
Decimal Multiplication With
Efficient Partial Product Generation

Mark A. Erle, Eric M. Schwarz
Server & Technology Group

International Business Machines
Poughkeepsie, NY 12601, USA

merle@us.ibm.com, eschwarz@us.ibm.com

Michael J. Schulte
Dept. of Electrical & Computer Engr.

University of Wisconsin - Madison
Madison, WI 53706, USA
schulte@engr.wisc.edu

Abstract

Decimal multiplication is important in many commer-
cial applications including financial analysis, banking, tax
calculation, currency conversion, insurance, and account-
ing. This paper presents a novel design for fixed-point deci-
mal multiplication that utilizes a simple recoding scheme to
produce signed-magnitude representations of the operands
thereby greatly simplifying the process of generating par-
tial products for each multiplier digit. The partial products
are generated using a digit-by-digit multiplier on a word-
by-digit basis, first in a signed-digit form with two digits
per position, and then combined via a combinational cir-
cuit. As the signed-digit partial products are developed one
at a time while traversing the recoded multiplier operand
from the least significant digit to the most significant digit,
each partial product is added along with the accumulated
sum of previous partial products via a signed-digit adder.
This work is significantly different from other work employ-
ing digit-by-digit multipliers due to the efficiency gained by
restricting the range of digits throughout the multiplication
process.

1. Introduction

Current floating-point units are typically binary based,
not decimal based, for largely two reasons. Binary data can
be stored efficiently and manipulated very quickly on dig-
ital computers [1]. However, there are compelling reasons
to consider base ten for floating-point arithmetic, particu-
larly for business computations. These include: the inex-
act mapping between some decimal and binary values, a
preponderance of business data input, stored, and output in
decimal format [2], and humanity’s natural∗ affinity for dec-

∗Human beings have ten fingers.

imal arithmetic [3]. In fact, due to the importance of dec-
imal arithmetic in commercial applications, specifications
for it have been added to the draft revision of the IEEE Stan-
dard for Floating-Point Arithmetic [4]. These specifications
are more comprehensive than the IEEE Standard for Radix-
Independent Floating-Point Arithmetic [5], including for-
mats for single, double, and quadruple precision decimal
floating-point numbers.

With the cost of die space continually dropping and the
significant speedup achievable in hardware [6], a dedicated
decimal floating-point hardware implementation is likely to
be considered by microprocessor manufacturers. A funda-
mental operation for any hardware implementation of dec-
imal arithmetic is multiplication, which is integral to the
decimal-dominant applications found in financial analysis,
banking, tax calculation, currency conversion, insurance,
and accounting. This paper proposes a design for fixed-
point Binary Coded Decimal (BCD) multiplication that can
be extended to support these applications in compliance
with a prevailing decimal arithmetic specification [7] and
the IEEE Standard for Floating-Point Arithmetic, currently
under revision [4].

Decimal multiplication is much more complicated than
binary multiplication due to the need for a greater number of
multiplicand multiples and the inefficiency of representing
decimal values with two-state devices. Both of these issues
complicate partial product generation, while the latter issue
complicates partial product accumulation. The algorithm
presented in this paper reduces the complexity of partial
product generation in a novel way by employing a recoding
scheme to restrict the magnitude range of the operand dig-
its. Further, by restricting the range of each digit in the par-
tial product, the complexity of partial product accumulation
is also significantly reduced. The algorithm extends pre-
vious techniques used for decimal multiplication including
the use of lookup tables to produce partial products [10,11]
and the use of signed-digit addition for the accumulation of

the partial products [12].
The outline of the paper is as follows. Section 2 presents

related research on decimal multiplication. Sections 3
through 5 contain descriptions of core portions of the al-
gorithm: recode of the operands, generation of the partial
products, accumulation of the partial products, and genera-
tion of the final product. Section 6 presents a multiplier im-
plementation using the presented scheme along with some
implementation options. Section 7 contains a summary of
the paper.

