
Deciphering Interactions in Moving Animal Groups
Jacques Gautrais1,2*, Francesco Ginelli3,4,5, Richard Fournier6,7, Stéphane Blanco6,7, Marc Soria8,
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le Développement (IRD), UMR EME, La Réunion, France

Abstract

Collective motion phenomena in large groups of social organisms have long fascinated the observer, especially in cases,
such as bird flocks or fish schools, where large-scale highly coordinated actions emerge in the absence of obvious leaders.
However, the mechanisms involved in this self-organized behavior are still poorly understood, because the individual-level
interactions underlying them remain elusive. Here, we demonstrate the power of a bottom-up methodology to build
models for animal group motion from data gathered at the individual scale. Using video tracks of fish shoal in a tank, we
show how a careful, incremental analysis at the local scale allows for the determination of the stimulus/response function
governing an individual’s moving decisions. We find in particular that both positional and orientational effects are present,
act upon the fish turning speed, and depend on the swimming speed, yielding a novel schooling model whose parameters
are all estimated from data. Our approach also leads to identify a density-dependent effect that results in a behavioral
change for the largest groups considered. This suggests that, in confined environment, the behavioral state of fish and their
reaction patterns change with group size. We debate the applicability, beyond the particular case studied here, of this novel
framework for deciphering interactions in moving animal groups.
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Introduction

Collective motion occurs across a variety of scales in nature,

offering a wealth of fascinating phenomena which have attracted a

lot of attention [1–5]. The self-organized motion of social animals

is particularly intriguing because the behavioral rules the

individuals actually follow and from which these remarkable

collective phenomena emerge often remain largely unknown due

to the tremendous difficulties to collect quality field data and/or

perform controlled experiments in the laboratory. This situation

does not prevent a thriving modeling activity, thanks to the relative

ease by which numerical simulations can be conducted. However,

most models of moving animal groups are built from general

considerations, educated guesses following qualitative observa-

tions, or ideas developed along purely theoretical lines of thought

[6–9]. Even when authors strive to build a model from data, as in

the recent paper by Lukeman et al. [10], this model building

amounts to writing down a fairly complicated structure a priori,

involving many implicit assumptions, and to fit collective data to

determine effective parameters, yielding a best-fit model.

On the other hand, recent studies within the physics community

of simple, minimal models for collective motion have revealed an

emerging picture of universality classes [11–15]: Take, for

instance, the Vicsek model, arguably one of the simplest models

exhibiting collective motion. In this model, point particles move at

constant speed and choose, at discrete time-steps, their new

heading to be the average of that of their neighbors located within

unit distance. Many of these behavioral restrictions can be relaxed

without changing the emerging collective properties. Fluctuations

of speed can be allowed, some short-range repulsion (conferring a

finite size to the particles) can be added, even explicit alignment

can be replaced by inelastic collisions, etc., all these changes will

still produce the remarkable nonlinear high-density high-order

bands emerging near onset of collective motion, and, deeper in the

ordered moving phase, the anomalously strong number fluctua-

tions which have become a landmark of the collective motion of

polarly aligning self-propelled particles [16–20]. The Vicsek

model, in this context, is one of the simplest members of a large

universality class defined by all models sharing the same large-

scale properties. This universality class can be embodied in the

continuous field equations that physicists are now able to derive.

With such a viewpoint, different models in this class merely differ

in the numerical values of their parameters [21–23], very much

like different fluids are commonly described by the Navier-Stokes

equations and differ only in their viscosity and other constitutive

parameters.

Significant features nevertheless may be altered when a

qualitatively important feature is changed, such as the symmetry

of the aligning interaction, or added, as when local attraction/

repulsion between individuals is also considered [8,24] In this
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latter case, for instance, no strong clustering and high density band

appears when attraction is sufficiently strong, and finite groups

may keep cohesion in open space as most natural groups do. These

models yield a more complex phase diagram where collectively

moving groups may assume gas-like, liquid-like or even moving

crystal states as the two parameters controlling alignment and

cohesion are varied.

