of area and delay analysis of the proposed

design with the multiplier in [7] using logic synthesis tool

Leonardo Spectrum from Mentor Graphics Corporation

using ASIC Library.

2: BCD DIGIT MULTIPLICATION YI Yo XOY2 XOYI xoYo

Figure. 2: 4 x 3 Multiplication of BCD inputs

Figure.3: 3 x 4 Multiplication of BCD inputs

The 3 x 3, 3 x 4 and 4 x 3 multipliers give a 6-bit binary

product, while a 4 x 4 multiplier produces a 7-bit binary

result. The binary to BCD converter, following the binary

multiplier, will be a 7-input converter. The design can be

A key component of a fixed-point multiplier is a single

digit multiplier that multiplies an n-digit multiplicand, A, by

an n-digit multiplier, B producing a 2n-digit product, P. The

single digit multiplier accepts two BCD inputs (A, B) which

can take a value [0-9]. It realizes a function F(A, B), giving

a product in the range [0, 81] represented by two BCD

digits. There are one hundred possible combinations of

inputs for multiplication, out of which only 4 combinations

require 4 x 4 multiplication, 64 combinations need 3 x 3

multiplication, and the remaining 32 combinations use

either 3 x 4 or 4 x 3 multiplication. The proposed design

makes use of this property. The single digit multiplier

consists of two parts: a binary multiplier that gives a binary

product P(7-0), and a binary to BCD converter. Since the

multiplier accepts only BCD inputs, the 4-bit inputs can be

Xo

Xo

Xl
o

XlYO

XIYO

Xo

Yo

xoYo

XoYo

x

Figure. 4: 4 x 4 Multiplication of BCD inputs

o xoyo xlfj Yo 0 0 xoyo

further simplified if conversion needs to be done only for 6­

bit products. The 6-bit converter converts the binary output

of the 3 x 3 multiplier, 4 x 3 multiplier or 3 x 4 multiplier

outputs to its corresponding BCD. Instead of using a 7-bit

binary to BCD converter, the 4 x 4 multiplier is designed to

produce an 8-bit BCD output as shown in Figure 5. The 4 x

4 multiplier and the binary to BCD conversion circuit of its

product now gets reduced to a 2-input AND, NAND, XOR

and NOR gates.

1 0 0 xo x

1 0 0 Yo

addressed in the literature [8-10], a special, simpler and

faster, binary-to-BCD converter depicted in [7] for a 6-bit

input is used in this proposed design. The first row in

Figure 6 shows the BCD weights. The weights of P3, P2, PI

and Po are the same as the corresponding weights in the

original binary number P(5-0). But, weights 16 and 32 of P4

and P5 have been decomposed to (10, 4, 2) and (20, 10, 2)

respectively. The three overloaded decimal digits in the

right four columns are added, by an overloaded decimal

adder to get the overloaded sum (D3D2DIDo) and a carry.

The carry is added to the two BCD digits ("0 0 P5 P4" and

"0 0 0 P5") in the left four columns leading to (D7D6D5D4).

Finally, the overloaded binary result is corrected to the

valid BCD form [5]. If the product was a 7-bit number then

product term will have a P6 bit with weight 64 which is to

be decomposed into (40, 20, 4). This increases the depth of

BCD addition required by one more level in lower digit

level and in higher digit level. So by making use of a 6-bit

converter the depth of addition is reduced.

The block diagram of the proposed single digit BCD

multiplier is shown in Figure 7.

xo x

Yo

o
o

o
o

Yo 0 0 xoyo

xooo

Figure. 5: 4 x 4 Multiplication of BCD inputs

generating 8-bit BCD output

80 40 20 10 8 4 2 1

0 0 P5 P4 P3 P2 PI Po
0 0 0 P5 0 P4 P4 0

0 0 0 0 0 0 P5 0

B. 6-bit Binary to BCD Converter

Binary product can be converted to an equivalent BCD

by a six-input, eight-output combinational logic. Although

the general binary-to-BCD conversion is extensively

Figure. 6: The principle of 6-bit binary to overloaded

BCD conversion

6-bit

2:1 vector Mux

2:1 vector Mux

8-bit

8-bit

2:1 vector Mux

BCD Product 8-bit

Figure. 7: Single digit BCD multiplier

• • X2YO XlYO XoYo

•

X2YI XIYI XOYI.. .. XOY2

array works in parallel with the 3 x 3 multiplier and the

adder works in parallel with the rest of the BCD multiplier

circuit. Hence no additional delay is added up due to the

additional hardware. Finally a 2:1 vector multiplexer selects

one of the products (HexlDecimal) depending on a control

input.