2. Related Work

Several existing designs for decimal multiplication gen-
erate and store multiples of the multiplicand a priori [8, 9],
and then use the multiplier digits to select the appropriate
multiple as the partial product. An alternative approach is
to generate the partial product as needed. Generating the
partial products as needed is an ideal approach for three
reasons. First, it eliminates the cycles needed to generate
the multiples of the multiplicand prior to the start of partial
product accumulation. Second, it reduces wiring by elimi-
nating the need to distribute all the multiples to multiplex-
ors controlled by the multiplier digits. And third, in most
environments, it eliminates the registers needed to store the
multiples. However, these benefits come at a cost in delay
to generate the partial products.

The following designs generate the partial products as
needed. In [10], Larson describes a digit-by-digit lookup ta-
ble scheme. The multiplier operand is traversed from least
significant digit (LSD) to most significant digit (MSD) and
a partial product is generated for each digit in the multiplier
operand. The partial product is added along with the pre-
vious iteration’s properly shifted intermediate product via a
carry-propagate adder. In [13], Larson presents a second,
faster implementation which employs the lookup scheme
just described, but replaces the carry-propagate adder with a
four-input carry-save adder. In [11], Ueda presents a lookup
table which accepts digits from each operand and carries
from adjacent lookup tables. All of these schemes, and sim-
ilar digit-by-digit lookup table schemes, require significant
circuitry and delay to generate the digit-by-digit products,
since each digit ranges from zero to nine.

3. Recoding of Operands

Throughout this paper, upper case variables denote mul-
tiple digit words, lower case variables with subscripts de-
note decimal digits, and lower case variables with subscripts
and indices denote bits. Thus, ai corresponds to digit i of
operand A, and ai[j] corresponds to bit j in digit i. Upper
case variables with subscripts denote multiple digit words

that are part of an iterative equation, and upper case vari-
ables with subscripts and indices denote digits. For exam-
ple, IPi[3] corresponds to the fourth LSD in the intermedi-
ate product after i iterations. Superscripts are used to differ-
entiate various forms of the same variable. Bits and digits
are indexed from least significant to most significant, start-
ing with index zero. Logic equations are shown in a form
which lends itself to implementation in CMOS technolo-
gies. A subscript next to a constant indicates the base. Last,
a decimal number with a line over it indicates the additive
inverse of the number. For example, 610 = −610.

As stated in Section 1, restricting the range of the
operand digits leads to a faster generation of a smaller num-
ber of partial products. A range which is close to the min-
imum, yet balanced so as to simplify the recoding, is −510

through +510. Since the magnitude of a product is indepen-
dent of the sign of the multiplicand and multiplier inputs,
this range significantly reduces the combinations of inputs
needing to be multiplied. Table 1 shows the reduction in in-
put combinations and complexity achievable by restricting
the range of inputs for which digit-by-digit products must be
generated. For example, with digit ranges from 010 through
910, there are a total of 100 input combinations which can
result in 37 unique products. Computing this product set re-
quires 62 minterms with the worst-case output bit using 23
minterms or 19 gate levels.

Using signed-digits, a digit can be equivalently rep-
resented by replacing it with the additive inverse of its
radix complement and incrementing its next more signifi-
cant digit [14]. In general, each digit greater than or equal
to six must be recoded. However, since a digit can be incre-
mented due to the value of the next less significant digit, the
chosen strategy is to evaluate and recode all digits greater
than or equal to five. By doing so, the recoding of the dig-
its can occur in parallel as an increment of the next more
significant digit will never propagate. Although in the cir-
cumstance of a digit being equal to five and its next less
significant digit being less than six, the digit need not be
recoded, the chosen approach minimizes hardware as only
one condition, greater than or equal to five, must be evalu-
ated for each digit position. Figure 1, referred to throughout
this paper, provides two examples of three-digit numbers re-
coded in the range of −510 through +510. The number on
line 1 (339) is recoded into the number on line 3 (341), and
the number on line 2 (265) is recoded into 335, the digits of
which can be found on lines 16, 9, and 4, respectively.

