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Abstract – We present Chronos, a system that enables

a single WiFi access point to localize clients to within tens

of centimeters. Such a system can bring indoor position-

ing to homes and small businesses which typically have a

single access point.

The key enabler underlying Chronos is a novel algo-

rithm that can compute sub-nanosecond time-of-flight us-

ing commodity WiFi cards. By multiplying the time-of-

flight with the speed of light, a MIMO access point com-

putes the distance between each of its antennas and the

client, hence localizing it. Our implementation on com-

modity WiFi cards demonstrates that Chronos’s accu-

racy is comparable to state-of-the-art localization systems,

which use four or five access points.

1. INTRODUCTION

Recent years have seen significant advances in indoor

positioning using wireless signals [48, 28]. State-of-the-

art systems have achieved an accuracy of tens of centime-

ters, even using commodity WiFi chipsets [30, 32, 18]. Ex-

isting proposals however target enterprise networks, where

multiple WiFi access points can combine their informa-

tion and cooperate together to locate a user. However, the

vast majority of homes and small businesses today have

a single WiFi access point. Consequently, this large con-

stituency of wireless networks has been left out of the ben-

efits of accurate indoor positioning.

Developing a technology that can locate users and ob-

jects using a single WiFi access point would enable a range

of important applications:

(i) Smart Home Occupancy: In particular, indoor posi-

tioning can play a crucial role in the smart home vi-

sion, where WiFi enabled home automation systems

like NEST are gaining increasing popularity [37]. Accu-

rate localization addresses a long-standing problem in

home automation: reliable occupancy detection [36, 6].

With WiFi-based localization, one can track the num-

ber of users per room using their phones or wearables,

and accordingly adapt heating and lighting. Knowing

the identity of these occupants can then help personalize

heating and lighting levels based on user preferences.

(ii) WiFi Geo-fencing: Beyond the home, indoor position-

ing can benefit small businesses that use a single access

point to offer free WiFi to attract customers. But with

increasingly congested networks, business owners seek

to restrict WiFi connectivity to their own customers,

given that 32% of users in the US admit to have ac-

cessed open WiFi networks outside the premises they

serve [47]. Yet securing these networks with passwords

is inconvenient, both to customers that connect to these

networks and the business owners who must frequently

change the passwords. Indoor positioning with a sin-

gle access point provides a natural solution to this prob-

lem because it can automatically authenticate customers

based on their location.

(iii) Device-to-device Location: More generally, enabling

two WiFi nodes to localize each other without addi-

tional infrastructure support has implications in areas

where WiFi networks may not exist altogether. Imagine

traveling with friends or family in countries where WiFi

is not as prevalent as in the US, yet still be able to find

each other in a mall, museum, or train station, without

the need to connect to a WiFi infrastructure.

Our goal is to design a system that enables a single

WiFi node (e.g., an access point) to localize another, with-

out support from additional infrastructure. Further, we

would like a design that works on commodity WiFi NICs

and does not require any additional sensors (cameras, ac-

celerometers, etc.).

As we design for the above goal, it helps to first ex-

amine why past systems need multiple access points. The

most direct approach to RF-based positioning estimates

the time-of-flight (i.e., propagation time) and multiplies it

by the speed of light to obtain the distance [23, 16]. How-

ever, past proposals for WiFi-based positioning cannot

measure the absolute time-of-flight. They measure only

differences in the time-of-flight across the receiver’s anten-

nas. Such time differences allow those systems to infer the

direction of the source with respect to the receiver, known

as the angle of arrival (AoA) [48]. But they don’t provide

the distance between the source and the receiver. Thus,

past work has to intersect the direction of the source from

multiple access points to localize it. In fact, past propos-

als typically use four or five access points to achieve tens

of centimeters accuracy [30, 32, 48, 50]. Even the few re-

cent proposals to localize using one WiFi access point [35,

53] require users to walk to multiple locations to emulate

the presence of multiple access points. They then intersect

signal measurements across these locations coupled with

accelerometer readings to infer the user’s trajectory.

There are however non-WiFi systems that can accu-

rately measure the absolute time-of-flight, and hence lo-

calize using a single receiver. Such systems use special-
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ized ultra wideband radios that span multiple GHz [5,

41]. Since time resolution is inversely related to the ra-

dio bandwidth, such devices can measure time-of-flight at

sub-nanosecond accuracy, and hence localize an object to

within tens of centimeters. In contrast, directly measuring

time with a 20MHz or 40MHz WiFi radio results in errors

of 7 to 15 meters [30].

Motivated by the above analysis, we investigated

whether a WiFi radio can emulate a wideband multi-GHz

radio, for the purpose of localization. Our investigation

led to Chronos, an indoor positioning system that enables

a pair of WiFi devices to localize each other. It runs on

commodity WiFi cards, and does not require any external

sensor (e.g., accelerometer, or camera). Chronos works by

making a WiFi card emulate a very wideband radio. In

particular, while each WiFi frequency band is only tens of

Megahertz wide, there are many such bands that together

span a very wide bandwidth. Chronos therefore transmits

packets on multiple WiFi bands and stitches their informa-

tion together to give the illusion of a wideband radio.

Yet, emulating a wideband radio using packets trans-

mitted on different frequency bands is not easy. Stitch-

ing measurements across such packets requires Chronos

to overcome three challenges:

Resolving Phase Offsets: First, to emulate a wideband

radio, Chronos needs to stitch channel state information

(CSI) captured by multiple packets, transmitted in dif-

ferent WiFi frequency bands, at different points in time.

However, the very act of hopping between WiFi frequency

bands introduces a random initial phase offset as the hard-

ware resets to each new frequency (i.e., PLL locking).

Chronos must therefore recover time-of-flight to perform

positioning despite these random phase offsets.

Eliminating Packet Detection Delay: Second, any mea-

surement of time-of-flight of a packet necessarily includes

the delay in detecting its presence. Different packets how-

ever experience different random detection delays. To

make matters worse, this packet detection delay is typi-

cally orders-of-magnitude higher than time-of-flight. For

indoor WiFi environments, time-of-flight is just a few

nanoseconds, while packet detection delay spans hundreds

of nanoseconds [38]. Chronos must tease apart the time-

of-flight from this detection delay.

Combating Multipath: Finally, in indoor environments,

signals do not experience a single time-of-flight, but a

time-of-flight spread. This is because RF signals in indoor

environments bounce off walls and furniture, and reach

the receiver along multiple paths. As a result, the receiver

obtains several copies of the signal, each having experi-

enced a different time-of-flight. To perform accurate lo-

calization, Chronos therefore must disentangle the time-

of-flight of the direct path from all the remaining paths.

The body of this paper explains how Chronos over-

comes these challenges, computes the absolute time-of-

flight, and enables localization using a single access point.

Summary of Results: We have implemented Chronos

and evaluated its performance on devices equipped with

Intel 5300 WiFi cards. Our results reveal the following:

• Chronos computes the time-of-flight with a median er-

ror of 0.47 ns in line-of-sight and 0.69 ns in non-line-

of-sight settings. This corresponds to a median distance

error of 14.1 cm and 20.7 cm respectively.

