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Abstract
Lung adenocarcinomas (LUAD) start as precancerous lesions such as atypical adenomatous hyperplasia
(AAH), develop stepwise into adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma
(MIA), then eventually progress toward invasive adenocarcinoma (IA). To date the cellular heterogeneity
across these distinct clinical stages and the underlying molecular events driving tumor progression
remain largely unclear. In this study, we performed single-cell RNA sequencing on 52 specimens from 25
patients spanning the four clinical stages. By assessing the expression pattern of marker genes among
268,471 cells, we identi�ed 16 major cell types. We demonstrated that AT2 feature cell types (AT2-like
cells) were associated with malignant composition. AT2-like subcluster emerged �rst in AAH and partially
lost AT2 cell transcriptional identity, accompanied with a gain of stemness during cell transition. In
addition, genes related to energy metabolism, ribosome synthesis were upregulated in the early stage of
LUAD, leading us to identify new markers including miRNA10 and β-hydroxybutyric acid to diagnose
early-stage LUAD noninvasively in the blood. We also identi�ed MDK and TIMP1 as potential biomarkers
to facilitate our understanding of LUAD pathogenesis. Taken together, our data identi�ed a new
mechanism in LUAD evolution, and provided a robust basis for diagnosis and treatment of LUAD.

Introduction
Lung cancer is the leading cause of cancer-related death worldwide, with adenocarcinoma representing
the most prevalent subtype 1. Among all lung adenocarcinomas (LUAD), the most prevalent subset is
believed to develop via tumorigenesis and progress from atypical adenomatous hyperplasia (AAH) to
adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and �nally, overt invasive lung
adenocarcinoma (IA) 2. Over the past decade, efforts geared toward understanding LUAD progression
have largely focused on pro�ling cancer cells with genetic aberrations 3. Nonetheless, only increases in
the frequency of genetic alterations during the progression to malignancy have been reported 4, 5, but the
cellular heterogeneity and molecular events underlying cancer initiation and progression remain unclear.

The lung is composed of multiple cell types and fairly heterogeneous in terms of cellular composition.
Basal, club, and ciliated cells are predominant in the proximal airway. Alveolar type 1 (AT1) and type 2
(AT2) cells are found in the alveolar wall 6. Data from studies in mice suggested that AT2 cells,
bronchioalveolar stem cells (BASCs), and club cells could be the cells of origin for LUAD 7. Some of these
mouse studies have been utilized in lung cancer lineage tracing; however, this could not be performed in
human 8.

The advance in single-cell sequencing technologies have given rise to a comprehensive and unbi ased
analyses of cellular diversity within lung tissue 9, 10. Single-cell RNA sequencing (scRNA-seq) has been
successfully applied to identify unique cell types and understand the complex subpopulations in lung
cancer. Previous scRNA-seq studies of lung cancer have been examined mostly stromal cells in limited
LUAD subtypes 11, or charactering the molecular and cellular reprogramming of metastatic LUAD 12. The
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diversity of the cell states at different points and what roles the cells play in driving tumor progression are
largely unknown.

In the present study, we performed scRNA-seq to survey 52 specimens including AAH, AIS, MIA, IA and
non-malignant lung tissues. This results in, for the �rst time, a single-cell transcriptome atlas for all major
subtypes of LUAD. Further analysis dissected the cellular and molecular characteristics of LUAD cells
across different clinicopathological stages. We observed AT2 cells dedifferentiated into a stem-like state,
a process to initiate and maintain tumor progression. We also showed that stem-like genes may be
potential markers for diagnosing novel LUAD in the early stages. This scRNA-seq dataset unveils cellular
dynamics and molecular features, which will allow us to decipher how the LUAD subtype progresses and
evolves.

Results
Characterization of the cellular heterogeneity across four LUAD subtypes

A total of 52 freshly resected lung specimens of four subtypes (3 AAH, 5 AIS, 9 MIA, and 17 IA) were
collected from 25 patients (Fig. 1A and Table 1), along with 18 adjacent non-malignant (also as normal)
lung tissues from a distal region within the same lobe, which served as controls. Eight of the 25 patients
presented multiple nodules (Fig. S1). For each specimen, we rapidly digested the freshly collected tissues
to generate a single-cell suspension, isolated cells without enrichments for speci�c cell types, and
generated scRNA-seq data with the 10x Chromium platform. We characterized the transcriptome of
140,556 cells from LUAD samples (P1-P22) at single-cell resolution by the V2 kits and validated our
results with a separate dataset of 127,923 single cells from multiple nodules resected from an additional
3 patients (P23-P25) using the V3 kits (Fig. 1A and Table 2).

To distinguish cell populations based on distinct transcriptional pro�les, we performed dimensionality
reduction and unsupervised cell clustering using the Seurat package (version 3.0.3.9028). We identi�ed
16 distinct clusters based on key marker genes that were further assigned into 16 major cell types (Fig.
1B-1E), including epithelial cells (ciliated, club, basal, AT1, AT2 and AT2-like cells) and stromal cells
(endothelial cells, �broblast cells, lymphocytes and myeloid cells). We pro�led the transcriptomic
characteristics of LUAD through comparative analysis between non-malignant and malignant cells from
surgically resected specimens of four stages (Fig. 1C-1G). Most non-malignant cells were immune cells,
and each cell cluster comprises cells derived from multiple different patients. The proportions of T
lymphocytes and myeloid cells were highly reproducible across patients. Moreover, we con�rmed the
enrichment of B and T lymphocyte and the decline in natural killer (NK) and myeloid cells during tumor
progression (Fig. 1G and Fig. S2A-S2B), indicating the activation of adaptive immune responses. In tumor
tissues, we discovered that AT2 feature cell types (AT2-like cells) were associated with malignant
composition, and were present at the onset of LUAD development (Fig.1B and 1D). The AT2-like cells
were highly patient-speci�c and exhibited increasing cellular phenotypic heterogeneity with tumor
progression (Fig. 1D and 1F). Notably, a very small percentage of cells expressing cell proliferation
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markers was observed in our data, so we did not correct for the cell cycle effect (Fig. S3A and S3B).
These results illustrated a wide range of intratumoral heterogeneity in LUAD transcriptome, which could
be shaped by surrounding microenvironment during progression.

Next, we reanalyzed the published data of 2 LUAD patients (out of the total 8 patients) from the study by
Lambrechts et al 11 by integrating our datasets, based on the same normalization and �ltering
parameters (Fig. S4A-S4E), and identi�ed the same 16 cell clusters. Both datasets revealed highly
consistent assignment of identi�ed cell types. However, our dataset consisted of multiple instances of
rare cell populations/clusters (such as ciliated cells, lymphocytes, and AT2-like cell subgroups) that were
not present in the Lambrechts et al dataset. For example, the AT2-like cluster was enriched in
premalignant AAH and AIS tumors (Fig. S4A and S4B). A validation cohort of an additional 127,923
single cells from 3 LUAD patients using the V3 kit (Table 1) revealed that epithelial and stromal cells
could be assigned to subclusters, representing 90% of cell types in the original set of 22 patients (Fig.
S4C and S4D). With this more comprehensive dataset, we further characterized the stromal cell and
epithelial cell populations in a greater detail to better assess cell heterogeneity during LUAD progression.

Characterization of stromal cells in coordinating tumor microenvironment through tumor progression

The stromal cells are associated with tumors, could provide deeper insights into lung cancer biology 11.
To investigate stromal cell dynamics in the tumor microenvironment (TME), we analyzed the single-cell
transcriptomes of endothelial cells (ECs), �broblasts, lymphocytes, and myeloid cells from normal tissues
and tumor tissues representing the four stages, as shown in Fig.1B. We detected 1, 925 ECs and �ve
clusters based on marker genes; (Fig. 2A-2D and Fig. S5A-5B) these clusters included tip-like cells, tumor
ECs, stalk-like cells, endothelial progenitor cells (EPCs) and lymphatic ECs. Most of the EC clusters
observed belonged to normal tissues, and were assigned to known vascular cell types. For example,
lymphatic ECs were enriched in normal tissue. Tip-like cells, stalk-like cells and EPCs were expressed in
early-stage (AAH and AIS stage) tumors and normal tissues (Fig. S5A). Tumor ECs were identi�ed in early-
stage tumors, and demonstrated strong expression of PLVAP, GSN, and TSC22D1, which regulate the
development and determine the cell fate of ECs. To learn more about the biology underlying these cell
states, we used GSEA to compare the expression patterns in tumor ECs versus normal ECs (Fig. 2D). The
results revealed Myc targets as the top enriched signature in tumor ECs. Indeed, earlier studies indicated
that c-Myc is essential for tumor angiogenesis, glycolysis and oxidative phosphorylation, all of which
promote vessel sprouting 13. The most signi�cantly downregulated pathway was involved in
in�ammatory responses, such as the INF-α and INF-γ responses. The endothelium represents the primary
interface between circulating immune cells and the tumor, and plays important roles in relaying signals
and presenting epitopes from the tissues it vascularizes to the immune system 14.