To restrict the range of the operand digits to −510

through +510, the multiplicand is sent to a set of n re-
coders, where n is the number of digits of the operands, and
each multiplier digit is sent to a single recoder, as it is be-
ing used. Each recoder block receives as input one four-bit
BCD operand digit, ai, and a single bit, ge5i−1, indicating if
the next less significant digit is greater than or equal to five
and produces as output a four-bit signed-magnitude digit,

Table 1. Complexity of Digit-by-Digit Products for Different Ranges of Decimal Inputs.

maximum maximum
range of input unique total minterms gate levels
inputs combinations products minterms† per output† per output‡

[0 − 9] x [0 − 9] 100 37 62 23 19
[1 − 9] x [1 − 9] 81 36 61 21 17
[2 − 9] x [2 − 9] 64 30 55 20 16
[0 − 5] x [0 − 5] 36 15 20 7 8
[1 − 5] x [1 − 5] 25 14 20 7 7
[2 − 5] x [2 − 5] 16 10 15 5 6
† Espresso results in sum-of-products form
‡ SIS results with library of INV, NAND2, NAND3, NAND4, NOR2, NOR3, AOI21, AOI22, XOR, and XNOR cells

aS
i , and a single bit, ge5i, indicating if the current digit is

greater than or equal to five. The superscript S indicates the
result of the recoding is a signed-magnitude digit. Figure 2
shows a block diagram of a recoder, and Equation 1 de-
scribes its function as a collection of sub-functions selected
by specific classifications of the input data. Although the
equations in this section are shown based on digits of the
multiplicand operand A, the same equations are applicable
to the digits of multiplier operand B.

aS
i =




ai if ai < 510 & ai−1 < 510

aI
i = ai + 1 if ai < 510 & ai−1 ≥ 510

aC
i = −(1010 − ai) if ai ≥ 510 & ai−1 < 510

aIC
i = −(910 − ai) if ai ≥ 510 & ai−1 ≥ 510

(1)

The last three sub-functions are increment, complement,
and increment & complement, respectively, hence the su-
perscripts. The circuit implementations for each of these
sub-functions are simplified based on the limited range of
their inputs. That is, increment only occurs on values zero
through four (ai < 510), and both complement and incre-
ment & complement only occur on values five through nine
(ai ≥ 510).

The following sets of equations describe the logic
of these three sub-functions. In each four-bit signed-
magnitude digit, bit [3] represents the sign, and bits [2:0]
represent the magnitude. Only Equations 2 through 8 are
unique and require circuitry. The different forms of the
operand digit, along with the unaltered operand digit are in-
put to multiplexor logic that selects the correct digit based
on ge5i and ge5i−1 (Equation 8).

aI
i [3] = 0

aI
i [2] = ai[2] · (ai[1] + ai[0]) (2)

aI
i [1] = ai[1] ⊕ ai[0] (3)

aI
i [0] = ai[0] (4)

aC
i [3] = 1

aC
i [2] = ai[2] + (ai[1] · ai[0]) (5)

aC
i [1] = ai[1] ⊕ ai[0] (6)

aC
i [0] = ai[0]

aIC
i [3] = 1

aIC
i [2] = ai[3] + ai[1] (7)

aIC
i [1] = ai[1]

aIC
i [0] = ai[0]

ge5i = ai[3] · ai[2] · (ai[1] + ai[0]) (8)

In the case of recoding the multiplicand operand A, the
nth digit needs to be set to 110 if the MSD is greater than
or equal to five (i.e., when ge5n−1 is high). This can be
realized by concatenating ge5n−1 with three leading zeros.
The recoded multiplicand operand AS and a digit from the
recoded multiplier operand, bS

i , are input to digit multiplier
blocks described in the next section to generate a partial
product PO

i in overlapped form.

4. Word-by-Digit Partial Product Generation

To reduce the area and delay of generating partial prod-
ucts, the range of the input digits for which digit-by-digit
products must be generated is restricted in three ways. The
first restriction sets an upper bound on the input digits by
recoding the operands into signed-magnitude digits with a
range of −510 to +510, as described in Section 3. The sec-
ond restriction sets a limit on the possible input digit com-
binations by applying the principle that the absolute value

line cycle function (line # or “value”) example §
1 0 latch multiplicand 3 3 9
2 latch multiplier 2 6 5

3 1 recode multiplicand (1) 3 4 1
4 recode multiplier digit [0] (2) 5
5 generate partial product 5 0 5
6 in overlapped form (3,4) 1 2 0

7 2 convert partial product to 2 3 0 5
8 non-overlapped form (5,6)
9 recode multiplier digit [1] (2) 3
10 generate partial product 1 2 3
11 in overlapped form (3,9) 1 1 0