• Chronos enables a WiFi device (e.g., an AP) to localize

another with a median error of 65 cm in line-of-sight

and 98 cm in non-line-of-sight settings.

To demonstrate Chronos’s capabilities, we use it for three

applications:

• Smart Home Occupancy: Chronos can be used to track

the number of occupants in different rooms of a home

using a single access point – a key primitive for smart

homes that adapt heating and lighting. Experiments

conducted in a 2-bedroom apartment with 4 occupants

show that Chronos maps residents in a home to the cor-

rect room they are in with an accuracy of 94.3%.

• WiFi Geo-fencing: Chronos can be used by small busi-

nesses with a single access point to restrict WiFi con-

nectivity to customers within their facility. Experiments

in a coffee house reveal that Chronos achieves this to an

accuracy of 97%.

• Personal Drone: Chronos’s ability to locate a pair of

user devices can directly benefit the navigation systems

of personal robots such as recreational drones. Chronos

enables personal drones that can maintain a safe dis-

tance from their user by tracking their owner’s handheld

device. Our experiments using an AscTec Quadrotor re-

veal that it maintains the required distance relative to a

user’s device with a root mean-squared error of 4.2 cm.

Contributions: To our knowledge, Chronos is the first

system that enables a node with a commercial WiFi card to

locate another at tens of centimeters accuracy without any

third party support, be it other WiFi nodes or external sen-

sors (e.g., accelerometers). Chronos also contributes the

first algorithm for measuring the absolute time-of-flight on

commercial WiFi cards at sub-nanosecond accuracy.

2. OVERVIEW

We briefly outline the organization of the rest of this

paper. Chronos localizes a pair of WiFi devices without

third party support by computing time of flight of sig-

nals between them. Sec. §3 describes our approach to

compute time-of-flight by stitching together information

across multiple WiFi frequency bands. It is followed by a

description of the challenges faced by Chronos and how it

addresses them. Specifically:

• Eliminating Packet Detection Delay: First, Chronos

disentangles the time-of-flight from packet detection
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Figure 1: WiFi Bands: Depicts WiFi bands at 2.4 GHz and
5 GHz. Note that some of these frequencies (e.g. 5.5-5.7 GHz)
are DFS bands in the U.S. that many 802.11h compatible
802.11n radios like Intel 5300 support.

delay, since the latter has no connection to the distance

between transmitter and receiver (See Sec. §4).

• Combating Multipath: Second, Chronos separates the

time-of-flight of the direct path of the wireless signal

from that of all the remaining paths (See Sec. §5).

• Resolving Phase Offsets: Finally, Chronos removes

arbitrary phase offsets that are introduced as the WiFi

receiver hops between frequency bands (See Sec. §6).

3. MEASURING TIME OF FLIGHT

In this section, we describe how Chronos measures ac-

curate time-of-flight of signals between a pair of WiFi

devices without third party support. For clarity, the rest

of this section assumes signals propagate from the trans-

mitter to a receiver along a single path with no detection

delay or phase offsets. We address challenges stemming

from packet detection delay, multipath and phase offsets

in §4, §5 and §6 respectively.

Chronos’s approach is based on the following observa-

tion: Conceptually, if our receiver had a very wide band-

width, it could readily measure time-of-flight from a single

receiving device at a fine-grained resolution (since time

and bandwidth are inversely related). Unfortunately, to-

day’s WiFi devices do not have such wide bandwidth. But

there is another opportunity: WiFi devices are known to

span multiple frequency bands scattered around 2.4 GHz

and 5 GHz. Combined, these bands span almost one GHz

of bandwidth. By making a transmitter and receiver hop

between these different frequency bands, we can gather

many different measurements of the wireless channel. We

can then “stitch together” these measurements to compute

the time-of-flight, as if we had a very wideband radio.

However, our method for stitching time measurements

across WiFi frequency bands must account for the fact that

many WiFi bands are non-contiguous, unequally spaced,

and even multiple GHz apart (Fig. 1). Chronos overcomes

these issues by exploiting the relation between the time-of-

flight and the phase of wireless channels. Specifically, we

know from basic electromagnetics that as a signal prop-

agates in time, it accumulates a corresponding phase de-

pending on its frequency. The higher the frequency of the

signal, the faster the phase accumulates. To illustrate, let

us consider a transmitter sending a signal to its receiver.

Then we can write the wireless channel h as [42]:

h = ae−j2πfτ , (1)

where a is the signal magnitude, f is the frequency and τ
is the time-of-flight. The phase of this channel depends on

time-of-flight as:

∠h = −2πf τ mod 2π (2)

Notice that the above equation depends directly on the sig-

nal’s time-of-flight and hence, we can use it to measure the

time-of-flight τ as:

τ = −
∠h

2πf
mod

1

f
(3)

The above equation gives us the time-of-flight modulo

1/f . Hence, for a WiFi frequency of 2.4 GHz, we can only

obtain the time-of-flight modulo 0.4 nanoseconds. Said

differently, transmitters with times-of-flight 0.1 ns, 0.5 ns,

0.9 ns, 1.3 ns, etc. all produce identical phase in the wire-

less channel. In terms of physical distances, this means

transmitters at distances separated by multiples of 12 cm

(e.g., 3 cm, 15 cm, 27 cm, 39 cm, etc.) all result in the

same channel phase. Consequently, there is no way to dis-

tinguish between these transmitters using their phase on a

single frequency band.

Indeed, this is precisely why Chronos needs to hop be-

tween multiple frequency bands {f1, . . . , fn} and measure

the corresponding wireless channels {h1, . . . , hn}. The re-

sult is a system of equations, one per frequency, that mea-

sure the time-of-flight modulo different values:

∀i ∈ {1, 2, . . . , n} τ =−
∠hi

2πfi
mod

1

fi
(4)

Notice that the above set of equations has the form of

the well-known Chinese remainder theorem [45]. Such

equations can be readily solved using standard modular

arithmetic algorithms, even amidst noise [14] and have

been used in prior work, in the context of range estima-

tion ([44, 43]).1 The theorem states that solutions to these

equations are unique modulo a much larger quantity – the

Least Common Multiple (LCM) of {1/f1, . . . , 1/fn}.

To illustrate how the above system of equations works,

consider a source at 0.6 m whose time-of-flight is 2 ns.

Say the receiver measures the channel phases from this

source on five candidate WiFi frequency bands as shown

in Fig. 2. We note that a measurement on each of these

channels produces a unique equation for τ , like in Eqn. 4.

Each equation has multiple solutions, depicted as colored

vertical lines in Fig. 2. However, only the correct solution

of τ will satisfy all equations. Hence, by picking the so-

lution satisfying the most number of equations (i.e., the τ
with most number of aligned lines in Fig. 2), we can re-

cover the true time-of-flight of 2 ns.