Fibroblasts have long been suggested to represent a heterogeneous population, but the extent of
heterogeneity has remained unclear in LUAD progression 15. Our subclustering of �broblasts revealed six
distinct clusters, including �broblast-like cells, normal �broblasts, smooth muscle cells, lipo�broblasts
and myo�broblasts (Fig. 2E-2H and Fig. S5A-5B). The �broblast-like cell (CFD and APOD) and
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myo�broblast (ACTA2 and RGS5) expression patterns were reproducibly detected in AAH and AIS tumors,
and could represent common features of the LUAD TME (Fig. S5A). Many studies have identi�ed
�broblast-like cells and α-SMA-positive (ACTA2, smooth muscle α actin) myo�broblasts as cancer-
associated �broblasts (CAFs), promoting extensive tissue angiogenesis 16, and tumor progression17.
Smooth muscle cells, comprising of the main �broblast type in the vasculature and being linked to wound
healing and angiogenesis 18, were observed in IA stage tumors and a few normal tissues. Further GSEA
analysis of �broblasts from normal and tumor tissues was performed (Fig. 2H). Cancer-derived
�broblasts are associated with epithelial-mesenchymal transition (EMT) and the immune response, such
as showing strong IFN-γ and IFN-α responses. Therefore, cellular dynamics in ECs and �broblasts
supported a consistent phenotypic shift of stromal cells towards tissue remodeling and angiogenesis in
LUAD.

Lymphocytes often play important roles in in�ammation, cancer immune evasion, and responses to
immunotherapy treatment 19. In our dataset, subclustering of 61,196 detected lymphocytes revealed 10
clusters, annotated mainly as T cells, B cells and NK cells, with some other immune cell types (Fig. 2I-2K
and Fig. S5A-5C). Consistent with previous �ndings, T cell-mediated cytotoxicity is critical for tumor c   ell
clearance 20. We observed that CD8+ T and regulatory T (Treg) cells were enriched in the tumor, but CD4+

T cells and natural killer cells were depleted during tumor progression (Fig. S5A-5C). Furthermore, Treg
cells persist in the IA stage, exerted a suppressive mechanism of antitumor immunity during tumor
progression. CD8+ T cells and Treg cells were enriched in the tumor population, which was also reported
in Lambrechts et al. 11. B cells and plasma cells are rare in most samples. Using de�nitive tumor
lymphocytes and innate lymphocytes, we constructed a transcriptional trajectory for the exhaustion of
lymphocytes and found the key gene expression programs during tumor progression (Fig. 2K). Indeed,
transcriptional states in the trajectory suggested that lymphocytes were not associated with changes in
the tumor biology. Most of cell types were observed to be distinctly positioned at the branches. However,
CD8+ T and cancer cells were located in separate trajectory branches from the same ancestor, indicating
their interactive differentiation states. Altogether, the changes in the cellular composition and gene
expression phenotype of lymphocyte cells con�rmed the direction of tumor immunity towards immune
suppression in LUAD progression.

Myeloid cells play a critical role in maintaining tissue homeostasis, and regulate in�ammation in the lung
21. We dissected the gene signatures of the 8 myeloid clusters revealed in this study (Fig. 2L) including
granulocytes, macrophages, NK cells and dendritic cells. Neutrophils were not recovered in our
experimental procedures. Two macrophage types are known to populate the lung: the alveolar
macrophage (AM) type, which highly expresses the MARCO, FABP4, and MCEMP1 genes; and the tumor
macrophage (TM) type, which comprises the remaining tumor-enriched clusters. The AM type
macrophages were mainly detected in normal and early-stage LUAD (Fig. 2L-2N and Fig. S5A-5C). By
contrast, the TM transcriptional phenotypes were mostly present in late clinical stage IA tumors, and TMs
shared high expression of SPP1, APOE, CCL2 genes, involved in apolipoprotein metabolism 22. Trajectory
analysis on TMs demonstrated a dynamic functional spectrum from AMs with regard to the
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transcriptional trajectory (Fig. 2N). Dendritic cells mostly comprised myeloid cells, three DC subsets, DCs
(CCL17), activated DCs (BIRC3, CCL22) and CD141+ DCs (CPVL, KLRB1). CD141+DCs mediated by NK
cells, plays a key role in an in�ammatory environment (Fig. 2M). On the other hand, cancer cells in
myeloid cell clusters were mostly observed in late clinical stage IA tumors, which indicated that tumors
communicating with immune cells after stage IA are capable of immune escape.

TME is heterogeneous and includes reprogrammed or activated immune cells, �broblasts, and ECs. To
characterize stromal cell heterogeneity in LUAD progression, we performed simultaneous
immuno�uorescence staining for ECs (CD31), �broblasts (�bronectin) and immune cells (CD45) in
normal tissues and tumor tissues from different stages (Fig. S5D and Table 3). An increase in the CD45+

population was observed as the tumor progressed, suggesting that immune cells contribute to LUAD
growth. On the other hand, we also examined the gene expression of subclusters in LUAD and patient
survival (Fig. S6). Correlations among seven cell subtypes, such as CD4 T cells and T follicular helper
cells, may re�ect differences underlying the histopathology. These �ndings suggest that stromal cells and
immune cells in the lung TME harbor both tumor-promoting and tumor-suppressing activities, which may
predict clinical outcome.

Characterization of epithelial cell lineages across different stages

Lung epithelial cells have been studied extensively due to their medically important role in lung cancer
and various pulmonary diseases such as asthma and �brosis 21. Here, we explored the intrinsic
transcriptome of epithelial cells through comparative analysis between normal epithelium and tumor
cells from different stages. We identi�ed 15,984 epithelial cells and re-clustered them into 10 subclusters.
(Fig. 3A-3C). Based on the expression of known markers, we found that the atlas mainly comprised of
epithelial cells such as AT1 cells (AGER), AT2 cells (SFTPC), club cells (SCGB1A1), basal cells (Krt5),
ciliated cells (FOXJ1) and AT2-like cells. As expected, normal epithelial cells mainly have �ve distinct
subpopulations, including AT1, AT2 cells, club cells, basal cells and ciliated cells, expressing well-de�ned
epithelial markers. Interestingly, the SFTPC gene (an AT2 cell marker) was highly expressed in non-
malignant tissues and tumors at an early stage, but not in late-stage tumor tissues (Fig. 3B).

In tumor tissues, epithelial cells may contain residual non-malignant cells along with malignant tumor
cells. To separate true tumor cells from a potential non-malignant population, we used inferCNV on
scRNA-seq to identifying the malignant cells (Fig. 3D-3E). We used the cell types from adjacent lung
tissues as a healthy reference to estimate the copy number variation (CNV) at different stages.
Chromosomal ampli�cation (red) and deletion (blue) were mapped to each chromosomal position
(columns) across the single cells in Fig. 3E. We identi�ed large-scale chromosomal CNVs in IA stage AT2-
like cells, but did not observe any CNVs in other cell types.

To con�rm the expression of identi�ed epithelial cell marker genes, we performed immuno�uorescent
staining of different cell types to investigate the abundance and spatial localization of AT1 cells (AGER),
ciliated cells (FOXJ1), club cells (SCGB1A1), basal cells (Krt5) and AT2 cells (SFTPC) (Fig. S7A and Table



Page 8/31

3). Non-malignant human lung alveolar and bronchi tissues were double-stained with AGER and SFTPC
antibodies. AT1 and AT2 cells were found to be preferentially localized in peripheral alveoli, while club
cells, ciliated cells and basal cells were mainly distributed on the bronchial surface; these observations
were consistent with a previous study 11. In LUAD tissues, expression of the SFTPC gene was observed in
MIA tumors, but less than 45% of the AT2 cells expressed SFTPC compared to that of AAH (Fig. 3F). AT1,
basal cells, ciliated cells and club cells were not detected in MIA. In IA tumors, SFTPC gene expression
was almost undetectable, and the alveolar structure was not recognizable. Therefore, SFTPC gene
expression was signi�cantly decreased during histopathological progression. These changes were
associated with the previously described loss of expression of the lung lineage-de�ning transcription
factor Nkx2-1 as well as loss of the AT2 markers SFTPC 23. The results demonstrated that AT2 cells are
the origin of adenocarcinomas and are de�ned as AT2-like cancer cells.