12 3 add partial product (7) to 2 3 0 5
13 intermediate product (“0”);
14 convert partial product to 1 0 2 3
15 non-overlapped form (10,11)
16 recode multiplier digit [2] (2) 3
17 generate partial product 1 2 3
18 in overlapped form (3,16) 1 1 0

19 4 convert LSD of intermediate 5

20 product (12); transfer out 0
21 add partial product (14) to 1 2 1 3
22 intermediate product (12,20)
23 convert partial product to 1 0 2 3
24 non-overlapped form (17,18)

25 5 convert LSD of intermediate 3

26 product (21); transfer out 0
27 add partial product (23) to 1 1 0 2
28 intermediate product (21,26)

29 6 first half of conversion
30 to BCD (27)
31 convert LSD of intermediate 8

32 product (27); transfer out 1

33 7 second half of conversion 0 8 9

34 to BCD (27,32)

§ Digits in the final product are double underlined.

Figure 1. Algorithm Example.

of a product is independent of the sign of the input digits.
The third restriction sets a lower bound on the input digits
by applying the observation that if either digit is zero, the
product is zero, and if either digit is one, the product is the
other digit.

With these three restrictions on the input digits, the range
is reduced to only 210 through 510 when computing a prod-
uct. Thus, only 1610 combinations of the inputs are possi-
ble resulting in ten different products with a range of 410

through 2510 (hence the need for a two-digit product). With
existing schemes, the range of digits is 010 through 910,
which yields 10010 possible combinations of the two inputs.

i ge5i-1ge5i

ai[3:0]

ai
S[3:0]

n-1 n-2 01i

......

'0 '

A

......

AS

(a)

(b)

"000"

Figure 2. Recoder Block: (a) Single Digit, (b)
n-Digit Operand.

Table 1 illustrates for various input ranges the significant re-
duction in complexity achievable by restricting the number
of input combinations.

To generate a partial product on a word-by-digit basis,
the recoded multiplicand and a recoded digit from the mul-
tiplier are input to n + 1 digit multiplier blocks (see Fig-
ure 3b). Note since the nth digit of the recoded multipli-
cand has at most a magnitude of 110, the digit multiplier
block in this position can be replaced with a simpler cir-
cuit to produce either 010 or the recoded multiplier digit,
|bS

i |. Each multiplier block receives as input two, four-bit,
signed-magnitude digits, aS

i and bS
i , and produces as out-

put two, signed-magnitude partial product digits, pO
i+1 and

pO
i . The superscript O indicates the partial product is in an

overlapped form since each digit multiplier block yields two
digits. Equation 9 describes the function to generate a digit-
by-digit product, in absolute-value form, as a collection of
sub-functions selected by specific classifications of the in-
put digits. The superscript T indicates the sub-function out-
put is realized via a lookup table or a combinational circuit
structure.

To simplify the removal of the overlap in the partial
product, the range of |pT

i | is restricted to 010 through
510 by again using signed-magnitude digits. With this
restriction, which matches the inherent restriction on the
other sub-functions in Equation 9, four bits are needed
for the product’s LSD (range of −410 through +510),
and two bits are needed for the product’s MSD (range of
010 through 210). Table 2 shows for inputs ranging from

Table 2. Restricted-Range, Signed-Magnitude
Products.

x 210 310 410 510

0410 1410 1210 1010210
00, 01002 01, 11002 01, 10102 01, 00002

1410 1110 1210 1510310
01, 11002 01, 10012 01, 00102 01, 01012

1210 1210 2410 2010410
01, 10102 01, 00102 10, 11002 10, 00002

1010 1510 2010 2510510
01, 00002 01, 01012 10, 00002 10, 01012

210 through 510 the two-digit, signed-magnitude products
conforming to this magnitude restriction. Although the
LSD has a negative sign in some instances, the MSD
is always positive, and thus the two-digit product is a
positive value. Figure 3a shows the block diagram of a
digit multiplier block, and Equations 10 - 15 show how the
two-digit products are developed.

|pO
i+1, p

O
i | =


00, 0000 if |aS

i | = 010 or |bS
i | = 010

00, 0bS
i [2 : 0] if |aS

i | = 110 & |bS
i | > 010

00, 0aS
i [2 : 0] if |aS

i | > 110 & |bS
i | = 110

|pT
i+1, p

T
i | if |aS

i | > 110 & |bS
i | > 110

(9)

Since the signs of the recoded operand digits were not
considered when generating the digit-by-digit products, the
partial product at this point is in absolute-value form. Thus,
the sign of the recoded operand digits must be used to con-
vert |PO

i | into a properly signed partial product. This step
is necessary before attempting to add the overlapping por-
tions of the word-by-digit products as not doing so could
yield an incorrect partial product. To develop a partial prod-
uct with the correct sign, PO

i , the exclusive-or (XOR) of
the input signs (i.e., aS

i [3] ⊕ bS
i [3]), is used in two places.