Note that our solution based on the Chinese remain-

der theorem makes no assumptions on whether the set

1Algorithm 1 in §5 provides a more general version of Chronos’s
algorithm to do this while accounting for noise and multipath
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τ

Figure 2: Measuring Time-of-Flight: Consider a wireless
transmitter at a distance of 0.6 m, i.e. a time-of-flight of 2 ns.
The phase of each WiFi channel results in multiple solutions,
depicted as colored lines, including 2 ns. However, the solution
that satisfies most equations, i.e. has the most number of aligned
colored lines is the true time-of-flight (2 ns).

of frequencies {f1, . . . , fn} are equally separated or oth-

erwise. In fact, having unequally separated frequencies

makes them less likely to share common factors, boost-

ing the LCM. Thus, counter-intuitively, the scattered and

unequally-separated bands of WiFi (Fig. 1) are not a chal-

lenge, but an opportunity to resolve larger values of τ .

While the above provides a mathematical formulation

of our algorithm, we describe below important systems

considerations when dealing with commercial WiFi cards:

• Chronos must ensure both the WiFi transmitter and re-

ceiver hop synchronously between multiple WiFi fre-

quency bands. Chronos achieves this using a frequency

band hopping protocol driven by the transmitter. Be-

fore switching frequency bands (every 2-3 ms in our

implementation), the transmitter issues a control packet

that advertises the frequency of the next band to hop

to. The receiver responds with an acknowledgment and

switches to the advertised frequency. Once the acknowl-

edgment is received, the transmitter switches frequency

bands as well. As a fail-safe, transmitters and receivers

revert to a default frequency band if they do not re-

ceive packets or acknowledgments from each other for

a given time-out duration on any band.

• Our implementation of Chronos sweeps all WiFi bands

in 84 ms (12 times per second). This is within the chan-

nel coherence time of indoor environments [39] and can

empirically localize users at walking speeds ( §10.3).

• Finally, we discuss and evaluate the implications of

Chronos’s protocol on data traffic in §9.3.

4. ELIMINATING PACKET DETECTION DELAY

So far, we computed time-of-flight based on the chan-

nels hi, that signals experience when transmitted over the

air on different frequencies fi. In practice however, there

is a difference between the channel over the air, hi, and

the channel as measured by the receiver, h̃i. Specifically,

the measured channel at the receiver, h̃i, experiences a de-

lay in addition to time-of-flight: the delay in detecting the

presence of a packet. This delay occurs because WiFi re-

ceivers detect the presence of a packet based on the energy

of its first few time samples. The number of samples that

the receiver needs to cross its energy detection threshold

varies based on the power of the received signal, as well

as noise. While this variation may seem small, packet de-

tection delays are often an order-of-magnitude larger than

time-of-flight, particularly in indoor environments, where

time-of-flight is just a few tens of nanoseconds (See §9.1).

Hence, accounting for packet detection delay is crucial for

accurate time-of-flight and distance measurements.

Thus, our goal is to derive the true channel hi (which

incorporates the time-of-flight alone) from the measured

channel h̃i (which incorporates both time-of-flight and

packet detection delay). To do this, we exploit the fact that

WiFi uses OFDM. Specifically, the bits of WiFi packets

are transmitted in the frequency domain on several small

frequency bins called OFDM subcarriers. This means that

the wireless channels h̃i can be measured on each subcar-

rier. We then make the following claim:

CLAIM 4.1. The measured channel at subcarrier-0

does not experience packet detection delay, i.e., it is iden-

tical in phase to the true channel at subcarrier 0.

To see why this claim holds, note that while time-of-

flight and packet detection delay appear very similar, they

occur at different stages of a signal’s lifetime. Specifically,

time-of-flight occurs while the signal is transmitted over

the air (i.e., in passband). In contrast, packet detection de-

lay stems from energy detection that occurs in digital pro-

cessing once the carrier frequency has been removed (in

baseband). Thus, time-of-flight and packet detection delay

affect the wireless OFDM channels in different ways.

To understand this difference, consider the WiFi fre-

quency band, i. Let h̃i,k be the measured channel of OFDM

subcarrier k, at frequency fi,k. h̃i,k experiences two phase

rotations in different stages of the signal’s lifetime:

• A phase rotation in the air proportional to the over-the-

air frequency fi,k. From Eqn. 2 in §3, this phase value

for a frequency fi,k is:

∠hi,k = −2πfi,kτ mod 2π,

where τ is the time-of-flight.

• An additional phase rotation due to packet detection af-

ter the removal of the carrier frequency. This additional

phase rotation can be expressed as:

∆i,k = −2π(fi,k − fi,0)δi,

where δi is the packet detection delay.

Thus, the total measured channel phase at subcarrier k is:

∠h̃i,k =(∠hi,k +∆i,k) mod 2π (5)

=(−2πfi,kτ − 2π(fi,k − fi,0)δi) mod 2π (6)

Notice from the above equation that the second term

∆i,k = −2π(fi,k − fi,0)δi = 0 at k = 0. In other words, at
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τ

the zero-subcarrier of OFDM, the measured channel h̃i,k

is identical in phase to the true channel hi,k over-the-air

which validates our claim.

In practice, this means that we can apply the Chinese

Remainder theorem as described in Eqn. 4 of §3 at the

zero-subcarriers (i.e. center frequencies) of each WiFi fre-

quency band. In the U.S., WiFi at 2.4 GHz and 5 GHz

has a total of 35 WiFi bands with independent center fre-

quencies.2 Therefore, a sweep of all WiFi frequency bands

results in 35 independent equations like in Eqn. 4, which

we can solve to recover time-of-flight.

One problem still needs to be addressed. So far we have

used the measured channel at the zero-subcarrier of WiFi

bands. However, WiFi transmitters do not send data on the

zero-subcarrier, meaning that this channel simply cannot

be measured. This is because the zero-subcarrier overlaps

with DC offsets in hardware that are extremely difficult

to remove [22, 3]. So how can one measure channels on

zero-subcarriers if they do not even contain data?

Fortunately, Chronos can tackle this challenge by us-

ing the remaining WiFi OFDM subcarriers, where signals

are transmitted. Specifically, it leverages the fact that in-

door wireless channels are based on physical phenomena.

Hence, they are continuous over a small number of OFDM

subcarriers [27]. This means that Chronos can interpolate

the measured channel phase across all subcarriers to es-

timate the missing phase at the zero-subcarrier.3 Indeed,

the 802.11n standard [3] measures wireless channels on

as many as 30 subcarriers in each WiFi band. Hence, in-

terpolating between the channels not only helps Chronos

retrieve the measured channel on the zero-subcarrier, but

also provides additional resilience to noise.

To summarize, Chronos applies the following steps to

account for packet detection delay: (1) It obtains the mea-

sured wireless channels on the 30 subcarriers on the 35

available WiFi bands; (2) It interpolates between these

subcarriers to obtain the measured channel phase on the

zero-subcarriers on each of these bands, which is unaf-

fected by packet detection delay. (3) It retrieves the time-

of-flight using the resulting 35 channels.