To further elucidate the differentiation process in LUAD, we constructed a lentiviral vector expressing
EGFRVIII and Cre driven by the carbonic anhydrase II (CAII) promoter, which is expressed mainly in AT2
alveolar cells and was previously demonstrated to e�ciently drive LUAD formation in mouse lungs 24.
After transfection of lentiviral vectors into mice, non-malignant and tumor lung tissues were resected
after 3 and 7 months, and immuno�uorescence stained (Fig. S7B). We found that the SFTPC was evenly
distributed in the alveoli of non-malignant lungs. SFTPC gene expression was decreased in tumor tissue
at the 3rd month and unevenly distributed and expressed at very low levels in the 7th month (Fig. S7C).
Therefore, the results further supported that AT2 cells give rise to LUAD in spontaneous EGFRVIII mice
and in human.

Transcriptional trajectory analysis of AT2 cells

To identify the key molecular events governing the cell-fate transition during progression from normal
AT2 cells to cancer cells, we selected cell clusters that closely resemble those of AT2 and AT2-like cancer
cells, and then tracked the gene expression changes along the trajectory from non-malignant tissues to
AAH, AIS, MIA and eventually IA. We performed a pseudotime analysis with Monocle2 and observed non-
random expression patterns (Fig. 4A-4C). The transcriptional states in the trajectory revealed normal
differentiation paths as well as progression-associated changes in tumors. Non-malignant cells and cells
at early clinical stages (AAH to AIS) gathered on one end, while cells from late-stage tumor tissues (MIA
or IA) tended to be on the other end (Fig. 4A).

We identi�ed 283 differentially expressed genes that exhibited dynamic expression over the pseudotime
axis (q value < 0.05) and classi�ed them into 4 groups (group 1 to group 4). Then, we ordered these genes
along the temporal pseudotime and reconstructed a diffusion map (Fig. 4B). The expression pro�le of
group 1 showed that the self-renewing AT2 genes were relatively quiescent (with high level of WIF1
inhibiting WNT) 25, 26 and had a high percentage of stem-like cell transcription and differentiation genes
(LAMP3 and MUC1) expressed 9, 27. By contrast, group 2 genes showed an expression pattern similar to
the start of the dedifferentiation process, where lineage-speci�c genes such as negative regulation of the
cell death response to stimulus (AQP5) 28, RNA biogenesis processing (RPL family) 29, 30, and
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mitochondrial factors (MT-ND4 and MT-ND2) showed increased expression 31. The expression pattern of
group 3 genes was related to in�ammatory response cytokine cell activation (FOSB, NFKB1), with visible
EMT-related gene (vimentin) 32. Lastly, the genes in group 4 were involved in extracellular matrix
organization (TIMP1) 33, cell-cell signaling and regulation of cell migration (S100A4, VEGFR) 34.
Moreover, we also identi�ed genes (MDK, SOX4 and LYZ) previously described during cancer evolution1,

35. Although each of these expression patterns emerged at a different speci�c time, they all persisted in
tumors once they arose, such that more advanced tumors contained a greater assortment of cells with a
higher diversity of states.

We then �ltered out the genes expressed in fewer than 10% of total cells and performed gene regulatory
network analysis on normal and AT2-like cells in order to examine the genetic interactions between the
remaining 3,613 genes in the AT2 and AT2-like cell clusters (Fig. 4C). We found that genes upregulated in
normal tissues are essential for lung function and homeostasis. In contrast, the genes upregulated in
cancer are involved in metabolism, ribosomal activity, or MHC class II molecule expression, which
suggests that these activities are essential during tumor progression. Notably, signi�cantly
downregulated genes in tumor ECs were related to immune activation, supporting a previous �nding that
tumor ECs suppress immune responses 11.

Loss of AT2 features and gain of stemness associate with cell transition

Multiple mouse studies have suggested stemness of AT2 cells, and the maintenance of this self-renewal
activity is of great importance for cancer progression 36, 37. We focused on clusters closing to normal AT2
cells, distinct subcluster that emerged �rst in AAH lost some AT2 cell transcriptional identity, but retained
features of the lung epithelial lineage. Then we compared with the expression of normal AT2 cells,
observed AT2-like cell subset with a signature of stemness genes, which were present in tumors
throughout LUAD progression (Fig. 4B-4C). The result suggested that LUAD evolution is characterized by
a loss of the AT2 feature of the lung lineage and the emergence of an alternative dedifferentiated stem-
like state. These results were also consistent with previous report that suggested dedifferentiation of
committed epithelial cells into stem cells in multiple diseases, especially cancer38.

Epithelial cells transition to a mesenchy mal state in tumor progression has been proposed 32.
Transcriptionally, EMT is de�ned by downregulation of the epithelial marker E-cadherin and upregulation
of the mesenchymal transcription factors vimentin. To investigate the prevalence of EMT in LUAD
progression, we examined the expression level of vimentin, E-cadherin and FOXM1 by RNA �uorescence
in situ hybridization (FISH) (Fig. 4E). Expression of the E-cadherin decreased in conjunction with
increased vimentin. We also found higher protein expression of FOXM1, which is a pro-stemness
transcription factor associated with tumor proliferation in kidney and ovarian cancers 39, 40. Our results
suggest that FOXM1 could be a driver of dedifferentiation and proliferation in LUAD. These �ndings were
further supported by tissue immuno�uorescence and bioinformat ics analysis of known epithelial and
�broblast markers. We next used indirect immuno�uorescence staining to validate our scRNA-seq
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�ndings at the protein level. Ki67 is a protein that expresses in all phases of the cell cycle except for
quiescent cells in G0. Interestingly, the staining intensity in our study showed high Ki67 expression (gray)
in the early stages (AAH and AIS) and gradual decreases in expression as the tumor progressed (Fig. S8).
This �nding is of clinical importance, as the differences in Ki67 expression during LUAD progression
indicate the cutoff values used for treatment decisions, which is consistent with our bioinformat ic results
and previous report 41. EMT (vimentin, red) and angiogenesis (VEGF, green) related genes also gradually
increased with tumor progression, as indicated by immunostaining.

There is a plethora of role of Wnt in stem cell self-renewal or lineage speci�c differentiation in diverse
tissues in vivo 25, 42. Recently, Wnt signaling was found to be ampli�ed by engaging the leucine-rich
repeat-containing G-protein-coupled receptor (Lgr) Lgr5, which is a marker for stem cells in multiple
epithelial tissues and can drive lung adenoma progression in mouse models 25. Consistent with the
known role of the WNT signaling pathway, Lgr5 was reported to activate two WNT mediators: GPX2 and
OLFM4 (Fig. 4B), which were shown to be increased during tumor evolution 43. RNA FISH of four stage
LUAD revealed an increase in the fraction of Lgr5 compared to normal tissues (Fig. S9), suggesting that
the increased tumorigenic potential correlates with an increased stem-like signature. Differential
expression of another stem-like gene, AQP5 gene is a compartment of WNT-driven invasive gastric cancer
28, observed in our results (Fig. 4B). Moreover, the expression of the stem-like genes IFI27 and S100A4
increased as the tumors progressed. Therefore, we speculate that AT2 cells undergo dedifferentiation to
generate a stem-like state to initiate and maintain tumor progression.

Cell-cell crosstalk visualizing potential speci�c interactions in LUAD

Recent studies have demonstrated involvement of the speci�c hematopoietic stromal cell lineage and
tumor epithelial cells in a cell-type-speci�c crosstalk-regulated network 44. We used CellPhoneDB to
identify the expression of potential crosstalk signaling molecules based on ligand-receptor interactions
45. In Fig. 5A, we showed that both normal and tumor epithelial cell clusters expressed genes found within
myeloid cells, epithelial cells (especially AT2/AT2-like), and �broblasts, which suggested a possible
interaction between epithelial and stromal cells. Fig. 5B displays the detailed receptor-ligand interaction
pairs (basically gene pairs) for the cell types of indicated cell types. We focused on the gene pairs in the
cell types that exhibited a strong interaction, and extracted the rows with all gene pairs (p value <0.001).
As a result, the number of interacting cells was dramatically elevated in AT2-like cells, communicating
with immune cells. AT2 cells expressed higher levels of LGALS9, the receptors of COLEC12 and MRC2 in
DCs, granulocytes and macrophages. LGALS9 on AT2 cells has previously been found to promote
immune suppression via T-cell and macrophage inhibition 46. By contrast, AT2-like cells express high
levels of ANXA1, MDK, FN1 and CCR1. The expression pattern of the FN1–A4B1 (A4B7) ligand-receptor
complex indicates the existence of functional interactions between AT2-like cells and immune cells. Here,
we pinpointed that AT2 cell interacted speci�cally with the myeloid cell subset by LGALS9 receptor, but
AT2-like cells tightly interacted with myeloid cells via ANXA1, FN1and MDK (Fig. 4C). The results
suggested that these two types of ligand-receptor interactions could be another new immune checkpoint,
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as potential novel immunotherapy target for LUAD. On the other hand, endothelial cells and �broblasts
prominently expressed ligands such as FN1, CCL2 and CCL12, also could match immune related
receptors.