First, it directly becomes the sign of the product’s MSD,
pO

i+1[2]. Second, it is XORed with the sign of the product’s
LSD, |pO

i [3]|, to produce pO
i [3]. Figure 1, lines 5/6, 10/11,

and 17/18, provide examples of the digit multiplier blocks
yielding the sign-corrected partial products in overlapped
form.

Ultimately, all the partial products need to be properly
aligned with respect to one another and added together. The
approach chosen in this work is to iteratively accumulate
the partial products via the signed-digit adder described by
Svoboda in [12]. Svoboda’s adder accepts two uniquely
encoded signed-digits (see Table 3) in the range of −610

through +610 and yields a sum in the same range. Note a
property of the encoding shown in Table 3 is the additive
inverse is obtained by taking the one’s complement.

n n-1 01i

...... AS

......

Pi
O

(a)

(b)

ai
S[3:0] bi

S[3:0]

xor of
signs

pi
O[3:0]pi+1

O[2:0]

...... bi
S

bi
S[2:0]ai

S[2:0] 000

mux

pi
T[2:0]

mux

00

xor
pi

T[3]

pi+1
T[1:0]

pi+1
O[2] pi+1

O[1:0] pi
O[3] pi

O[2:0]

[2-5]
x

[2-5]

Figure 3. Digit Multiplier Block: (a) Single
Digit, (b) n-Digit.

|pT
i [0]| = aS

i [0] + bS
i [0] (10)

|pT
i [1]| = aS

i [1] · bS
i [1] · bS

i [0]· (11)

aS
i [1] · aS

i [0] · bS
i [1]

|pT
i [2]| = aS

i [0] · bS
i [2] · bS

i [0]· (12)

(aS
i [1] ⊕ aS

i [0]) · bS
i [1] · bS

i [0]·
aS

i [1] · bS
i [1] · bS

i [0]·
aS

i [1] · aS
i [0] · bS

i [1] · bS
i [0]

|pT
i [3]| = aS

i [0] · bS
i [1] · bS

i [0]· (13)

aS
i [1] · bS

i [1] · bS
i [0]·

aS
i [1] ⊕ aS

i [0] · bS
i [1] · bS

i [0]

|pT
i+1[0]| = aS

i [1] · bS
i [2]· (14)

(aS
i [2] + aS

i [0]) · bS
i [1]·

aS
i [1] · bS

i [0]

|pT
i+1[1]| = aS

i [2] + bS
i [2] (15)

Table 3. Svoboda Signed-Digit Code [12].

decimal encoded digit
value [4] [3] [2] [1] [0]

6 1 0 0 1 0
5 0 1 1 1 1
4 0 1 1 0 0
3 0 1 0 0 1
2 0 0 1 1 0
1 0 0 0 1 1
0 0 0 0 0 0
0 1 1 1 1 1
1 1 1 1 0 0
2 1 1 0 0 1
3 1 0 1 1 0
4 1 0 0 1 1
5 1 0 0 0 0
6 0 1 1 0 1

Recall the partial product at this point is properly signed
but still in an overlapped form. Each digit position† has
one four-bit, signed-magnitude digit whose range is −510

through +510 and one three-bit, signed-magnitude digit
whose range is −210 through +210. The sums for these
ranges of overlapping signed-digits, suitable for entry into a
Svoboda adder, are in bold type in Table 4. In each entry of
this table, the digit on the right is a sum digit in position i,
and the digit on the left is a transfer digit, which is added to
the sum digit in position i+1. The term transfer digit is used
because it is used to indicate when a carry or a borrow oc-
curs. To achieve the desired encoding, a combinatorial cir-
cuit is needed to recode the signed-magnitude digits in the
partial product PO

i into signed-digits (Pi). A straightfor-
ward implementation of this recoding step requires ten logic
levels, as determined by SIS. The recoded partial product,
Pi, is then added to the intermediate product, IPi−1, as
described in the next section. Figure 1, lines 7, 14, and
23, provide examples of generating a non-overlapped par-
tial product from the sign-corrected partial products in over-
lapped form.