Xo x

Yo

Po

Xl

YI

PI

Figure. 8: 4 x 4 Multiplication

The first 6-bit 2: 1 multiplexer selects the 3 x 4 or 4 x 3

multiplier output depending on X3 bit. Second 6-bit 2: 1

multiplexer does the selection of 3 x 3 multiplier output or

the output of the first multiplexer depending on the status of

X3 and Y3 bits. If X3 and Y3 are different then the output of

the first multiplexer is passed to the BCD converter, else the

output of 3 x 3 multiplier is passed. After the 6-bit binary to

BCD conversion the third multiplexer (8-bit 2: 1 vector

mux) selects the BCD converted output or the output of the

4 x 4 multiplier output (which gives an 8-bit BCD result)

depending on X3 and Y3 bits. If both are '1' then the 4 x 4

multiplier output is selected, else the BCD converter output

is passed as the final product.

A comparison of the proposed design with the existing

design in [7] in terms of area and critical path delay is done

with the logic synthesis tool Leonardo Spectrum from

Mentor Graphics Corporation using ASIC Library 0.18

micron, 1.8 V CMOS technology, and is tabulated in Table

1. The table shows that the proposed design has reduced

area and delay compared to the existing one in [7].

Table 1. Comparison of area and delay of single digit
BCD multiplier implementations

Type of Area % Delay(ns) %

Multiplier (Jlm
2
) reduction reduction

Proposed 495 7.81

multiplier

Multiplier 532 7%' 9.26 16%

in [7]

3: HEX / DECIMAL MULTIPLIER

Figure. 9: Adder inputs for the 4 x 4 product

6-bit

The single digit decimal multiplier design is extended to a

HexlDecimal multiplier that gives either a decimal output or

a binary output depending on the requirement. Digital

Signal Processing (DSP) applications require binary

multipliers while financial and commercial applications
require decimal multipliers. A Hex multiplier accepts two

4-bit binary inputs and gives an 8-bit product. The single

digit decimal multiplier has a 3 x 3 multiplier block. This

can be extended to realize a 4 x 4 multiplier with some

extra hardware. The terms marked in green in Figure 8

indicates the additional AND products that are required for

a 4 x 4 multiplication compared to a 3 x 3 multiplication.

Hence to realize a 4 x 4 multiplication only those terms

which are marked in green need be added to the result

product of a 3 x 3 multiplication as shown in Figure 9. The

design for the single digit BCD multiplier is modified as

shown in Figure 10 to make it a HexlDecimal multiplier.

The additional hardware required is seven AND gates, and

an adder that adds three 4-bit numbers. The adder can be

realized by five full adders and one half adder. The AND

Hex Product

Rest of BCD

Multiplier

2: 1 vector Mux

Hex/BCD Product 8-bit

Figure. 10: Hex/Decimal multiplier

A comparison of the proposed HexlDecimal multiplier

design with one designed using the multiplier in [7] in terms

of area and critical path delay is done with the logic

synthesis tool Leonardo Spectrum from Mentor Graphics

Corporation using ASIC Library 0.18 micron, 1.8 V CMOS

technology. The comparison shows that the proposed

design has a reduction in delay of 16.52% with an extra

hardware of 17.24% compared to the HexlDecimal

multiplier designed using the multiplier in [7].