Independently, we performed �ow cytometry to measure the distribution of the two populations and the
preferential expression of immune cells in AT2-like cells (Fig. 4D). There was elevated expression of CD45
in AT2-like cells (Epcam+CD45+ cells) as LUAD progressed. These results were consistent with our scRNA-
seq data showing higher levels of expression of PRF1, GNLY, GZMA and GZMB genes in this subset, thus
con�rming that immune cells communicating tumor cells towards immune suppression in LUAD.

Quantitative detection of key biomarkers in plasma of different stage LUAD

Biomarkers that can effectively diagnose lung cancer in the early stages or con�rm the presence of
metastasis can guide clinical intervention and treatment. Multiple research groups have recently turned to
blood-based biomarkers to detect lung cancer 47, 48. At present, accepted clinical blood tests for LUAD
mainly based on carcinoembryonic antigen (CEA), but recent studies have shown that sensitivity for early-
stage lung cancer is limited 49.In our dataset, genes related to energy metabolism and ribosome synthesis
were upregulated in the early stage of LUAD, which may favor transcription and metabolism required for
tumor survival and growth. Therefore, we performed quantitative detect of protein, miRNA and metabolite
biomarkers associated with metabolism and ribosome synthesis genes for LUAD diagnosis. Among
them, miRNA-10a has been speculated to control synthesis via stimulation of ribosomal protein mRNA
translation and ribosome biogenesis 50. On the other hand, β-hydroxybutyric acid are likely to be produced
by nearby or adjacent �broblasts to provide energy to tumor cells, and has been detected in lung cancer
patients 48, 51. Therefore, we carried out RT-PCR or ELSA to identify plasma miRNA-10a and β-
hydroxybutyric acid levels to distinguish LUAD patients at different stages of disease and healthy
controls (Fig. 6A and Table 4). While plasma CEA level showed no difference between specimens from
healthy controls and patients with early-stage cancer (AIS and MIA), the levels of miRNA10 and β-
hydroxybutyric acid were signi�cantly higher in the plasma of the early-stage LUAD patients (P<0.01)
(Fig. 6A). Additionally, miRNA10a levels were found to be signi�cantly upregulated in all four clinical
stages of NSCLC 52 (P=0.002). Based on this analysis, miRNA-10a and β-hydroxybutyric acid appeared to
be appropriate plasma biomarkers for distinguishing patients with early-stage disease and healthy
controls.

The changes in marker gene expression were also examined along pseudotime. Notably, TIMP1 and MDK
(Fig. 3B) were highly expressed at the late clinical stage. Elevated levels of MDK, a product of lysine
decarboxylation, were also identi�ed as one of the most important features in discriminating stage III
LUAD (Fig. 6A). Moreover, TIMP1 also stand out as a critical feature in stage III LUAD. Previously, MDK
and TIMP1 have been reported to regulate metabolism in metastases by activating the PI3K/Akt pathway
33, 53 , which were also validated in our study by immunostaining (Fig. 6B). Taken together, these results
highlighted the potential of new marker genes such as miRNA10 and β-hydroxybutyric acid to diagnose
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early-stage LUAD, and suggested MDK and TIMP1 as potential biomarkers to facilitate our understanding
of LUAD pathogenesis.

Discussion
The TME is composed of multiple cell types 11. Such cellular complexity of tumors is accompanied by
heterogeneity within each cell type 54. Here we provide a high-resolution scRNA-seq data set of LUAD at
four stages to construct a lineage map of LUAD progression. First, in terms of the catalog of stromal cells
in TME, tumor ECs acquired highly angiogenic, yet immune compromised properties. Second, �broblast-
like cells and myo�broblasts are CAFs that promote tumor progression. Third, CD8+ T cells and Tregs
persisted in the IA stage, providing a suppressive mechanism of antitumor immunity during tumor
progression. Fourth, TMs transcriptional phenotypes, which are involved in apolipoprotein metabolism,
were observed mostly in late clinical stage IA. Mechanistically, we have shown that alteration in the
immune response during tumor progression is associated with immune-suppression via immune escape.
However, it is still largely unknown how regulators of the immune response act on tumor progression.
Future research on this topic will inform us more on how tumors communicate with stromal cells and
alter their cell status or identity.

The heterogeneity of tumor cells represents a major challenge in oncology. We found the transcriptional
heterogeneity grew dramatically during tumor progression, but the process was stereotypical and
reproducible across individual tumors. Different epithelial cell types exhibit unique molecular signatures.
Early cancer cells closely resembled AT2 cells, which underwent dedifferentiation to a stem-like state and
further initiate tumor progression, eventually giving rise to the heterogeneous populations observed in
LUAD (Fig. 7). In the normal alveoli, AT2 cells self-renew under homeostatic conditions and can generate
stem-like cells after injury or gene mutation 6. A previous study also revealed that alveolar progenitor cells
(such as AT2 cells฀are responsible for the repair of alveoli 55. Our work showed that the expression of
tissue-speci�c marker genes such as SFTPC and SFTPB was downregulated and that of stem cell
signaling factors such as CD44 was upregulated. We observed stem-like population in early-stage tumor
cells that likely continued proliferating with increased epithelial diversity. Eventually, late-stage tumor cells
exhibited profound cellular and genetic heterogeneity. In addition, we found that MDK and TIMP1 are
potential biomarkers to facilitate our understanding of LUAD pathogenesis.

Our results suggested that disrupting of normal developmental programs is a major organizing principle
in the acquisition of an AT2-like state. We observed that Lgr5+ LUAD cells display persistent proliferative
potential, followed by several alternative differentiation programs mimicking the primordial lung and
�nally the emergence of cells with a mesenchymal phenotype, indicating complete EMT (Fig. 7). E-
cadherin, IFI27 and S100A4 could induce EMT and promote cancer cell migration and stemness 34, 56, 57,

58. Our study represents an important step to understand intra-tumoral expression in epithelial tumor
progression.
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Immune cells can communicate via ligand-receptor interactions 44, so targeting cell-cell interactions have
become a useful tool in clinical practice. For example, the immune checkpoint inhibitor ipilimumab
targets the binding of ligands to CD28 or CTLA4, and both pembrolizumab and nivolumab target the
interaction between PD1 and PDL1 59. Malignant cells differentially induce the activation of cellular and
humoral immune responses in individual patients; however, they concomitantly provide inhibitory signals
to induce immune exhaustion. We observed both normal and cancerous epithelial cell clusters expressed
myeloid cells genes, which suggested a possible interaction between epithelial and immune cells. AT2-
like cells express high levels of ANXA1, MDK, FN1 and CCR1, then from ligand-receptor complex with
immune cells, but AT2 cell interacted speci�cally with the myeloid cell subset by LGALS9 receptor. The
results suggested that these two types of ligand-receptor interactions could be potential novel
immunotherapy target for LUAD. On the other hand, cancer cells in T-cell clusters were mostly in late
clinical stage IA, which indicated tumor communication with immune cells, inclined to promote immune
escape in IA stage. Several studies have demonstrated that tumor-in�ltrating CD8+ T lymphocytes impair
production of effector cytokines in advanced NSCLC 60. Overall, this large compendium of single-cell data
could help explain the tumor-immune interactions by providing insights into the composition, states and
dynamics of T cells in LUAD progression. However, our knowledge of which interactions occur in tumors
and how these interactions affect the prognosis are still limited. There is a need to elucidate the spectrum
of cell-cell interactions occurring in the TME and how these interactions affect patient outcomes.