5. Accumulation of Partial Products and Gen-
eration of Final Product

As the recoded multiplier operand is traversed from LSD
to MSD, the partial product, Pi, needs to be added to the
sum of the previous partial products. The accumulated sum
of partial products is termed the intermediate product and
is designated IPi, where the subscript indicates how many
partial products have been accumulated. The accumulation
occurs in an iterative manner with the intermediate product

†The MSD and LSD only have one digit in their position.

being shifted to the right one digit position each iteration
to achieve a multiplication of the current partial product by
1010, thus accounting for the increase in weight of each suc-
cessive multiplier digit. Each iteration, n+1 digits from the
partial product, Pi, and n + 1 digits from the intermediate
product, IPi−1, pass through n + 1 Svoboda digit adders.
The range of inputs and their signed-digit sums are shown
in Table 4. Figure 1, lines 12, 21, and 27, provide examples
of accumulating the partial products.

In shifting the intermediate product one digit position to
the right, the LSD is made available for completion as no
subsequent partial product digits will be added to this digit.
Since this emergent digit is still in the signed-digit code de-
scribed in Table 3, it must be converted to BCD. During the
conversion process, the transfer digit from the previous iter-
ation’s intermediate product LSD, ti−1, must be taken into
account. Logically, the conversion is as follows. If the LSD
is greater than zero, the LSD is simply converted to BCD
and then decremented if the input transfer digit is −110. If
the LSD is less than or equal to zero, the radix complement
of the additive inverse of the LSD is converted to BCD and
then decremented if the input transfer digit is −110 (only the
least significant four bits are kept). Lastly, an output transfer
digit, ti, is assigned a value of −110 if the LSD is negative
or if the LSD is 010 and the input transfer digit is −110, oth-
erwise it is assigned a value of 010. Note since the transfer
digit in this situation only indicates a borrow or no borrow,
and a single bit can be used. Equations 16 and 17 show the
different cases for converting the intermediate product LSD
and generating the transfer bit, respectively. A straightfor-
ward implementation of this conversion and generation of
a transfer bit requires twelve logic levels, as determined by
SIS. The final product is identified by FP .

fpi =

{
(IPi[0] → BCD) + ti−1 if IPi[0] ≥ 110

10 − (IPi[0] → BCD) + ti−1 if IPi[0] ≤ 010

(16)

ti =

{
010 if IPi[0] ≥ 110

−110 if IPi[0] ≤ 010 & ti−1 = −110

(17)

After all the multiplier digits have been processed, the
signed-digit outputs of the Svoboda adders comprising
IPn−1 need to be converted to BCD to produce the final
product digits, fp2n−1 to fpn. Additionally, the transfer
bit, tn−2, must be added to the LSD, i.e., IPn−1[0]. The
algorithm to convert the signed-digits, which is on the or-
der of carry-propagate addition, is fully described in [12].
Figure 1, lines 29/33, provide an example of converting an
intermediate product (110) and a transfer bit (1) into BCD
digits.

6. Multiplier Implementation

Figure 4 shows one possible multiplier implementation
using the presented ideas. As shown, this implementation

Table 4. Restricted-Range, Signed-Digit Sums [12] (All Digits Are Decimal).