So, it remains important to know how individuals make

behavioral choices when interacting with others, not only from a

social ethology and cognitive viewpoint, but also because i)

different behavioral rules may make a difference in small enough

groups and ii) the analysis of local-scale data that this requires may

lead to discover features eventually found to give rise to different

qualitative collective properties. A recent instance can be found in

the results on the structure of starling flocks gathered by Ballerini

et al. [25]: They have ignited an ongoing debate about the

possibility that individuals might interact mostly with neighbors

determined by topological rules and not by metric criteria as

assumed in most models. While this message has intrinsic value for

the study of decision-making processes in animal groups, it was

also shown recently that such metric-free, topological interactions

are relevant, in the sense that they give rise to collective properties

that are qualitatively different from those of metric models [26].

Thus, in this case, an individual-level ingredient suggested by data,

which had been only partially and theoretically considered before

[6,7,27], defines new classes of collective properties. Given that

animals are likely to possess more sophisticated behavior than, say,

sub-cellular filaments displaced by molecular motors, one can

expect more hidden features to play an important role at the

collective level. This is a central finding of the recent work by Katz

et al. where a careful analysis of groups of two and three fish

revealed that the mechanisms at play are, at least in the golden

shiners studied there, much more subtly intertwined that in

existing fish models [28]. Indeed they concluded that alignment

emerges from attraction and repulsion as opposed to being an

explicit tendency among fish. Whether fish display some mech-

anisms of active alignment or only attraction/repulsion is likely to

lead to different patterns as interactions accumulate over time. In

short, extracting interaction rules from individual scale data is

crucial not only for animal behavior studies, but also because

heretofore overlooked features can be found decisive in governing

the emergent collective properties of moving animal groups.

Here, we assess the power of a bottom-up methodology to build

models for animal group motion from data gathered at the

individual scale in groups of increasing sizes. We use data obtained

by recording the motion of barred flagtails ( Kuhlia mugil) in a tank.

In natural conditions, the barred flagtail form schools with a few

thousands individuals along the reef margin of rocky shorelines,

from just below the breaking surf to a depth of a few meters.

However the size of these schools is much smaller than in species

like the sardine or the Atlantic herring.

Our analysis is incremental: in a previous work we character-

ized the spontaneous behavior of a single fish, including wall-

avoidance behavior [29]. Here, using pairs of fish, we first

characterize the response function of one fish depending on the

position and orientation of the other fish. Then we calibrate

multiple fish interactions, using data in larger groups. At each step,

the already-determined factors and parameters are kept un-

changed and the new terms introduced in the stimulus-response

function and the corresponding new parameters are determined

from data with nonlinear regression routines (see Statistical

Analysis in Materials and Methods). The resulting model is

validated by comparing extensive simulations to the original data.

Often, different functional forms are tested and we determine

which one is most faithful to the data. When no significant

difference is found, the simplest version is retained, following a

principle of parsimony.

Results

Experimental observations and model basics
Experiments with 1 to 30 fish were performed in shallow

circular swimming pools that let the fish form quasi 2-dimensional

schools (see Fig. 1A and Video S1, S2, S3, S4). At the collective

level, we observe a transition from schooling to shoaling behavior

when the density of fish increases in the tank: the group

polarization P, which measures the degree of alignment, is high

in groups of two and five fish, even if sometimes we do observe

some breaks in the synchronization, while in larger groups, when

N§10, it remains low (Fig. 1B). Within each group size, we notice

some variability, the most striking effect being an increase of the

synchronization level with the individuals velocity in groups of two

fish.

For every group size, fish move continuously and quickly

synchronize their speed to a well defined, but replicate-dependent

value (Fig. S1). The fish trajectories are smooth, differentiable and

the instantaneous speed v(t) has a well-defined mean v and root

mean square fluctuations of about 10–20% which are found to be

uncorrelated to v(t), the angular velocity of the fish orientation

(Fig. S2). On this basis, fish can be modeled as self-propelled

particles moving in 2D space at constant speed v and the only

dynamical variable retained is v(t). Moreover, since the recorded

trajectories, be they extracted from a single fish or from small

groups in the tank, are always irregular/stochastic, our model

takes the form of coupled stochastic differential equations for the

angular velocities of each fish. Note that if noise acts on v(t) rather

than the fish position or heading, trajectories are smooth and

differentiable, as observed.