In the present study, ribosomal and mitochondrial genes were highly expressed in AT2-like cancer cells at
an early clinical stage, which favored transcription and metabolism to promote tumor progression. It is
possible that an increase in ribosomal and mitochondrial gene expression could be an early indicator of
lung cancer. Therefore, exploiting these differences to develop sensitive and accurate strategies for the
early detection of lung cancer are essential to improve lung cancer survival. Consistent with our results,
several other recently published studies have detected the same trend in plasma β-hydroxybutyric acid
from lung cancer patients. The biological functions of β-hydroxybutyric acid are quite diverse including
energy metabolism, epigenetic regulation, and oxidative stress response 61. miRNA10a may positively
control global protein synthesis via stimulation of ribosomal protein mRNA translation and ribosome
biogenesis. For example, increased expression of RPS11 and RPS20 is associated with a stress-resistant
glioblastoma stem cell phenotype and poor prognosis 62. Additionally, silencing RPL39 expression was
found to impact breast stem cell abilities, such as self-renewal and metastatic potential 30. Therefore, we
concluded that the scRNA-seq may provide a high-resolution method for the identi�cation of molecular
markers to precisely detecting the presence of early neoplastic sites and the onset of rare neoplastic cells
in the clinic. These data suggest that ribosomal and stem-like genes are potential targets for developing
diagnostic strategies and therapeutic interventions for lung cancer.

Conclusions
In summary, we constructed a single-cell transcriptome atlas of premalignant lung lesions and LUAD of
all major clinical stages, to �nd out the heterogeneity at different stages on the basis of the
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transcriptome, and the transcriptional landscape of lung epithelial cells. Speci�cally, we found that each
epithelial cell type exists in a unique molecular state, but the early cancer cells are highly similar to AT2
cells, which undergo dedifferentiation to generate a stem-like state to initiate and maintain tumor
progression, and to give rise to the heterogeneous populations observed in LUAD. In addition, our research
has shown that miRNA10a, β-hydroxybutyric acid, MDK, and TIMP1 are potential biomarkers to facilitate
understanding of LUAD pathogenesis.

Materials And Methods
Patients and clinical information

This study was designed to characterize the cellular heterogeneity and molecular events underlying LUAD
initiation and progression. We performed single-cell RNA sequencing on 52 specimens from 25 patients
spanning the four clinical stages (AAH, AIS, MIA, IA), with 18 of matched non-malignant lung samples.
Patients diagnosed with AAH, AIS, MIA, and IA according the 2015 WHO classi�cation 63, were enrolled
with informed consent from West China Hospital of Sichuan University, China. The clinical characteristics
of these participants, including age, gender, pathology, and tumor stage were recorded at recruitment
(Table 1). All patients received surgical treatment and none of them underwent neoadjuvant therapy
before surgery. Tumors and matched distal normal lung tissues were obtained during surgery. Cancer
clinical stage was de�ned according to the 8th edition of the American Joint Committee on Cancer
(AJCC) TNM stage system.

Sample preparation

Resected tumors were transported in Hank's Balanced Salt Solution (HBSS, Life Technologies) on ice
immediately after surgical procurement. The tumor sample was subsequently divided into two pieces,
and a small fragment was stored in liquid nitrogen for tissue staining. The remainder of the tumor was
minced with scalpels into tiny cubes <0.5 mm3 and transferred into a 15mL conical tube (BD Falcon)
containing 8mL pre-warmed HBSS, 1mg/mL collagenase I and 0.5mg/mL collagenase IV. Tumor pieces
were digested on Tube Revolver (Thermo) for 30 minutes at 37°C. This suspension was then �ltered using
a 70μm nylon mesh (BD Biosciences) and residual cell clumps were discarded; then the cell pellet was
resuspended in red blood cell lysis buffer. Following a 5min incubation at room temperature, samples
were centrifuged to discard the supernatant and re-suspend the cell pellet in PBS with 0.04% FBS. Cell
sorting was performed with a MoFloAstrios EQ (Beckman coulter). The live cells were used for single-cell
experiments after the dead cells being eliminated by excluding 7-Aminoactinomycin D (Life
Technologies) cells. 

scRNA-seq Library Preparation and Sequencing

Single-cell suspensions were converted to barcoded scRNA-seq libraries by using the Chromium Single
Cell 3’Library, Gel Bead & Multiplex Kit and Chip Kit (10x Genomics) following the manufacturer's
instructions, aiming for an estimated 5,000 cells per library. The sequencing ready library was puri�ed
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with SPRIselect, quality controlled for sized distribution and yield (LabChip GX Perkin-Elmer) and
quanti�ed using qPCR (KAPA). Libraries were sequenced on an Illumina NovaSeq-6000, and mapped to
the human genome (build hg19) using CellRanger (10x Genomics).

Single-cell RNA sequencing analysis and identi�cation of marker genes

Raw gene expression matrices generated per sample using CellRanger (version 3.0.0) were combined in R
(version 3.6.3) and converted to a Seurat object using the Seurat R package (version 3.0.3.9028). Cells
that had either more than 20,000 UMIs, over 3,000 or below 300 expressed genes, or over 10% UMIs
derived from mitochondrial genome were removed. After �ltering, the gene expression matrices were
normalized to total cellular read count, original sample identity, and mitochondrial read count using linear
regression as implemented in Seurat’s Regress Out function. As a result, none of the principle
components subsequently identi�ed were correlated with transcript count (data not shown). To reduce
dimensionality of this dataset, the variably expressed genes were summarized by principle component
analysis, with the �rst 100 principle components further summarized using UMAP dimensionality
reduction using the default settings of the RunUMAP function. Clustering was conducted with the
FindClusters function using 50 PCA components with resolution parameter set to 2. Cell clusters in the
resulting two-dimensional representation were annotated to known biological cell types using canonical
marker genes. Very few cells were positive for cell proliferation markers, so we did not correct for effects
of cell cycle in the analysis.

To identify marker genes of cell clusters, we contrasted cells from one particular cluster to those in all
other clusters using the Seurat FindAllMarkers function. Marker genes were required to have an average
expression in one particular cluster to be >2.5-fold higher than that in the other clusters.

Gene set enrichment analysis (GSEA)

Gene set enrichment analysis (GSEA) is a widely used approach to test if a particular gene set is enriched
at the top of a ranked gene list 64. The ‘fgsea’ package v1.8.0 was used with default settings together with
annotated Hallmark gene sets from the ‘msigdbr’ package 65. The top 50 pathways ranked by adjusted P
value (padj < 0.005) were plotted in the visualization.

Trajectory analysis

In order to generate a trajectory, we generated randomly sampled subset of malignant cells from each
clinicopathological stage among the epithelial cells in the lung tumor tissue samples. Next, we employed
the Monocle2 algorithm using the gene-cell matrix in the scale of UMI counts extracted from Seurat
subset as input, and new Cell Data Set function was called to create an object with the parameter
negbinomial size as the expression Family 66. The cell trajectory was inferred using default parameters
after dimension reduction and cell ordering.

inferCNV and clonality analysis
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For the inferCNV analysis the following parameters were used: ‘denoise’, default hidden markov model
(HMM) settings, and a value of 0.1 for ‘cutoff’To reduce the possibility of false positive, CNV calling of
the default Bayesian latent mixture model was implemented to identify the posterior probabilities of
alterations in each cell. Low-probability CNVs were �ltered using the default value of ’0.5’ as threshold. To
determine the clonal CNV changes in each tumor the “subcluster” method was utilized on the CNVs
generated by the HMM. GRCh37(hg19) cytoband information was used to convert each CNV to a p- or q-
arm level change for simpli�cation based on its location. Each CNV was annotated to be either a gain or
a loss. After data conversion, subclones containing identical arm level CNVs were collapsed. ChrX & Y
and Mitochondrial CNVs were excluded from this analysis. For data visualization, the UPhyloplot2
(https://github.com/harbourlab/UPhyloplot2) is used for evolutionary trees with default parameters. A
scalable vector graphics (.svg) �le visualizing the phylogenetic tree was generated for each sample.

Gene regulatory network analysis

We constructed the gene regulatory network in normal lung cells and cancer cells using the bigSCale2
algorithm (https://github.com/iaconogi/bigSCale2) 67. Brie�y, the expression data of the total 13,461
cells in the AT2, AT2-like cell clusters was extracted using Seurat and then combined into a sparse
expression data matrix. We eliminated the genes expressed in less than 10% of total cells, leaving us with
3,613 genes for the network analysis. The resulting matrix was then passed to bigSCale2 for the
construction of the network under the “direct” clustering parameter and by retaining only the genetic
interactions with the correlation coe�cient > 0.75. The network was then visualized in Cytoscape 3.8.0
(https://cytoscape.org/) with the Prefuse Force Directed Layout. 