+ 6 5 4 3 2 1 0 0 1 2 3 4 5 6

6 00 01 02 03 04 05 14 14 13 12 11 10 11 12
5 01 00 01 02 03 04 05 05 14 13 12 11 10 11
4 02 01 00 01 02 03 04 04 05 14 13 12 11 10
3 03 02 01 00 01 02 03 03 04 05 14 13 12 11
2 04 03 02 01 00 01 02 02 03 04 05 14 13 12
1 15 04 03 02 01 00 01 01 02 03 04 05 14 13
0 14 05 04 03 02 01 00 00 01 02 03 04 05 14
0 14 15 04 03 02 01 00 00 01 02 03 04 05 14
1 13 14 15 04 03 02 01 01 00 01 02 03 04 05
2 12 13 14 15 04 03 02 02 01 00 01 02 03 04
3 11 12 13 14 15 04 03 03 02 01 00 01 02 03
4 10 11 12 13 14 15 04 04 03 02 01 00 01 02
5 11 10 11 12 13 14 15 15 04 03 02 01 00 01
6 12 11 10 11 12 13 14 14 15 04 03 02 01 00

requires n + 4 cycles, which is the same latency as the de-
sign described in [9]. In the first cycle, operand A and a
single digit of operand B are recoded. Then, the outputs
of the recoder blocks are input to the digit multipliers to
yield a sign-corrected partial product in overlapped form.
In the second cycle, the overlap of the two-digit products is
removed and the partial product is recoded in a manner ap-
propriate for a Svoboda signed-digit adder. For the next n
cycles, a partial product is added to the previous iteration’s
intermediate product, and a new partial product is gener-
ated. In the last two cycles, the final intermediate product is
converted into BCD digits.

Figure 1 shows an example of multiplying 33910 by
26510 using the proposed multiplier implementation. In cy-
cle 1, the multiplicand and the LSD of the multiplier are
recoded as described in Section 3 into the signed-digit num-
bers 341 (line 3) and 5 (line 4), respectively. Also in cycle 1,
the recoded multiplicand (line 3) is multiplied by the LSD
of the recoded multiplier (line 4) as described in Section 4
to yield the partial product in overlapped form (lines 5/6).
In cycle 2, the partial product generated in overlapped form
in cycle 1 is converted to non-overlapped form (line 7).
Additionally, the next more significant digit in the multi-
plier is recoded (line 9) and a partial product based on this
digit is generated in overlapped form (lines 10/11). In cy-
cle 3, the accumulation of the partial product as described
in Section 5 is initiated by adding the partial product in
line 7 to the intermediate product, previously initialized to
zero (line 12). Also in cycle 3, the partial product in over-
lapped form from the previous cycle is converted to non-
overlapped form (line 14), the MSD of the multiplier digit
is recoded (line 16), and a partial product based on this digit
is generated in overlapped form (lines 17/18). In cycle 4,
the first digit of the final product (i.e., the LSD) is produced
by converting the LSD of the intermediate product to BCD

(line 19). The conversion, described in Section 5, takes into
account the previously cleared transfer bit and produces an
output transfer bit for the next intermediate product’s LSD
conversion to BCD (line 20). Also in cycle 4, another par-
tial product is added to the intermediate product (line 21)
and the previous cycle’s partial product is converted to non-
overlapped form (line 23). Cycle 5’s function includes the
conversion to BCD of the intermediate product LSD devel-
oped in cycle 4 (line 25), the generation of an output transfer
bit (line 26), and the addition of the partial product devel-
oped in cycle 4 to the intermediate product (line 27). In
cycle 6, the two-cycle process of converting the final inter-
mediate product to BCD digits is initiated as described in
Section 5 (line 29). Also in cycle 6, another intermediate
product LSD is converted to BCD (line 31) and an output
transfer bit is developed (line 32). In the final cycle, 7, the
conversion of the final intermediate product to BCD digits
is completed (line 33).

Although the implementation just shown is efficient, in
terms of its partial product generation, and has good latency,
there is opportunity for further research in recoding the in-
put to the Svoboda adder or performing the iterative addi-
tion portion with an alternative approach. An alternative
is to move the recoding needed for the Svoboda adder to a
point earlier in the algorithm. One option is to emerge from
the digit multiplier block in the encoding described in Ta-
ble 3. Regardless, the partial products are initially produced
in an overlapped form and need to be corrected.

The issue of having to recode for the Svoboda adder can
be removed by not using a Svoboda adder. Instead, an ap-
proach employing decimal counters could be used, similar
to those described in [9]. Since the inputs to the counters,
the partial product, Pi, and intermediate product, IPi−1,
are in a restricted range, the counters could be simplified.
However, this benefit needs to be weighed against the cost

of handling the presence of sign bits in each digit position.