Single fish behavior and wall avoidance
We have shown elsewhere that single fish trajectories in barred

flagtails are very well described by an Ornstein-Uhlenbeck process

Author Summary

Swarms of insects, schools of fish and flocks of birds
display an impressive variety of collective patterns that
emerge from local interactions among group members.
These puzzling phenomena raise a variety of questions
about the behavioral rules that govern the coordination of
individuals’ motions and the emergence of large-scale
patterns. While numerous models have been proposed,
there is still a strong need for detailed experimental
studies to foster the biological understanding of such
collective motion. Here, we use data recorded on fish
barred flagtails moving in groups of increasing sizes in a
water tank to demonstrate the power of an incremental
methodology for building a fish behavior model com-
pletely based on interactions with the physical environ-
ment and neighboring fish. In contrast to previous works,
our model revealed an implicit balancing of neighbors
position and orientation on the turning speed of fish, an
unexpected transition between shoaling and schooling
induced by a change in the swimming speed, and a group-
size effect which results in a decrease of social interactions
among fish as density increases. An important feature of
this model lies in its ability to allow a large palette of
adaptive patterns with a great economy of means.
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acting on the instantaneous curvature, or, equivalently, on v(t)
[29]. When the fish is away from the tank wall, the distribution of

v(t) is nearly Gaussian with zero mean and variance ts2=2, where

t is the characteristic time of the (exponentially decaying)

autocorrelation function of v(t). To avoid collisions with the tank

walls, we found that a single fish adjusts its current turning

speed v(t) towards a (time-dependent) target value v�(t)~
kW sgn(wW )=dW where kW is a parameter, dW is the distance to

the point of impact on the wall should the fish continue moving

straight ahead, and wW is the angle between the current heading of

the fish and the normal to the point of impact (see Fig. 2A). In

short, v(t) obeys the stochastic differential equation:

dv(t)~{
dt

t
v(t){v�(t)ð ÞzsdW ð1Þ

where sdW is a Wiener process of variance s2 reflecting the

stochasticity of the behavioral response. Non-linear regression

analysis of the above model against our experimental data yielded

excellent agreement and accurate estimations of t and kW . Note

that in the present work we adopted a slightly different form for

the wall avoidance term with regards to the exponentially

decreasing one of Ref. [29], since it actually prevents fish from

crossing the tank boundary, while both ansatz are similar as fish

moves away from tank walls (Fig. S8A).

Pair interactions
The stimulus/response function of a single fish in the tank is

directly expressed by how v� varies with the relative position of

the fish and the wall. We now assume that this framework holds

when two fish i and j are present in the tank by defining how, for

fish i, its turning speed v�i is modulated by the combined stimuli

due to the wall and to fish j. Almost all existing fish behavior

models, on the basis of common sense, intuition, and sometimes

experimental evidence [30–37], offer a combination of three basic

ingredients: short distance repulsion (to avoid collisions), alignment

for intermediate distances, and attraction up to some maximal

range. Here, we dispose of repulsion not only because we want to

allow for the rare experimentally observed over- and under-

passings events, but mostly because we do not need to incorporate

it explicitly to avoid collisions (see below and Video S1, S2, S3,

S4). In contrast with most existing ‘‘zonal’’ models, and because

there is little cognitive/physiological evidence for a sudden switch

between alignment and attraction, we want to allow for

continuous, distance-dependent weighting between alignment

and attraction in agreement with the recent findings of Katz et

al. [28]. These two factors a priori depend on the geometrical

quantities defining the location of fish j from the viewpoint of fish

i: their distance dij is involved, but also hij , the angular position of

fish j with respect to wi, the current heading of fish i, as well as

their relative heading difference wij~wj{wi (Fig. 2A). The main

angular variable for explicit alignment is, as usual, wij , whereas for

attraction it is hij ; both may also depend on dij . The stimulus/

response function v�i of fish i thus combines a priori wall

avoidance, alignment and attraction in some unknown function

with parameters diW and wiW (reaction to the wall), dij , hij and wij :

v�i ~v�i (diW ,dij ,wiW ,hij ,wij).