5. COMBATING MULTIPATH

So far, our discussion has assumed that a wireless signal

propagates along a single direct path between its transmit-

ter and receiver. However, indoor environments are rich in

multipath, causing wireless signals to bounce off objects

in the environment like walls and furniture. Fig. 3(a) il-

lustrates an example where the signal travels along three

paths from its sender to receiver. The signals on each of

these paths propagate over the air incurring different time

2Including the DFS bands at 5 GHz in the U.S. which are sup-
ported by many 802.11h-compatible 802.11n radios, e.g., the In-
tel 5300.
3Our implementation of Chronos uses cubic spline interpolation.
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Figure 3: Combating Multipath: Consider a signal propagat-
ing from a transmitter to a receiver along 3 paths as shown in
(a): an attenuated direct path and two reflected paths of lengths
5.2 ns, 10 ns and 16 ns respectively. These paths can be separated
by using the inverse discrete Fourier Transform as shown in (b).
The plot has 3 peaks corresponding to the propagation delays of
the paths, with peak magnitudes scaled by relative attenuations.

delays as well as different attenuations. The ultimate re-

ceived signal is therefore the sum of these multiple signal

copies, each having experienced a different propagation

delay. Fig. 3(b) represents this using a multipath profile.

This profile has peaks at the propagation delays of sig-

nal paths, scaled by their respective attenuations. Hence,

Chronos needs a mechanism to find such a multipath pro-

file, so as to separate the propagation delays of different

signal paths. This allows it to then identify the time-of-

flight as the least of these propagation delays, i.e. the delay

of the most direct (shortest) path.

5.1 Computing Multipath Profiles

Say that wireless signals from a transmitter reach a re-

ceiver along p different paths. The received signal from

each path corresponds to amplitudes {a1, . . . , ap} and

propagation delays {τ1, . . . , τp}. Observe that Eqn. 1 con-

siders only a single path experiencing propagation delay

and attenuation. In the presence of multipath, we can ex-

tend this equation to write the measured channel h̃i,0 on

center-frequency fi,0 as the sum of the channels on each of

these paths, i.e.:

h̃i,0 =

p∑

k=1

ake−j2πfi,0τk , for i = 1, . . . , n (7)

Now, we need to disentangle these different paths and

recover their propagation delays. To do this, notice that the

above equation has a familiar form – it is the well-known

Discrete Fourier Transform. Thus, if one could obtain

the channel measurements at many uniformly-spaced fre-

quencies, a simple inverse-Fourier transform would sep-

arate individual paths. Such an inverse Fourier transform

has a closed-form expression that can be used to obtain the

propagation delay of all paths and compute the multipath

profile (up to a resolution defined by the bandwidth).

WiFi frequency bands, however, are not equally spaced

– they are scattered around 2.4 GHz and multiple non-

contiguous chunks at 5 GHz, as shown in Fig. 1. While we
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can measure h̃i,0 at each WiFi band, these measurements

will not be at equally spaced frequencies and hence cannot

be simply used to compute the inverse Fourier transform.

In fact, since our measurements of the channels are not

uniformly spaced, we are dealing with the Non-uniform

Discrete Fourier Transform or NDFT [8]. To recover the

multipath profile, we need to invert the NDFT.

5.2 Inverting the NDFT

The NDFT is an under-determined system, where the

responses of multiple frequency elements are unavail-

able [19, 15]. Thus, the inverse of such a Fourier trans-

form does not have a single closed-form solution, but sev-

eral possible solutions. So how can Chronos pick the best

among those solutions to find the true times-of-flight?

Chronos adds another constraint to the inverse-NDFT

optimization. Specifically, this constraint favors solutions

that are sparse, i.e., have few dominant paths. Intuitively,

this stems from the fact that while signals in indoor envi-

ronments traverse several paths, a few paths tend to domi-

nate as they suffer minimal attenuation [10].4 Indeed other

localization systems make this assumption as well, albeit

less explicitly. For instance, antenna-array systems can re-

solve a limited number of dominant paths based on the

number of antennas they use.

We can formulate the sparsity constraint mathemati-

cally as follows. Let the vector p sample inverse-NDFT

at m discrete values τ ∈ {τ1, . . . , τm}. Then, we can intro-

duce sparsity as a simple constraint in the NDFT inversion

problem that minimizes the L-1 norm of p. Indeed, it has

been well-studied in optimization theory that minimizing

the L-1 norm of a vector favors sparse solutions for that

vector [7]. Thus, we can write the optimization problem

to solve for the inverse-NDFT as:

min�p�1 (8)

s.t. �h̃−Fp�2
2 = 0 (9)

where, F is the n×m Fourier matrix, i.e. Fi,k = e−j2πfi,0τk ,

h̃ = [h̃1,0, . . . , h̃n,0]
T is the n×1 vector of wireless channels

at the n different center-frequencies {f1,0, . . . , fn,0}, � · �1

is the L-1 norm, and � · �2 is the L-2 norm. Here, the con-

straint makes sure that the Discrete Fourier Transform of p

is h̃, as desired. In other words, it ensures p is a candidate

inverse-NDFT solution of h̃. The objective function favors

sparse solutions by minimizing the L-1 norm of p.

We can re-formulate the above optimization problem

using the method of Lagrange multipliers as:

min
p

�h̃ −Fp�2
2 + α�p�1 (10)

Notice that the factor α is a sparsity parameter that en-

forces the level of sparsity. A bigger choice of α leads to

fewer non-zero values in p.

This objective function is convex but not differentiable.

4We empirically evaluate the sparsity of indoor multipath pro-
files in typical line-of-sight and non-line-of-sight settings in §9.1.

1 Algorithm to Compute Inverse NDFT

� Given: Measured Channels, h̃

� F : Non-uniform DFT matrix, such that Fi,k = e−j2πfi,0τk

� α: Sparsity parameter; �: Convergence Parameter

� Output: Inverse-NDFT, p

� Initialize p0 to a random value, t = 0, γ = 1
||F||2

.

while converged = false do

pt+1 =SPARSIFY(pt − γF∗(Fpt − h̃), γα)

if ||pt+1 − pt||2 < � then

converged = true

p = pt+1

else

t = t + 1

end if

end while

function SPARSIFY(p,t)

for i = 1, 2, ...length(p) do

if |pi| < t then

pi = 0

else

pi = pi
|pi|−t

|pi|

end if

end for

end function

Our approach to optimize for it borrows from proximal

gradient methods, a special class of optimization algo-

rithms that have provable convergence guarantees [24].

Specifically, our algorithm takes as inputs the measured

wireless channels h̃ at the frequencies {f1,0, . . . , fn,0} and

the sparsity parameter α. It then applies a gradient-descent

style algorithm by computing the gradient of differentiable

terms in the objective function (i.e., the L-2 norm), pick-

ing sparse solutions along the way (i.e., enforcing the L-

1 norm). Algorithm 1 summarizes the steps to invert the

NDFT and find the multipath profile.5

Inverting the NDFT provides Chronos with the time-

of-flight on all paths. Chronos still needs to identify the

direct path to compute the distance between transmitter

and receiver. To do this, Chronos leverages that: of all the

paths of the wireless signal, the direct path is the short-

est. Hence, the time-of-flight of the direct path is the time

corresponding to the first peak in the multipath profile.