7. Summary

A novel approach was described for fixed-point decimal
multiplication which utilizes restricted-range, signed-digits
throughout the multiplication process to generate and ac-
cumulate the partial products in an efficient manner. To
achieve the restricted range, a simple recoding scheme was
shown to produce signed-magnitude representations of the
operands. It was further shown how the partial product gen-
eration takes the recoded digits, which are in the range of
−510 through +510, and uses simple combinational logic
to obtain products for input digits in the range 210 through
510. The steps necessary to handle the signs of the input
operands and detect and handle the cases where either input
digit is 0 or 1, were also described. It was then described
how the results from the partial product generation logic are
recoded and added to the accumulated sum of previous par-
tial products via a signed-digit adder. Original aspects of
this work include: 1) the method used for recoding the dig-
its into a signed-magnitude representation; 2) the design of
the decimal partial product generation; and, 3) the recoding
of the partial products before sending them into the signed-
digit adder.

Acknowledgment

This research was supported in part by an IBM Faculty
Award.

References

[1] W. S. Brown and P. L. Richman, “The Choice of Base,” Communi-
cations of the ACM, vol. 12, pp. 560–561, October 1969.

[2] A. Tsang and M. Olschanowsky, “A Study of Database 2 Customer
Queries,” IBM Technical Report 03.413, IBM, San Jose, CA, April
1991.

[3] G. Ifrah, The Universal History of Computing – From the Abacus to
the Quantum Computer. New York, NY: John Wiley and Sons, Inc.,
2001. Translated from the French, and with Notes by E. F. Harding.

[4] IEEE Standards Committee, “IEEE Standard for Floating-Point
Arithmetic.” World Wide Web. http://754r.ucbtest.org/drafts/754r.–
pdf.

[5] Floating-Point Working Group, ANSI/IEEE Std 854-1987: IEEE
Standard for Radix-Independent Floating-Point Arithmetic. New
York: The Institute of Electrical and Electronics Engineers, October
1987. 16 pages.

[6] M. A. Erle, M. J. Schulte, and J. M. Linebarger, “Potential Speedup
Using Decimal Floating-Point Hardware,” in Asilomar Conference
on Signals, Systems and Computers, vol. 2, pp. 1073–1077, Novem-
ber 2002.

[7] M. F. Cowlishaw, “General Decimal Arithmetic Specification.”
World Wide Web. http://www2.hursley.ibm.com/decimal/decarith.–
html.

 register

digit multipliers

register

overlap removal, encoding

register

signed-digit to BCD converter (1st cycle)

register

signed-digit to BCD converter (2nd cycle)

final product

LSD
correction

transfer
digit

operand A

operand B

need to
store ge5i

cy
cl

e
1

to
n

cy
cl

e
2

to
n+

1
cy

cl
e

3
to

n+
2

cy
cl

e
n+

3
cy

cl
e

n+
4

AS bi
S

Pi
O

Pi

IPi-1

IPi

A
bi

shift register

signed-digit adder c

register t

recoders r

Figure 4. Multiplier Implementation.

[8] F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M. Schwarz, and S. R.
Carlough, “The IBM z900 Decimal Arithmetic Unit,” in Asilomar
Conference on Signals, Systems, and Computers, vol. 2, pp. 1335–
1339, November 2001.

[9] M. A. Erle and M. J. Schulte, “Decimal Multiplication Via Carry-
Save Addition,” in Conference on Application-Specific Systems, Ar-
chitectures, and Processors, pp. 348–358, June 2003.

[10] R. H. Larson, “Medium Speed Multiply,” IBM Technical Disclosure
Bulletin, p. 2055, December 1973.

[11] T. Ueda, “Decimal Multiplying Assembly and Multiply Module,”
U.S. Patent #5,379,245, January 1995.

[12] A. Svoboda, “Decimal Adder with Signed Digit Arithmetic,” IEEE
Transaction on Computers, vol. C, pp. 212–215, March 1969.

[13] R. H. Larson, “High Speed Multiply Using Four Input Carry Save
Adder,” IBM Technical Disclosure Bulletin, pp. 2053–2054, Decem-
ber 1973.

[14] A. Avizienis, “Signed-Digit Number Representations for Fast Paral-
lel Arithmetic,” IRE Transactions on Electronic Computers, vol. EC-
10, pp. 389–400, September 1961.