Next, in the spirit of an expansion around the no-interaction

case, we write the expression for v�i above as the sum of three

terms:

v�i ~fW diW ,wiW ,hij

� �
zfP dij ,hij ,wij

� �
zfV wij ,dij ,hij

� �
ð2Þ

Figure 1. Basic experimental observations. (A) Illustrations of
typical fish trajectories in the tank, in groups of 2, 5 and 10 fish, over 9, 5
and 3 seconds respectively. The similarity of trajectories reflect
schooling behavior. (B) Time series of the group polarization

P~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S cos wiT

2
i zS sin wiT

2
i

q
, where wi is the heading of fish i. In groups

of N~2, fast swimming fish are nearly perfectly aligned at all times,
whereas in larger groups, the alignment is interspersed by desynchro-
nization events.
doi:10.1371/journal.pcbi.1002678.g001

Figure 2. Quantities used in the model formulation. (A) The
distance dW separates the position of the focal fish i from its current
point of impact on the wall; wiW is the angle between the heading of
fish i and the angular position of this point of impact with respect to
the center of the tank. Neighboring fish j is at distance dij from fish i; hij

is the angle between the angular position of fish j with respect to fish i
and the heading of fish i. The relative heading of fish j compared to the
focal fish i is wij . (B) Illustration of a Voronoi neighborhood. Fish

headings are indicated by arrows. The focal fish is under the influence
of its five neighbors in the Voronoi tessellation (dotted lines), one of
which is near the tank wall.
doi:10.1371/journal.pcbi.1002678.g002

Deciphering Interactions in Moving Animal Groups
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where the ‘‘main’’ variables have been placed first for each term.

The wall avoidance term fW depends explicitly on hij to reflect a

possible screening of the wall by the other fish. We have tested the

influence of this by introducing a hij dependence in the wall

avoidance term determined for the single-fish behavior. Essential-

ly, fW was made smaller for hij*0. But this brought no significant

improvement, so we keep fW (diw,wiw)~kW sgn(wW )=diw as found

previously.

On general grounds, one expects that the relative importance of

the positional interaction fP (attraction) to the velocity interaction fV

(alignment) increases with dij . Given that the fish are constrained in

a rather small tank, a limited range of inter-distances is effectively

explored. In the spirit, again, of a small-distance expansion, a

satisfactory choice is given by a linear dependence of fP on dij , while

fV is independent of dij . Of course, such a functional choice cannot

be correct at large distances since then v� would take large

unrealistic values, meaning that the fish would spend enormous

amounts of energy turning toward a distant ‘‘neighbor’’ (see the

Discussion for more comments on this point).

The attraction interaction fP must depend on hij , the relative

angle with the other fish position: it is reasonable to assume that a

fish is not attracted much towards a neighbor located behind, and

of course this term must be zero when the other fish is right ahead,

yielding fP(hij~0)~0. A simple, compatible, trigonometric

function representing the leading term of a Fourier expansion is

the sine function. We thus write fP(dij ,hij)~kPdij sin hij where kP

is a parameter controlling the weight of the positional information.

Finally, we neglect the possible dependence on wij : the way a fish

would turn toward the position of a neighbor does not depend on

the orientation of that fish. This is especially natural when this

interaction dominates, i.e. when the neighbor is far away.

Moreover knowing the other fish orientation is a cognitively

expensive and/or time consuming process at larger distances.

The alignment interaction is mostly characterized by its

functional dependence on wij . The main constraint here is that

fV (wij~0)~0 (the two fish are then already aligned). Here again,

the simplest choice is fV (wij)! sin wij as in most models [8–10].

Including higher harmonics (e.g. sin 2w) would allow to account

for the few observed nematic alignment events where a fish

remains anti-aligned with its neighbors. However, incorporating

this term did not improve the faithfulness of the model to our

dataset, so we keep only the leading sine function. In principle, the

strength of alignment can also depend on hij : less attention may be

paid to ‘‘back neighbors’’. We have tested simple and reasonable

choices for the dependence of fV on hij , e.g. fV!(1z cos hij), but

this did not lead to significant improvement so we kept no angular

position dependence in the alignment interaction. We thus write,

finally: fV (wij ,dij)~kV sin wij where kV is a parameter controlling

the weight of the orientational information.