It is worth noting that by making the sparsity assump-

tion, we lose the propagation delays of extremely weak

paths in the multipath profile. However, Chronos only

needs the propagation delay of the direct path. As long

as this path is among the dominant signal paths, Chronos

can retrieve it accurately. Of course, in some unlikely sce-

narios, the direct path may be too attenuated, which leads

to poorer localization in that instance. Our results in §9.1

depict the sparsity of representative multipath profiles, and

show its impact on overall accuracy.

6. CORRECTING FOR PHASE OFFSETS

To work with practical WiFi radios, Chronos has to ad-

5MATLAB implementation of this algorithm takes 3.1 s (stan-
dard deviation 0.6 s) for Chronos’s implementation in Sec. 8.
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dress their inherent phase and frequency offsets:

• PLL Phase Offset: Frequency hopping causes a ran-

dom phase offset in the measured channel. This is be-

cause the phase-locked loop (PLL) responsible for gen-

erating the center frequency for the transmitter and the

receiver starts at random initial phase (say, φtx
i,0 and

φrx
i,0 respectively). As a result, the channel measured at

the receiver is corrupted by an additional phase off-

set φtx
i,0 − φrx

i,0. This phase offset, if left uncorrected,

could render the phase information uncorrelated with

the time-of-flight of the signal.

• Carrier Frequency Offset: This offset occurs due to

small differences in the carrier frequency of the trans-

mitting and receiving radio. This leads to a time vary-

ing phase offset across each frequency band. Such dif-

ferences accumulate quickly over time and need to be

corrected for every WiFi packet. Mathematically, in the

ith WiFi frequency band, the receiver center frequency

f rx
i,0 is slightly different from the transmitter center fre-

quency, f tx
i,0. As a result, the channel measurements at

the receiver have an additional phase change which is

proportional to f tx
i,0 − f rx

i,0.

Let us refer to the channel values that incorporate phase

and frequency offsets as CSI (channel state information),

which is the typical term use in communication systems.

Then, the CSI measured at the receiver for the ith fre-

quency band can be written as:

CSIrx
i,0(t) = h̃i,0ej(f tx

i,0−f rx
i,0)t+j(φtx

i,0−φrx
i,0) (11)

So how do we remove the phase and frequency offsets

from CSI? To address this issue, Chronos exploits that, the

phase and frequency offsets measured on one node with

respect to another change sign when measured on the sec-

ond node with respect to the first. Thus, if one would mea-

sure the CSI on the transmitter with respect to the receiver,

it would take the following value:

CSItx
i,0(t) = h̃i,0ej(f rx

i,0−f tx
i,0)t+j(φrx

i,0−φtx
i,0). (12)

Note that the channel, h̃i,0, in equations 11 and 12 is the

same due to reciprocity [20]. We can therefore multiply

the CSI measurements at the receiver and the transmitter

to recover the wireless channel as follows:

h̃2
i,0 = CSIrx

i,0(t)CSItx
i,0(t) (13)

One may wonder how Chronos measure the CSI at the

transmitter. Note however that as part of our channel hop-

ping protocol both nodes have to transmit packets to each

other. Hence, the CSI can be measured on both sides and

exchanged to apply Eqn. 13.

The above formulation helps us only retrieve the square

of the wireless channels h̃2
i,0. However, this is not an issue:

Chronos can directly feed h̃2
i,0 into its algorithm (Alg. 1

in §5) instead of h̃i,0. Then the first peak of the resulting

multipath profile will simply be at twice the time-of-flight.

To see why, let us look at a simple example. Consider a

transmitter and receiver obtaining their signals along two

paths, with propagation delays 2 ns and 4 ns. We can write

the square of the resulting wireless channels from Eqn. 7

for frequency band i in a simple form:

h̃2
i,0 = (a1e−j2πfi,0×2 + a2e−j2πfi,0×4)2

= a2
1e−j2πfi,0×2×2 + 2a1a2e−j2πfi,0×(2+4) + a2

2e−j2πfi,0×4×2

= b1e−j2πfi,0×4 + b2e−j2πfi,0×6 + b3e−j2πfi,0×8

Where b1 = a2
1, b2 = 2a1a2, b3 = a2

2. Clearly, the

above equation has a form similar to a wireless channel

with propagation delays 4 ns, 6 ns and 8 ns respectively.

This means that applying Chronos’s algorithm will result

in peaks precisely at 4 ns, 6 ns and 8 ns. Notice that in

addition to 4 ns and 8 ns that are simply twice the prop-

agation delays of genuine paths, there is an extra peak at

6 ns. This peak stems from the square operation in h̃2
i,0

and is a sum of two delays. However, the sum of any two

delays will always be higher than twice the lowest delay.

Consequently, the smallest of these propagation delays is

still at 4 ns – i.e., at twice the time-of-flight. A similar ar-

gument holds for larger number of signal paths, and can

be used to recover time-of-flight.

Finally, we make a few observations: (1) In practice,

the forward and reverse channels cannot be measured at

exactly the same t but within short time separations (tens

of microseconds), resulting in a small phase error. How-

ever, this error is significantly smaller than the error from

not compensating for frequency offsets altogether (for tens

of milliseconds). The error can be resolved by averaging

over several packets. (2) Delays in the hardware result in a

constant additive value to the time-of-flight. This constant

can be pre-calibrated once in the lifetime of a WiFi-card,

by measuring time-of-flight to a device at a known dis-

tance. (3) Standard Fourier Transform properties dictate

that a minimum separation of ∆f in frequencies of mea-

sured CSI values, leads to an ambiguity by multiples of
1
∆f

in the time estimates (i.e the delay is measured mod-

ulo 1
∆f

). Since, Chronos uses CSI measurements at center

frequencies, the minimum frequency separation is 5 MHz
6. Hence, the time domain ambiguity is 200 ns which cor-

responds to a distance of 60 m, i.e., distance measurements

are modulo 60 m. Thus, for indoor settings and typical

WiFi propagation, one can ignore the modulo factor.

7. COMPUTING DISTANCES AND LOCATION

So far, we have explained how Chronos measures the

time-of-flight between two antennas on a pair of WiFi

cards. One can then compute the distance between the two

antennas (i.e., the two devices) by multiplying the time-

of-flight by the speed of light.

In order to get the location of the client from the dis-

tance measurements, Chronos follows a two-step proce-

6The frequency separation is less than the channel bandwidth of
20 MHz due to overlapping WiFi bands.
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dure. In the first step, Chronos refines the distance mea-

surements by utilizing geometric constraints, imposed by

the relative locations of the antennas on the access point

and the client. In the second step, Chronos formulates a

quadratic optimization problem, based on the refined dis-

tances to get the accurate location of the client with respect

to the access point.