Cell–cell interaction network analysis

We mapped the cell-cell interaction and receptor-ligand pair between all major cell types using
CellPhoneDB (www.cellphonedb.org) 68, 69. The potential interaction between the two cell types were
inferred through gene expression levels through 1000 permutation tests. Then the resulting adjacency
matrices were generated for all cell–cell interactions and visualized on heatmap. We applied the
following �ltering steps: cell–cell interactions within identical cellular lineages were excluded, and only
visualized the gene pairs from receptor-ligand interactions of the cell types we are interested in, and
satis�ed with combined p-value of 0.001 (multiplying all p-values within each gene-pairs).

TCGA survival analysis

To assess the correlation of speci�c cell types to lung adenocarcinoma patient survival, we downloaded
LUAD RNA-seq data (TCGA-LUAD) as well as clinical data using the Bioconductor TCGAbiolinks package
(version 2.2.10). 515 LUAD RNA-seq data (TCGA-LUAD) as well as clinical data were used. For the cell
cluster identi�ed in the study, top 10 marker genes in each cluster were ranked by logFC, and averaged per
patient and grouped into high and low ones by the median expression for the corresponding cluster. The
survival analyses were performed using R package survival (version 3.2-3) and survminer (version 0.4.7).

https://github.com/harbourlab/UPhyloplot2
https://github.com/iaconogi/bigSCale2
https://cytoscape.org/
http://www.cellphonedb.org/
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Kaplan–Meier curve and Cox regression P values, obtained after correction for age, gender, and tumor
stage, were used to compare survival difference between the high and low groups.

EGFR VIII mutate mouse model

The lentiviral vector pTomo-EGFRVIII-IRES-Cre was constructed based on the backbone of the pTomo
vector 24. Lentiviral DNA vectors were co-transfected into HEK293T cells with the packaging plasmids
pCMVΔ8.9 and pMD2.G at a ratio of 10:5:2. The copy number of lentiviral particles was con�rmed using
quantitative RT-PCR with U5 primers (U5-F, 5’AGCTTGCCTTGAGTGCTTCA3’ and U5-R,
5’TGACTAAAAGGGTCT-GAGGG3’). Mice were subjected to general anesthesia with 2.5% avertin by
intraperitoneal injection (15mL/kg). The mice were placed with their head forward in a supine position
and 2x105 lentivirus particles in 70 µL PBS was gradually released into the nostrils with sterile pipette
tips. Finally, the mice were allowed to slowly wake up, and tumorigenesis was subsequently observed. We
used mice for each lineage time point (3 months and 7 months) for Immunohistochemistry and
immuno�uorescence staining. All animal protocols were conducted as approved by the West China
Hospital Institutional Animal Care and Use Committee.

Immuno�uorescence staining

Flow cytometry

Dissociated cells were multi-stained with two antibodies at 4 °C for 30min, and then washed once with
phosphate buffered saline. All antibodies were used at concentrations recommended by the
manufacturer. After being �ltered through a round-bottom tube with a 40- simultaneously stained cells
with anti-human EpCAM-PE (8995s, CST) and CD45-PE (555483, BD) antibodies, the cells were �xed in
2% paraformaldehyde/PBS, permeabilized in Intracellular staining Perm Wash Buffer (BioLegend, San
Diego, CA, USA). Then cells were �xed in 2% paraformaldehyde/PBS, permeabilized in Intracellular
staining Perm Wash Buffer (BioLegend, San Diego, CA, USA). For the sorting of immune-epithelial
communication in the in different stages, cells were stained for EPCAM and CD45.

In situ RNA-FISH

Formalin-�xed para�n-embedded biopsies were sectioned to generate 5μm-thick sections within a week
prior to perform in situ hybridization. All materials, including the microtome and blade, were sprayed with
RNase-away solution prior to use. Slides were baked for 1 hour in a 60ºC dry oven the night before, and
stored overnight at room temperature in a slide box with a silicone desiccator packet, and with seams
sealed using para�lm. Sections were depara�nized and dried at room temperature. Protease activity was
blocked and the slides were incubated with probes. The �uorochromes Cy3 (Lgr5) and DIG (E-cadherin,
FOXM1, Vimentin and EPCAM) were bound to the probes. The nuclei were counterstained with DAPI. The
slides were covered with a coverslip and imaged under the Nikon Imaging system (NIKON DS-U3) and
Caseviewer software. Imaging parameters were kept consistent for all images within the same
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experiment, and any post-imaging manipulations were performed equally on all images from a single
experiment.

Quantitative real-time PCR

A total of 93 LUAD patients and 30 healthy controls with comparable age and gender pro�les were
recruited. Among the cancer patients, 25 patients were male and 68 were female. Patients (and controls)
with a history of any liver or kidney disease, and any previous treatment with anti-neoplastic drugs were
excluded from this cohort. Blood sample (5-8mL peripheral venous fasting blood) was obtained before
surgery, and immediately centrifuged; the plasma was stored at -80°C. Total RNA was isolated from
cultured cells with Trizol reagent (Invitrogen, USA). The GAPDH was used as an internal control for each
speci�c gene. For miRNA isolation, 200 μL yielded plasma was used for miRNA extraction using isolated
QIAGEN miRNeasy Serum/Plasma Kit, (Cat No. 217184) according to manufactures’ guideline.
Quantitative real-time PCR (qRT-PCR) was performed on the IQ5 Real-time PCR system (Bio-Rad, Hercules,
CA, USA), 1μg used for each sample. The relative transcript levels of miRNA-10a were calculated using
the 2-DCT method. U6-snRNA acted as an external control, and all primers were synthesized by TsingKe
Co. (Chengdu, China). Three independent experiments were performed to analyze the relative gene
expression and each sample was tested in triplicate.

ELISA

The CEA (Abnova, ABIN6730886), β-hydroxybutyric acid (Biovision, K651-100), MDK (Abnova,
ABIN924788) and TIMP1 (Abnova, ABIN365420) concentrations in the plasma from LUAD patients and
30 healthy controls were detected following the manufacturer’s instructions. Optical density was
measured in each well using a microplate reader Epoch BIO-TEK Instruments (Pitts�eld, MA., USA). The
concentration of cytokines in the samples was determined by comparing the optical density values of the
samples to the standard curve.

Statistics and reproducibility

No statistical method was used to predetermine sample sizes. Samples were processed for scRNA-seq
(10x Genomics) soon after resection in the operating room. As a result, samples from different patients
were processed in separate experiments. Survival probabilities were estimated using the Kaplan–Meier
method and differences between Kaplan–Meier curves were compared by using the log-rank test.
Univariable and multivariable Cox proportional hazard regression models were used to identify
independent prognostic factors. Hazard ratios (HR) with their 95% con�dence intervals (CI) and
corresponding P values were presented. All statistical tests were two-sided, and a P value lower than 0.05
was considered as statistically signi�cant. All analyses were performed with SPSS V18.0 software (SPSS
Inc., Chicago, IL, USA).

Declarations



Page 19/31

Acknowledgements: We are thankful to all the patients for their voluntary participation in the study. We
thank Dr. Kun Zhang from the University of California San Diego, and Wan Xiong from West China
Hospital for the valuable discussion. We thank Dr. Dong Yang from the laboratory of animal tumor
models West China Hospital, for Providing EGFR VIII mutate mouse model.

Author’ contributions: Z. Wang, W. Luo and W. Qiao performed the experiments; G. Wang and Y. Ni
performed sequencing experiments and processed the data; Z. Li, M. Xu, Y. Liu, Z. Su performed
bioinformatic analyses; K. Zhou, C Wang, G, Ji consented the patients and collected the samples; S. Dai
assisted in participant selection, consent, clinical information and procurement of tissue; L Zhang
performed histological evaluations; Z. Wang, and Y. Yang, T. Guo performed fresh tissue dissociations,
protein immunostainings, microscopy and imaging; W. Li and G. Che provided clinical insights; Z. Wang
and Z. Li analyzed and interpreted the data. Z. Wang and Z. Li conceived of the experiments and wrote
the manuscript; All authors reviewed and edited the manuscript.

Ethics approval and consent to participate: This study was approved by the local ethics committee at the
West China Hospital of Sichuan University (Ethics: project identi�cation code: 2018.270) and we
complied with all relevant ethical regulations.

Availability of data: All relevant data are available via the data center of precision medicine in West China
Hospital, Sichuan, China (https://pms.cd120.com/wzf01/index.html).

Competing interests: The authors declare no competing interests.

Funding: This work was supported by National Natural Science Foundation of China (Nos. 81871890,
91859203 to W Li, and 81802300 to Z Wang); China Postdoctoral Fund (No. 2019T120850 to Z Wang),
Sichuan Science and Technology Program (No. 2019YJ0159 to Z Wang).

References
1. Gridelli C, et al. Non-small-cell lung cancer. Nat Rev Dis Primers 1, 15009 (2015).