To summarize the case of two fish i and j, the stimulus/response

function v� in the general evolution equation (1) is thus finally

written:

v�~kW
sgn(wiW )

diW

zkPdij sin hijzkV sin wij ð3Þ

Using nonlinear regression analysis, the faithfulness to our data of

the model consisting of Eqs. (1) and (3) was found very good for each

of our two-fish recordings and the 5 parameters t, s, kW , kP and kV

were estimated for each fish. We find clear dependences of the

estimated parameters on v, the average speed of each fish (see

Fig. 3A). In particular, s, kW , and kV are found proportional to v,

whereas t!1=v and no significant v-dependence appears for kP.

Results regarding this last parameter are the least convincing, with a

large dispersion of individual values. This is mostly due to the

confinement of fish in the tank: the positional interaction never

dominates alignment, preventing its accurate estimation. Neverthe-

less it is crucial to note here that without these positional interactions

the model fails to match the data. Furthermore, we have tested a

posteriori our ansatz by testing each contribution (either wall

avoidance, neighbor position or neighbor orientation) after the

other twos have been subtracted from the fish response according to

Eq. (3). Results show an excellent agreement between our ansatz

and the mean fish response (for more details see Fig. S8 B–D).

Note that these results mean also that the wall avoidance is

actually governed by tiW , the time it would take the fish i to hit the

wall, rather than the distance diW . Conversely, t, the relaxation

time of the angular velocity, is better expressed as the ratio

between a characteristic length j and the speed v. These v-

dependences were then incorporated explicitly in the model:

dvi(t)~{v
dt

j
vi(t){v�i (t)
� �

{ŝsdW

� �
ð4Þ

with

v�~k̂kW

sgn(wiW )

tiW

zkPdij sin hijzk̂kV v sin wij ð5Þ

where ŝs, k̂kW and k̂kV are now constants over all fish. Running

again our nonlinear regressions using this form, and using data

for all replicate, allows for a more accurate estimation of the

parameters j, ŝs, k̂kW , kP and k̂kV now the same for all fish. We find

j~0:024 m, ŝs~28:9 m{1 s{1=2, k̂kW ~0:94, kP~0:41 m{1s{1

and k̂kV~2:7 m{1.

To validate this experimental finding, these parameter values

were used in simulations of the model which were compared

directly to the data. Good agreement is found not only for

statistical quantifiers of the emergent synchronization between the

two fish (see Fig. 3C), but in fact also for the dynamics: see for

instance Video S1, S2, S5, S6 and the time series of polarization

which show the same intermittent behavior (Fig. 3B). We

emphasize that the model captures the experimental observation

that the orientational order is lower when the swimming speed is

lower, and is better in faster groups (Fig. 3B, C).

Multiple fish interactions
Can multiple-fish interactions be factorized into pairs? This is

often taken for granted, following a typical physics approach

where this assumption is routinely made. However, recent work

has suggested that this is not valid when describing pedestrian

interactions in a crowd [38]. Even more recently, Katz et al.

argued that this is also the case for groups of three golden shiners

[28] (but see [39] for the case of birds). Here, our data set is too

small to allow for an in-depth analysis of group behavior at the

level of detail that was accomplished above for two fish, mostly

because many more variables are involved, but the quality of the

pair approximation can be evaluated a posteriori. Assuming that

multiple fish interactions are indeed essentially made of the sum of

the pair interactions involved, Eq. (5) is extended to

v�~k̂kW

sgn(wiW )

tiW

z
1

Ni

X
j[Vi

kPdij sin hijzk̂kV v sin wij

� �
ð6Þ
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where Vi is the (current) neighborhood of fish i which contains Ni

individuals. In our observations with N~5 fish, individuals mostly

stayed together, suggesting that individuals remains aware of all

others. Using all-to-all, equal-weight coupling, we found good

agreement between data and simulations of Eqs. (4) and (6) (see

Fig. S3). This justifies a posteriori the factorization in pairs and the

use of two-fish parameters for Nw2 groups, but also the overall

normalization factor 1=N in Eq. (6), which indicates that, in the

stimulus response of a fish, wall avoidance and the averaged

influence of neighbors keep, on average, the same relative

importance irrespective of the group size. The raw, ‘‘force-like’’

un-normalized superposition would yield too strong a coupling.