4: DECIMAL FIXED POINT MULTIPLICATION

The fixed point multiplier unit takes two n-digit
2 h .operands, calculates n partial products and returns t elr

sum as a 2n-digit integer. There are two main components

in the fixed-point multiplier design: generation of partial

products and reduction of partial products. In the first stage

of the process, generation of partial products is done using

n
2

single digit multipliers. After the generation of partial

products they are reduced using multi-operand decimal

adders to generate a 2n-digit product. Many techniques

have been developed to speed up the process of decimal

addition. Direct decimal addition is one of the efficient

techniques for two-operand decimal addition [11]. ErIe and

Schulte proposed a variant of direct decimal addition to

produce intermediate results in a decimal carry-save format

that can be used in an iterative decimal multiplier [12]. In

another approach, proposed by Ohtsuki et aI., a correction

value of six is added to each digit of the first partial product

using a binary carry-save adder [13]. Shirazi et aI. proposed

a technique for constant time decimal addition, called

Redundant Binary Coded Decimal (RBCD) [14, 15].

Kenney and Schulte introduced three algorithms for

performing fast decimal addition on multiple BCD

operands: non-speculative tree, double correction

speculation array and single correction speculation array

[16]. The non-speculative tree algorithm that gives the

minimum delay with same area of the three algorithms is the

best suited for multi-operand decimal addition. In [17] a

new scheme is proposed to obtain the sum of each decimal

column via a network of carry-free adders and converting

the sum into decimal format via a fast binary to decimal

converter.

The block diagram of a fully parallel fixed point decimal

multiplier is shown in Figure 11. This is a fully parallel
multiplier that makes use of only combinational logic. The

block is realized for a (7-digit x 7-digit) fixed point

multiplication. This example is considered since it is an

integral component of a 32-bit decimal floating point

multiplication that has 7 significand digits. A (7-digit x 7­

digit) multiplication results in 7 x 7 (49) partial products,

each having 2 digits given by PijL and PijH. All partial

product digits are generated using the single digit BCD

multipliers. The first block is an array of single digit BCD

multipliers that generates the 8-bit partial products PijL and

PijH. The partial products are accumulated using an array of

multi-operand BCD adders.

The multi-operand adder block for a (7-digit x 7-digit)

fixed point multiplier is shown in Figure 12. The adder

block consists of two 3-operand, 5-operand, 7-operand, 9­

operand, II-operand, 13-operand decimal adders. This is

followed by High speed decimal adder to generate the final

products (FPi).

Fast Decimal adder

Final Product (2n digit)

Figure. 11: Parallel Fixed Point Decimal Multiplier

3 5 9 11 13 13 11 9 7 5 37
op. Ope op. Ope op. Ope Ope Ope Ope Ope OpeOpe

ad add add Pooadd add add add add add add add add
er er er er erer er er er er er er

P66

FP. FPo

Figure. 12: Adder array for accumulating partial products

5: SYNTHESIS RESULTS

The proposed parallel decimal fixed point multiplier was

coded for a (7-digit x 7-digit) multiplier in VHDL, and

synthesized to evaluate the area and delay of the design.

Synthesis was done using Leonardo Spectrum from Mentor

Graphics Corporation with ASIC Library of 0.18 micron,

1.8 V CMOS technology. An area and delay breakdown for

an approximate contribution of major components of the

design shown in Figure 11 is given in Table 2.

Table 2. Area and Delay for different stages of
Decimal Fixed Pont Multiplier (7-digit x 7-digit)

Area Delay

Component Jlm
2

% ns %

Single digit

multiplier array 24255 79.33% 7.81 22.33%

BCD adder array 5358 17.5% 6.70 19.16%

Decimal adder 962 3.14% 20.46 58.5%

Fixed point

Multiplier 30575 100% 34.97 100%

The proposed design differs from the iterative approach

using easy multiples for partial product generation for

hardware realization of BCD multipliers. The design in [7]

uses a similar approach and so this is also synthesized in the

same environment as the proposed multiplier. The proposed

design of a single digit multiplier array block gives a

reduction of 7% in area and 16% in delay compared to the

multiplier in [7].

6: CONCLUSION

This paper proposed a novel single digit BCD multiplier

cell that can be used in multi-digit BCD multiplier circuits.