2. Inamura K. Clinicopathological Characteristics and Mutations Driving Development of Early Lung
Adenocarcinoma: Tumor Initiation and Progression. Int J Mol Sci 19, (2018).

3. Cancer Genome Atlas Research N. Comprehensive molecular pro�ling of lung adenocarcinoma.
Nature 511, 543–550 (2014).

4. Izumchenko E, et al. Targeted sequencing reveals clonal genetic changes in the progression of early
lung neoplasms and paired circulating DNA. Nat Commun 6, 8258 (2015).

5. Hu X, et al. Multi-region exome sequencing reveals genomic evolution from preneoplasia to lung
adenocarcinoma. Nat Commun 10, 2978 (2019).

�. Swanton C, Govindan R. Clinical Implications of Genomic Discoveries in Lung Cancer. N Engl J Med
374, 1864–1873 (2016).



Page 20/31

7. Cheung WK, Nguyen DX. Lineage factors and differentiation states in lung cancer progression.
Oncogene 34, 5771–5780 (2015).

�. Marjanovic ND, et al. Emergence of a High-Plasticity Cell State during Lung Cancer Evolution. Cancer
Cell 38, 229–246.e213 (2020).

9. Treutlein B, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell
RNA-sEq. Nature 509, 371–375 (2014).

10. Montoro DT, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature
560, 319–324 (2018).

11. Lambrechts D, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat
Med 24, 1277–1289 (2018).

12. Kim N, et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of
metastatic lung adenocarcinoma. Nature Communications 11, (2020).

13. Baudino TA. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor
progression. Genes & Development 16, 2530–2543 (2002).

14. Kambayashi T, Laufer TM. Atypical MHC class II-expressing antigen-presenting cells: can anything
replace a dendritic cell? Nat Rev Immunol 14, 719–730 (2014).

15. Kalluri R. The biology and function of �broblasts in cancer. Nature Reviews Cancer 16, 582–598
(2016).

1�. Vong S, Kalluri R. The Role of Stromal Myo�broblast and Extracellular Matrix in Tumor Angiogenesis.
Genes & Cancer 2, 1139–1145 (2011).

17. Hinz B, et al. Recent developments in myo�broblast biology: paradigms for connective tissue
remodeling. Am J Pathol 180, 1340–1355 (2012).

1�. Avila MA, Rockey DC, Weymouth N, Shi Z. Smooth Muscle α Actin (Acta2) and Myo�broblast
Function during Hepatic Wound Healing. PLoS ONE 8, (2013).

19. Thommen DS, Schumacher TN. T Cell Dysfunction in Cancer. Cancer Cell 33, 547–562 (2018).

20. Guo X, et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing.
Nature Medicine 24, 978–985 (2018).

21. Vieira Braga FA, et al. A cellular census of human lungs identi�es novel cell states in health and in
asthma. Nat Med 25, 1153–1163 (2019).

22. Zhang L, et al. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon
Cancer. Cell 181, 442–459 e429 (2020).

23. Snyder EL, et al. Nkx2-1 represses a latent gastric differentiation program in lung adenocarcinoma.
Mol Cell 50, 185–199 (2013).

24. Yang D, et al. HUWE1 controls the development of non-small cell lung cancer through down-
regulation of p53. Theranostics 8, 3517–3529 (2018).

25. Tammela T, et al. A Wnt-producing niche drives proliferative potential and progression in lung
adenocarcinoma. Nature 545, 355–359 (2017).



Page 21/31

2�. I Ramachandran VG, E Gillies, I Fonseca, SM Sureban, CW Houchen, A Reis, L Queimado. Wnt
inhibitory factor 1 suppresses cancer stemness and induces cellular senescence. Cell Death and
Disease 5, (2014).

27. Schroeder JA, et al. MUC1 overexpression results in mammary gland tumorigenesis and prolonged
alveolar differentiation. Oncogene 23, 5739–5747 (2004).

2�. Tan SH, et al. AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature 578,
437–443 (2020).

29. Amandine Bastide AD. The ribosome, (slow) beating heart of cancer (stem) cell. Oncogenesis 7,
(2018).

30. Dave B, et al. Targeting RPL39 and MLF2 reduces tumor initiation and metastasis in breast cancer by
inhibiting nitric oxide synthase signaling. Proc Natl Acad Sci U S A 111, 8838–8843 (2014).

31. Angelidis I, et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue
proteomics. bioRxiv, (2018).

32. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and
implications for cancer. Nat Rev Mol Cell Biol 20, 69–84 (2019).

33. Song G, et al. TIMP1 is a prognostic marker for the progression and metastasis of colon cancer
through FAK-PI3K/AKT and MAPK pathway. J Exp Clin Cancer Res 35, 148 (2016).

34. Hou S, et al. S100A4 promotes lung tumor development through beta-catenin pathway-mediated
autophagy inhibition. Cell Death Dis 9, 277 (2018).

35. Olmeda D, et al. Whole-body imaging of lymphovascular niches identi�es pre-metastatic roles of
midkine. Nature 546, 676–680 (2017).

3�. Ahmad N. Nabhan DGB, Pehr B. Harbury, Mark A. Krasnow, Tushar J. Desai. Single-cell Wnt signaling
niches maintain stemness of alveolar type 2 cells. Science 359, 1118–1123 (2018).

37. Desai TJ, Brown�eld DG, Krasnow MA. Alveolar progenitor and stem cells in lung development,
renewal and cancer. Nature 507, 190–194 (2014).

3�. Tata PR, et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503, 218–
223 (2013).

39. Xue YJ, Long DZ, Zou XF, Wang XN, Zhang GX, Yuan YH, Wu GQ, Yang J, Wu YT, Xu H, Liu FL, Liu M.
Overexpression of FoxM1 is associated with tumor progression in patients with clear cell renal cell
carcinoma. Journal of Translational Medicine 10, (2012).

40. Wen N, et al. Overexpression of FOXM1 predicts poor prognosis and promotes cancer cell
proliferation, migration and invasion in epithelial ovarian cancer. Journal of Translational Medicine
12, (2014).

41. Focke CM, Decker T, van Diest PJ. Intratumoral heterogeneity of Ki67 expression in early breast
cancers exceeds variability between individual tumours. Histopathology 69, 849–861 (2016).

42. Pongracz JE, Stockley RA. Wnt signalling in lung development and diseases. Respir Res 7, 15 (2006).



Page 22/31

43. Li H, et al. Reference component analysis of single-cell transcriptomes elucidates cellular
heterogeneity in human colorectal tumors. Nat Genet 49, 708–718 (2017).

44. Kumar MP, et al. Analysis of Single-Cell RNA-Seq Identi�es Cell-Cell Communication Associated with
Tumor Characteristics. Cell Rep 25, 1458–1468 e1454 (2018).

45. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell–cell
communication from combined expression of multi-subunit ligand–receptor complexes. Nature
Protocols 15, 1484–1506 (2020).

4�. Seifert AM, et al. Detection of pancreatic ductal adenocarcinoma with galectin-9 serum levels.
Oncogene 39, 3102–3113 (2020).

47. Heegaard NHH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED, Harris CC. Circulating micro-RNA
expression pro�les in early stage nonsmall cell lung cancer. International Journal of Cancer 130,
1378–1386 (2012).

4�. Zhang L, et al. A High-Performing Plasma Metabolite Panel for Early-Stage Lung Cancer Detection.
Cancers 12, (2020).

49. Okamura K, Takayama K, Izumi M, Harada T, Furuyama K, Nakanishi Y. Diagnostic value of CEA and
CYFRA 21 – 1 tumor markers in primary lung cancer. Lung Cancer 80, 45–49 (2013).

50. Ørom UA, Nielsen FC, Lund AH. MicroRNA-10a Binds the 5′UTR of Ribosomal Protein mRNAs and
Enhances Their Translation. Molecular Cell 30, 460–471 (2008).

51. Louis E, et al. Detection of Lung Cancer through Metabolic Changes Measured in Blood Plasma.
Journal of Thoracic Oncology 11, 516–523 (2016).

52. Yu T, Yan MX, Lin HC, Liu Y, Chu DD, Tu H, Gu AQ, Yao M. MiRNA-10a is upregulated in NSCLC and
may promote cancer by targeting PTEN. Oncotarget 6, 30239–30250 (2015).

53. Liao X, et al. LAMP3 regulates hepatic lipid metabolism through activating PI3K/Akt pathway.
Molecular and Cellular Endocrinology 470, 160–167 (2018).