Mathematically, we denote the separation between an-

tenna i and antenna j on the access point by l
ap
ij . Simi-

larly, antenna i and antenna j on the client are separated

by lcl
i,j. By using standard triangle inequality, we know that

|dij − di′j| < l
ap

ii′ , where dij is the distance measured by

Chronos between antenna i on the access point and an-

tenna j on the client. When a pair of distances measured by

Chronos violates this constraint; clearly, one or both of the

distance measurements must be declared invalid. Chronos

uses a relaxed version of triangle inequality to eliminate

erroneous distance measurements. Specifically, if we de-

note the maximum distance between any pair of antennas

on a device by α, Chronos chooses the largest cluster, C,

of distance measurements such that each measurement in

this cluster is at most α away from at least one other dis-

tance measurement in the cluster. Chronos, then, discards

the distance measurements that do not belong to C.

Finally, Chronos formulates the following constrained

optimization problem to find the accurate position of the

client. We denote the position of the ith antenna on the

access point by (xap
i , y

ap
i ). Our goal is to optimize for the

position of the client which we denote by (x, y), where x

and y are 3 × 1 vectors of antenna coordinates:

min
�>0,x,y

�

such that

∀(i, j) ∈ C, |dist((xap
i , y

ap
i ), (xj, yj))− dij)| < �

∀(i, j) ∈ {1, 2, 3}, dist((xi, yi), (xj, yj)) = lcl
i,j

where dist((x1, y1), (x2, y2)) denotes the euclidean dis-

tance between points (x1, y1) and (x2, y2). On a high level,

Chronos optimizes for the minimal violation of the dis-

tance constraints while still maintaining the relative posi-

tion of the antennas on the client. We formulate this prob-

lem as a quadratic-constrained optimization in MATLAB

and use the fmincon solver to find the optimum solution.

The average execution time for this algorithm is 0.09 s

(standard deviation 0.01 s).

8. IMPLEMENTATION

We implemented Chronos as a software patch to the iwl-

wifi driver on Ubuntu Linux running the 3.5.7 kernel. To

measure channel-state-information, we use the 802.11 CSI

Tool [21] for the Intel 5300 WiFi card. We measure the

channels on both 2.4 GHz and 5 GHz WiFi bands.7

7The Intel 5300 WiFi card is known to have a firmware issue on
the 2.4 GHz bands that causes it to report the phase of the channel

Figure 4: Lab Testbed: The figure depicts our testbed with can-
didate locations for the nodes marked with blue dots.

Unless specified otherwise, we pair two Chronos de-

vices by placing each device in monitor mode with packet

injection support on the same WiFi frequency. We im-

plemented Chronos’s frequency band hopping protocol

(see §3) in the iwlwifi driver using high resolution timers

(hrtimers), which can schedule kernel tasks such as packet

transmits at microsecond granularity. Since the 802.11

CSI Tool does not report channel state information for

Link-Layer ACKs received by the card, we use packet-

injection to create and transmit special acknowledgments

directly from the iwlwifi driver to minimize delay between

packets and acknowledgments. These acknowledgments

are also used to signal the next channel that the devices

should hop to, as described in §3. We process the CSI to

infer time-of-flight and device locations purely in software

written in part in C++, MEX and MATLAB.

We note that all our experiments are conducted in

naturally dynamic environments, specifically, an office

building, a coffee shop and a home with four occu-

pants. Chronos requires no modifications based on the

changes in the environment. The environments have am-

bient WiFi traffic. We could sense 3 to 19 different ac-

cess points across our testbeds. Chronos disables the con-

tention mechanism during hopping in order to enable fast

switching across different WiFi bands. This causes noise

in Chronos’s measurements when there is a collision with

other WiFi packets. However, Chronos is resilient to noise

on a small subset of the measurements. Moreover, since

Chronos sends few packets on each WiFi band, it does not

adversely effect the WiFi traffic.

9. RESULTS

We evaluate Chronos’s ability to measure the time-of-

flight, and compute a client’s position using a single AP.

9.1 Time-of-Flight Accuracy

We examine whether Chronos can deliver on its promise

∠h̃i,0 modulo π/2 (instead of the phase modulo 2π) [18]. We
resolve this issue by performing Chronos’s algorithm at 2.4 GHz

on h̃4
i,0 instead of h̃i,0. This does not affect the fact that the direct

path of the signal will continue being the first peak in the inverse
NDFT (like in §6).
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Figure 5: Accuracy in Time of Flight: (a) The CDF of error in time-of-flight between two devices in Line of Sight (LOS) and
Non-Line of Sight (NLOS). (b) Representative multipath profiles. (c) Histograms of time-of-flight and packet detection delay.

of measuring sub-nanosecond time-of-flight between a

pair of commodity WiFi devices.

Method: We run our experiments in the testbed in

Fig. 4. In each experiment, we randomly pick a location

for the AP. We then randomly pick a client location that is

within 15 meter from the AP. We experiment with both

line-of-sight and non-line-of-sight settings. We perform

our experiments using a 10” ASUS EEPC netbook as a

client and a Thinkpad W300 Laptop emulating a WiFi AP

via hostapd. Both devices are equipped with the 3-antenna

Intel 5300 chipset. The antennas are placed at the corner of

each device, which results an average antenna spacing of

30cm for the Thinkpad AP and 12cm for the ASUS client.

Using the above setup, we have run 400 localization

experiments for different AP-client pairs. For each pair,

we run Chronos channel hopping protocol. We compute

the time of flight between each transmit antenna and re-

ceive antenna. We measure the ground-truth location using

a combination of architectural drawings of our building

and a Bosch GLM50 laser distance measurement tool [1],

which measures distances up to 50 m with an accuracy of

1.5 mm. The ground truth time-of-flight is the ground truth

distance divided by the speed of light.

Time-of-Flight Results: We first evaluate Chronos’s

accuracy in time-of-flight. Fig. 5(a) depicts the CDF

of the time-of-flight of the signal in line-of-sight set-

tings and non-line-of-sight. We observe that the me-

dian errors in time-of-flight estimation are 0.47 ns and

0.69 ns respectively. These results show that Chronos

achieves its promise of computing time-of-flight at sub-

nanosecond accuracy. To put this in perspective, consider

SourceSync [38], a state-of-the-art system for time syn-

chronization. SourceSync achieves 95th percentile syn-

chronization error up to 20 ns, using advanced software ra-

dios. In contrast, the figure shows that Chronos’s 95th per-

centile error is 1.96 ns in line-of-sight and 4.01 ns in non-

line-of-sight. Thus, Chronos achieves 5 to 10 fold lower

error in time-of-flight, and runs on commodity WiFi cards

as opposed to software radios.

Multipath Profile Results: Next, we would like to ex-

amine whether multiple path profiles are indeed sparse.

Thus, we plot candidate multipath profiles computed by

Chronos in the above experiments. Fig. 5(b) plots repre-

sentative multipath profiles in line-of-sight and multipath

environments. We note that both profiles are sparse, with

the profile in multipath environments having five domi-

nant peaks. Across all experiments, the mean number of

dominant peaks in the multipath profiles is 5.05 on aver-

age, with standard deviation 1.95 — indicating that they

are indeed sparse. As expected, the profile in line-of-sight

has even fewer dominant peaks than the profile in multi-

path settings. In both cases, we observe that the leftmost

peaks in both profiles correspond to the true location of the

source. Further, we observe that the peaks in both profiles

are sharp due to two reasons: 1) Chronos effectively spans

a large bandwidth that includes all WiFi frequency bands,

leading to high time resolution; 2) Chronos’s resolution

is further improved by exploiting sparsity that focuses on

retrieving the sparse dominant peaks at much higher reso-

lution, as opposed to all peaks.