It is demonstrated that this design gains a 7% savings in the

area and 16% savings in delay compared to the existing

design of [7]. This design leads to more regular VLSI

implementation, and does not require special registers for

storing easy multiples. The design was validated using (7­

digit x 7-digit) fixed point decimal multiplication that is

required for a 32-bit floating point decimal multiplication.

The synthesized design has a latency of 34.97 ns and can be

pipelined to increase throughput. The design for a single

digit decimal multiplier is extended to a HexlDecimal single

digit multiplier that gives either a decimal output or a binary

output depending on the requirement. Digital Signal

Processing (DSP) applications require binary multipliers

while financial and commercial applications require

decimal multipliers. The comparison shows that the

proposed design of HexlDecimal multiplier has a reduction

in delay of 16.52% with an extra hardware of 17.24%

compared to the HexlDecimal multiplier designed using the

multiplier in [7].

7: REFERENCES

[1] T. Ohtsuki, et aI., "Apparatus for Decimal Multiplication," U.S.

Patent, June 1987, #4,677,583

[2] Ueda, T.: 'Decimal multiplying assembly and multiply module' .U.S.

Patent 5379245, January 1995

[3] F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M. Schwarz, and S. R.

Carlough, "The IBM z900 Decimal Arithmetic Unit," in Asilomar

Conference on Signals, Systems, and Computers, vol. 2, pp. 1335­

1339, November 2001

[4] M. A. Erie and M. 1. Schulte, "Decimal Multiplication Via Carry-Save

Addition," IEEE 14th International Conference on Application­

specific Systems, Architectures and Processors, pp. 348-358, June

2003

[5] R. D. Kennedy, M. 1. Schulte and M. A. Erie, "A High-Frequency

Decimal Multiplier," IEEE 14th International IEEE international

conference on Computer Design (ICCD'04), pp. 22-29, Oct 2004

[6] Erie, M.A. Schwarz, E.M. Schulte, MJ, "Decimal multiplication

with efficient partial product generation", 17th IEEE Symposium on
Computer Arithmetic, 2005. ARITH-17 2005. pp. 21- 28, June 2005

[7] Jaberipur, G.; Kaivani, A, "Binary-coded decimal digit multipliers",

Computers & Digital Techniques, lET Volume 1, Issue 4, July 2007

pp. 377 - 381

[8] Schmookler, M.: 'High-speed binary-to-decimal conversion', IEEE

Trans. Comput., 1968,17, (5), pp. 506-508

[9] Rhyne, V.T.: 'Serial binary-to-decimal and decimal-to-binary

conversion', IEEE Trans. Comput., 1970, 19, (9), pp. 808-812

[10] Arazi, B., and Naccache, D.: 'Binary-to-decimal conversion based on

the 282 1 by 5', Electron. Lett., 1992,28, (23), pp. 2151-2152

[11] M. Schmookler and A. Weinberger, "High Speed Decimal Addition,"

IEEE Trans. Computers, vol. 20, no. 8, pp. 862-867, Aug. 1971

[12] M.A. Erie and MJ. Schulte, "Decimal Multiplication via Carry-Save

Addition," Proc. IEEE 14th Int'l Conf. Application-Specific Systems,

Architectures, and Processors, pp. 348-358, June 2003.

[13] T. Ohtsuki et aI., "Apparatus for Decimal Multiplication," US Patent

#4,677,583, June 1987.

[14] B. Shirazi, D.Y. Yun, and C.N. Zhang, "RBCD: Redundant Binary
Coded Decimal Adder," lEE Proc.-Part E, vol. 136, no. 2, Mar. 1989.

[15] B. Shirazi, D.Y. Yun, and C.N. Zhang, "VLSI Designs for Redundant

Binary-Coded Decimal Addition," Proc. Seventh Ann. Int'l Conf.

Computers and Comm., pp. 52-56, Mar. 1988.

[16] R. D. Kenney and M. J. Schulte, 'High-Speed Multi-operand

Decimal Adders' IEEE Transactions on Computers, vol. 54, No.8, Aug

2005, pp. 953-963

[17] L. Dadda, 'Multioperand Parallel Decimal Adder: A Mixed Binary

and BCD Approach', IEEE Transactions on Computers, Vol. 56, No.9,

Sept 2007