54. McGranahan N, Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future.
Cell 168, 613–628 (2017).

55. Liu Q, et al. Lung regeneration by multipotent stem cells residing at the bronchioalveolar-duct
junction. Nat Genet 51, 728–738 (2019).

5�. Chow KH, et al. S100A4 Is a Biomarker and Regulator of Glioma Stem Cells That Is Critical for
Mesenchymal Transition in Glioblastoma. Cancer Res 77, 5360–5373 (2017).

57. Li S, et al. Interferon alpha-inducible protein 27 promotes epithelial-mesenchymal transition and
induces ovarian tumorigenicity and stemness. J Surg Res 193, 255–264 (2015).

5�. Padmanaban V, et al. E-cadherin is required for metastasis in multiple models of breast cancer.
Nature 573, 439–444 (2019).

59. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12,
252–264 (2012).



Page 23/31

�0. Thommen DS, et al. Progression of Lung Cancer Is Associated with Increased Dysfunction of T Cells
De�ned by Coexpression of Multiple Inhibitory Receptors. Cancer Immunol Res 3, 1344–1355 (2015).

�1. Puchalska P, Crawford PA. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling,
and Therapeutics. Cell Metab 25, 262–284 (2017).

�2. Yong WH, et al. Ribosomal Proteins RPS11 and RPS20, Two Stress-Response Markers of
Glioblastoma Stem Cells, Are Novel Predictors of Poor Prognosis in Glioblastoma Patients. PLoS One
10, e0141334 (2015).

�3. Travis WD BE, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder
DB, Geisinger K, Hirsch FR, Ishikawa Y, Kerr KM, Noguchi M, Pelosi G, Powell CA, Tsao MS, Wistuba I;
WHO Panel. The 2015 World Health Organization Classi�cation of Lung Tumors: Impact of Genetic,
Clinical and Radiologic Advances Since the 2004 Classi�cation. J Thorac Oncol 10, 1243–1260
(2015).

�4. Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression pro�les. Proc Natl Acad Sci U S A 102, 15545–15550 (2005).

�5. Korotkevich GS, Vladimir Sergushichev, Alexey. Fast gene set enrichment analysis. bioRxiv doi:
https://doi.org/10.1101/060012, (2019).

��. Qiu X, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14,
979–982 (2017).

�7. Iacono G, Massoni-Badosa R, Heyn H. Single-cell transcriptomics unveils gene regulatory network
plasticity. Genome Biol 20, 110 (2019).

��. Efremova M, Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell-cell
communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc
15, 1484–1506 (2020).

�9. Vento-Tormo R, et al. Single-cell reconstruction of the early maternal-fetal interface in humans.
Nature 563, 347–353 (2018).

Tables
Tables 1 - 4 are available as downloads in the Supplementary Files.

Figures



Page 24/31

Figure 1

Overview of the single cell transcriptomic pro�le of LUAD samples. (A). Schematic experimental work�ow
for the study. A total of 52 freshly resected lung tumor specimens were collected from 25 patients, and
non-malignant lung tissues were collected from 18 patients as controls. Samples from patients 1 to 22
were processed using 10X chromium V2 kits, while samples from patients 23 to 25 were used as the
validation dataset and processed using 10X Chromium V3 kits. (B). UMAP visualization of 16 major cell
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types identi�ed and color-coded by their associated clusters. (C). UMAP visualization of the 16 major cell
types identi�ed and color-coded by cancer/normal distribution. (D). UMAP visualization of 16 major cell
types identi�ed and color-coded by clinicopathological stages. (E). Dot plot showing the marker genes of
each cell type clusters de�ned in Fig.1B. (F). Proportion of cells originating from different patient samples
in the 16 major cell types identi�ed. (G). The percentage of each identi�ed cell type in the different
clinicopathological stages.

Figure 2

Pro�ling stromal and immune cell populations in LUAD progression. (A). UMAP visualization of
endothelial cell clusters color-coded by identi�ed cell subtypes. ECs: endothelial cells; EPCs: endothelial
progenitor cells. (B). Heatmap of selected marker genes in EC cluster subtypes. (C). The percentage of
cells within each EC cluster present in the different clinicopathological stages. (D). Top enriched pathway
of ECs isolated from normal or tumor tissues as determined by GSEA. (E). UMAP visualization of
�broblast clusters color-coded by identi�ed cell subtypes. (F). Heatmap of selected marker genes in the
�broblast cluster subtypes. (G). The percentage of cells from each �broblast cluster present in the
different clinicopathological stages. (H). Top enriched pathway of �broblasts isolated from normal or
tumor tissues as determined by GSEA. (I). UMAP visualization of lymphocyte clusters color-coded by
identi�ed cell subtypes. (J). Heatmap of selected marker genes in the lymphocyte cluster subtypes. (K).
Trajectory analysis of lymphocyte clusters. Cells are color coded by clinicopathological stages or
identi�ed cell cluster subtypes. (L). UMAP visualization of myeloid cell clusters color-coded by identi�ed
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cell subtypes. (M). Heatmap of selected marker genes in the myeloid cell cluster subtypes. (N). Trajectory
analysis of myeloid cell clusters. Cells are color-coded by clinicopathological stages or identi�ed cell
cluster subtypes.

Figure 3

Characterization of epithelial cell lineages across different stages. (A). UMAP visualization of epithelial
cell sub-clustering analysis, which is color-coded by the identi�ed cell subtypes. (B). UMAP visualization
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of epithelial cell sub-clustering by clinicopathological stage. (C). Heatmap of selected marker genes in
each cell cluster subtype. (D). Representative CNV heatmaps with hierarchical clustering of AT1, AT2,
ciliated, club, and basal cells. (E). Summary plot of the inferred CNV pro�les from each of the 15 patients;
CNVs were annotated by the chromosome arm in which the CNV events were calculated. Chromosomal
ampli�cation (red) and deletion (blue) are extrapolated in each chromosomal position (columns) across
the single cells (rows) using the PDEC protocol. The color bar represents the assigned cell type signature
for each cell. (F). Protein �uorescent immunostaining for SFTPC in human tumor samples from the four
representative tumor stages (i.e., AAH to IA). Arrows indicate representative SFTPC protein expression in
different slices. Scale bars: 50μm; nuclei (DAPI) are stained blue.
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Figure 4

Transcriptional trajectory analysis of AT2 cells. (A). Trajectory analysis of AT2 and AT2-like cell clusters.
Cells are color-coded by clinicopathological stages or pseudotime. (B). Heatmap showing 283
differentially expressed genes arranged in pseudotemporal patterns. GO terms from the enrichment
analysis reveal the biological function of cells in the 4 groups indicated. (C). Representative gene
expression levels of different marker genes, the size of each dot represents relative expression levels. (D).
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Gene-gene interaction networks between marker genes in epithelial cell clusters. (E). Fluorescent in situ
hybridization staining for vimentin, E-cadherin, and Foxm1 in normal tissues and tumor tissues from
different stages. Scale bars: 50μm; nuclei (DAPI) are stained blue.

Figure 5

Cell-cell crosstalk visualizing potential speci�c interactions in LUAD. (A). Heat map depicting the
signi�cant interactions among the 16 major cell types identi�ed in Fig.1B. (B). Overview of the selected
ligand-receptor interactions; P values are indicated by circle size, scale on right (permutation test, see
Methods). The means of the average expression level of interacting molecule 1 in cluster 1 and
interacting molecule 2 in cluster 2 are indicated by color. Assays were carried out at the RNA level, but
extrapolated to protein interactions. Selected cells include AT2 cells, AT2-like cells, ECs and �broblasts.
(C). Diagram of the main receptors and ligands expressed on AT2 cells and AT2-like cells. (D).
Representative �ow cytometry plots showing the percentage of Epcam-CD45+ cells in tumor tissues from
different stages.
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Figure 6

Quantitative detection of key biomarkers in plasma samples from patients with different stages of the
LUAD by ELISA or RT-PCR. (A). Detection of mRNA (CEA), miRNA (miRNA-10a) and metabolomics (β-
hydroxybutyric acid) in plasma from patients in early-stage LUAD. (B). Detection of protein (CEA, MDK
and TIMP1) in plasma from all LUAD patients. n=3; *P < 0.05, **P < 0.01, ***P < 0.001. (C). Protein
�uorescent immunostaining for MDK (top), and TIMP1 (bottom) in normal tissues and tumor tissues
from different stages. Scale bars: 50μm; nuclei (DAPI) are stained blue.



Page 31/31

Figure 7

Schematic overview of the proposed cellular (A) and molecular (B) mechanisms involved in the cancer
progression of LUAD.
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