Packet Detection Delay Results: Past work on WiFi time

measurement and/or synchronization cannot measure the

time-of-flight of a packet separately from its detection de-

lay [38]. ([35] measures the distribution of detection de-

lays but not the detection delay of a particular packet.)

In contrast, Chronos has a novel way for separating the

detection delay from the time-of-flight. We would like to

understand the importance of this capability for the suc-

cess of Chronos. Thus, we use the measurements from the

above experiments to compare time-of-flight in indoor en-

vironments against packet detection delay.

Fig. 5(c) depicts histograms of both packet detection

delay and time-of-flight across experiments. Chronos ob-

serves a median packet detection delay of 177 ns across

experiments. We emphasize two key observations: (1)

Packet detection delay is nearly 8× larger than the time-

of-flight in our typical indoor testbed. (2) Packet delay

varies dramatically between packets, and has a high stan-

dard deviation of 24.8 ns. In other words, packet detection

delays are large, highly variable, and hard to predict. This

means that if left uncompensated, these delays could lead

to a large error in time-of-flight measurements. Our results

therefore reinforce the importance of accounting for these

delays and demonstrate Chronos’s ability to do so.
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Figure 6: Ranging Accuracy: Plots error in distance across the
true distance separating the transmitter from the receiver.
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Figure 7: Localization Accuracy: Plots CDF of localization
error in Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS).

9.2 Localization Accuracy

We evaluate Chronos’s accuracy in measuring distance

and location using a single access point.

Method: We compute the time-of-flight between the AP

and user client in the testbed as described in §9.1 above.

We use the measured time-of-flight to compute the dis-

tance between antennas and localize the client with respect

to the AP as described in §7. We repeat the experiment

multiple times in line-of-sight and non-line-of-sight.

Location Results: Fig. 7 plots a CDF of localization er-

ror using Chronos in different settings. The device’s me-

dian positioning error is 65 cm and 98 cm in line-of-sight

and non-line-of-sight respectively. This result shows that

Chronos’s accuracy is comparable to state-of-the-art in-

door localization that use multiple AP’s [30, 32, 48].

Ranging Results: In some applications, it is important

to maintain a particular distance between objects but the

exact location is not necessary (e.g., preventing robot col-

lision). Thus, here we plot the ranging results of Chronos.

Fig. 6 plots the median and standard deviation of error in

distance computed between the transmitter and receiver

against their true distance. We observe that this error is ini-

tially around 10 cm and increases to at most 26 cm at 12-

15 meters. The increase is primarily due to reduced signal-

to-noise ratio at further distances. Note that the ranging

accuracy is higher than the localization accuracy because

ranging is a simpler problem (no need to find the exact

direction) and Chronos’s time-of-flight computation natu-

rally yields the range between devices.

9.3 Impact on Network traffic

Chronos enables localization between a pair of WiFi de-

vices without third party support. In many cases, these are

user devices that do not otherwise communicate data be-

tween each other directly. However, an interesting ques-

tion is the impact of Chronos on network traffic, if one

of the devices is serving traffic, such as a WiFi AP. This

experiment answers three questions in this regard: (1)

How long does Chronos take to hop between all WiFi

bands? (2) How does Chronos impact real-time traffic like

video streaming applications? (3) How does Chronos af-

fect TCP? We address these questions below:

Method: We consider a Thinkpad W530 Laptop emu-

lating an AP and two ASUS EEPC netbook clients. We

assume client-2 requests the AP for indoor localization

at t = 6 s. We measure the time Chronos incurs to hop

between the 35 WiFi bands. Meanwhile, client-1 runs a

long-lasting traffic flow. We consider two types of flows:

(1) VLC video stream over RTP; (2) TCP flow using iperf.

We run the experiment 30 times and find aggregate results.

Results: Fig. 8(a) depicts the CDF of the time that

Chronos incurs to hop over all WiFi bands. We observe

that the median hopping time is 84 ms for the Intel 5300

WiFi card, like past work on commercial WiFi radios [29].

Next, Fig. 8(b) plots a representative trace of the cumu-

lative bytes of video received over time of a VLC video

stream run by client-1 (solid blue line). The red line plots

the cumulative number of bytes of video played by the

client. Notice that at t = 6 s, there is a brief time span

when no new bytes are downloaded by the client (ow-

ing to the localization request). However, in this inter-

val, the buffer has enough bytes of video to play, ensur-

ing that the user does not perceive a video stall (i.e. the

blue and red lines do not cross). In other words, buffers

in today’s video streaming applications can largely cush-

ion such short-lived outages [26, 25], minimizing impact

on user experience. Similarly, Fig. 8(c) depicts a represen-

tative trace of the throughput over time of a TCP flow at

client-1. The TCP throughput dips only slightly by 18.5%

at t = 6 s, when client-2 requests location. Thus, Chronos

can support localization without much impact on data traf-

fic. However, if more frequent localization is desired with

large traffic demands, we recommend deploying a dedi-

cated AP or WiFi beacon for localization.

10. APPLICATIONS

We evaluate Chronos in three application scenarios.

10.1 Room Occupancy Detection

Smart home technologies, such as personalized heating

and lighting, can vastly benefit from information about

the number and identity of people in individual rooms.

Chronos is a natural solution for this problem as it can lo-

calize and track people using their smartphones and wear-

ables, even if the home has a single WiFi access point.

Method: To demonstrate this capability, we deployed

Chronos in a two-bedroom apartment that has four res-



USENIX Association  13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 175

0 1 2 3 40

0.2

0.4

0.6

0.8

1

Localization Error(m)

CD
F

LOS
NLOS

0 50 100 1500

0.2

0.4

0.6

0.8

1

Hopping time (ms)

CD
F

(a) Hopping Time

0 2 4 6 8 100

0.5

1

1.5

2

2.5x 104

Time(in s)

Da
ta(

Kb
)

Localize

Download
Play

(b) Video Streaming

0 2 4 6 8 100
5

10
15
20
25
30
35

Localize

Time(in s)

Th
rou

gh
pu

t(M
Bit

s/s
)

(c) TCP Throughput

Figure 8: Impact on Network Traffic: (a) measures the CDF of time taken by Chronos to hop between all WiFi bands – a small
value of 84 ms. Consider a client-1 with a long-running traffic flow to an AP. The AP is asked to localize another client-2 at t = 6 s. (b)
depicts a representative trace of the number of bytes of data downloaded and data played over time if the client-1 views a VLC video
stream. (c) measures the throughput if client-1 runs a TCP flow using iperf. In either case, the impact of client-1’s flow is minimal at
t = 6 s.

(a) Home Floor Plan (b) Coffee Shop Schematic (c) Personal Drone

Figure 9: (a) Floor map of the apartment where Chronos is deployed. Red dot indicates the access point and the blue dots

represent the client positions. (b) Coffee shop schematic. Red dot indicates the access point. (c) We implement Chronos

on an AscTec Hummingbird quadrotor with an AscTec Atomboard.

idents. The floor map of the apartment is shown in

Fig. 9(a). The Chronos access point is centrally placed in

the home and is indicated by the red dot. Each resident is

given an ASUS netbook, equipped with Intel 5300 WiFi

cards, and running Chronos. The residents are then asked

to move freely to locations within the apartment. Their lo-

cations are manually recorded and are marked by the blue

dots in Fig. 9(a). Chronos measures the location of each

resident and detects the room the person is in. In partic-

ular, Chronos distinguishes between the two bed rooms,

living room, kitchen and bathroom.

Results: In our experiments, Chronos detects the user to

be in the correct room in 94.3% of the experiments. Most

of the errors occurred in Bedroom 1 in Fig. 9(a), and were

due to the signal being too weak after traversing two walls

and a closet. Overall, the results show that Chronos can

enable applications based on room occupancy detection

with a single home access point.

10.2 WiFi Geo-Fencing

Chronos can be used to authorize WiFi access in small

businesses, which have only one access point. To demon-

strate this capability, we deploy Chronos in a popular cof-

fee shop with free WiFi, and use the distance from the

access point to measure whether an individual is inside or

outside the coffee shop (Fig. 9(b)).

Method: We conducted 100 experiments in the coffee

shop. The user used an ASUS netbook, equipped with the

Intel 5300 WiFi card to connect to the Chronos AP. In 50

of these experiments, the user was standing at a randomly

chosen location inside the coffee shop, while in the oth-

ers, the user was standing outside, while still being able to

access the WiFi connection.

Results: Chronos correctly inferred whether the user was

inside or outside in 97% of experiments. However, if we

simply authenticate users based on location without any

buffer zone, the accuracy is 97%, but one legitimate cus-

tomer cannot access WiFi in his current location. In con-

trast, if we decide to accept users located within 30 cm

of the premises, Chronos authenticates all legitimate cus-

tomers but allows access incorrectly to people outside the

premise in 5% of the experiments, decreasing the overall

accuracy to 95%. Since it is more important to ensure cus-

tomers can access WiFi, we believe that one should use

some buffer zone.

10.3 Personal Drones

We apply Chronos to indoor personal drones [11].

These drones can follow users around while maintaining

a convenient distance relative to the control device in the

user’s hand or pocket. Users can use these drones to take

pictures or videos of them while performing an activity,

even in indoor settings where GPS is unavailable.

Method: We use an AscTec Hummingbird quadrotor
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Figure 10: Application to Personal Drones: The drone uses
Chronos to maintain a constant distance of 1.4 m to the user. The
figure plots the CDF of errors in maintaining a distance of 1.4 m.

equipped with the AscTec Atomboard light-weight com-

puting platform (with the Intel 5300 WiFi card), a Go-pro

camera and a Yei-Technology motion sensor. Fig. 9(c) de-

picts our setup. Note that the Intel 5300 WiFi card supports

3-antennas; the fourth antenna on the quadrotor is placed

only for balance and stability.

We perform our personal drone experiments in a 6 m ×

5 m room augmented with the VICON motion capture sys-

tem [2]. We use VICON to find the ground-truth trajec-

tories of the personal drone and the user control device.

In each experiment, the personal drone tracks an ASUS

EEPC netbook with the Intel 5300 WiFi card held by a

user. The distance measurements from Chronos are in-

tegrated with drone navigation using a standard negative

feedback-loop robotic controller [12]. The drone main-

tains a constant height and follows the user to maintain a

constant distance of 1.4 m relative to the user’s device. The

drone also captures photographs of the user along the way

using the Go-Pro camera mounted on the Hummingbird

quadrotor, keeping the user at 1.4 m in focus. The drone

uses the compass on the user’s device and the quadrotor to

ensure that its camera always faces the user.

Results: Fig. 10 measures the CDF of root mean squared

deviation in distance of the drone relative to the desired

value of 1.4 m — a median of 4.17 cm. Our results reveal

that the drone tightly maintains its relative distance to the

user’s device. Notice that our error in distance is signifi-

cantly lower in this experiment relative to §9.2. This is be-

cause drones measure multiple distances as they navigate

in the air, which helps de-noise measurements and remove

outliers. Chronos is the first system to achieve such a high

accuracy in device to device positioning using no support

from surrounding infrastructure.

11. RELATED WORK

Chronos builds on vast literature on indoor WiFi-based

localization [40, 13, 9, 51, 18, 48, 32, 30, 50, 4]. However,

past work that delivers sub-meter location accuracy typ-

ically requires cooperation across multiple (four or five)

AP’s [18, 48, 32, 30, 50].

A few prior proposals have aimed to localize with a sin-

gle WiFi AP. They may be divided into two categories:

some proposals [31, 52] require exhaustive fingerprinting

of received signal power prior to deployment. Such pro-

posals exhibit localization errors of several meters and

incur a large overhead due to fingerprinting. The second

class of proposals attempt to measure time-of-flight either

directly [35], or indirectly using the phase [53]. However,

since they cannot accurately measure the time-of-flight,

they need the user to walk around, perform measurements

in multiple locations, and intersect those measurements

with the help of an accelerometer. In contrast, Chronos

has tens of centimeter accuracy, and neither requires fin-

gerprinting nor user motion.

A few past papers on WiFi-based localization leverage

channel hopping [50, 49]. However, unlike Chronos which

measures the absolute time-of-flight and localizes with a

single AP, those systems measure differences in the time-

of-flight and require the deployment of multiple AP’s.

Prior theoretical ranging algorithms [44, 43] have used

the Chinese Remainder theorem. However, Chronos dif-

fers from those algorithms in multiple ways. First, those

algorithms ignore multipath and assume that wireless sig-

nals propagate in free space with a single time-of-flight

value. In contrast, Chronos addresses the crucial problem

of multipath, and hence its complete algorithm uses non-

uniform Fourier transform as opposed to the Chinese Re-

mainder theorem. Second, those algorithms ignore pratical

issues such as the frequency offset between the transmitter

and the receiver and the inability of the receiver to separate

the time of flight from the packet detection delay.

Finally, some past work has explored measuring the

time-of-flight of WiFi signals for reasons other than lo-

calization. There have been several studies that resolve

time-of-flight to around ten nanoseconds using the clocks

of WiFi cards or other methods [46, 33, 17, 34, 38]. In

contrast, Chronos can achieve sub-nanosecond resolution

which is necessary for accurate localization.

12. CONCLUSION

This paper presents Chronos, a system that measures

sub-nanosecond time-of-flight on commercial WiFi ra-

dios. Chronos uses these measurements to enable WiFi

device-to-device positioning at state-of-the-art accuracy,

without support of additional WiFi infrastructure or non-

WiFi sensors. By doing so, Chronos opens up WiFi-based

positioning to new applications where additional infras-

tructure and sensors may be unavailable or inaccessible,

e.g., geo-fencing, home occupancy measurements, finding

lost devices, maintaining robotic formations, etc.
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