For the larger group sizes, all-to-all equal-weight coupling

quickly becomes unrealistic, and one must determine the set of

neighbors a fish interacts with. In principle, abundant data

recorded in larger tanks would allow to discriminate between

alternative choices, but our experimental recordings are too short

for this. Nevertheless, many choices can be eliminated: the usual

one, which consists in cutting off interactions at fixed distances

(zonal models), is inconsistent with our continuous weighting of

alignment and attraction with fish inter-distance. Based on an

analysis of starling flocks, Ballerini et al. have argued that these

birds actually pay attention to their 6–8 closest neighbors,

irrespective of the density of the flock [25]. Coming back to our

observations, this non-metric choice of neighbors can, however,

lead to unrealistic situations when, for instance, a fish is leading a

small group, since then this fish will only pay attention to those

behind, even if individuals are located at intermediate distances

ahead (but see Fig. S7). A simple, reasonable, non-metric solution

is that of neighbors determined by the Voronoi tessellation around

each individual: this allows for continuous weighting between

alignment and attraction and avoids the caveat mentioned above

in the case of a fixed number of closest neighbors. Moreover, given

the rather small inter-distances observed, individuals beyond the

first shell of Voronoi neighbors are largely screened out, so that

our final choice was that of the first shell of Voronoi neighbors (see

Fig. 2B). Using this, the validation of the model simulated with

N~10 fish using the N~2 parameters is again quite satisfactory

(see Fig. S3).

This is however not true anymore for larger groups which

display too high a polarization when using the N~2 parameters

(whereas distance predictions remains satisfactory, see Fig. S3).

Our approach actually allows to further investigate this discrep-

ancy. We estimate the parameters at the individual scale for each

fish with our nonlinear least-square procedure using the Ito-

integrated version of the Ornstein-Uhlenbeck process of Eqs (4)

and (6) for each fish time series (see Statistical Analysis). Thanks to

this parametric inversion strategy, we have been able to extract the

parameter values for each replicate separately (Fig. 4A). The

model predictions with these replicate-based parameters yield a

near-perfect match with the data (Fig. 4B). The results confirm

that, within the limits of statistical accuracy, the parameters and

their v-dependence remain about the same up to N = 10, in

agreement with the above findings ; but in larger groups there is a

decreased tendency of fish to react to their neighbors, which both

concerns the alignment and positional interactions (Fig. 4A).

Figure 3. Parameter estimation and validation of the model for groups of N~2 fish. (A) Determination of the parameters of the model
defined by Eqs. (1) and (3) from data obtained on pairs of fish (see Statistical Analysis). The values of parameters t, s, kW , kP and kV were estimated
for each fish separately, and are reported as a function of fish speed (one color per replicate). This reveals the functional dependence of each
parameter on the swimming speed v. (B) Time series of the alignment between two fish (P) for each experiment (left) and corresponding model
simulations (right), ordered by increasing fish speed. Speed is expressed in fish body lengths per second. (C) Comparison between model predictions
and experimental data for the time-averaged alignment (P) and time-averaged distance (D) between the two fish as function of swimming speed
(color dots : data points, same colors as in A. Red line: predicted mean and gray area : 95% quantiles (see Model Validation)).
doi:10.1371/journal.pcbi.1002678.g003

Deciphering Interactions in Moving Animal Groups
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Discussion

Characterizing and modeling the interactions between individ-

uals and their behavioral consequences is a crucial step to

understand the emergence of complex collective animal behaviors.

With the recent progress in tracking technologies, high precision

datasets on moving animal groups are now available, thus opening

the way to a fine-scale analysis of individual behavior [37,40–42].

Here we adopted a bottom-up modeling strategy for deciphering

interactions in fish shoaling together. This strategy is based on a

step-by-step quantification of the spontaneous motion of a single

fish and of the combined effects of local interactions with

neighbors and obstacles on individuals motion. At each step, one

model ingredient is considered and checked against experimental

data. The required parameters are determined using a dedicated

inversion procedure and the numerical values of these parameters

are kept unchanged in the following steps, yielding, in the end, a

model without any free parameter. Such an incremental

procedure fosters the explicit enunciation of the rationale behind

each functional choice, and differs from searching the best set of

free parameters to fit large-group data [10,43]. Proceeding step by

step also puts stronger constraints on matching, since the

incorporation of additional behavioral features at each step

assumes the stability of the previously explored behaviors and of

the corresponding model parameters. Using pairs of fish, we were

able to show how positional and directional stimuli combine, and

the crucial role of the swimming speed in the alignment

interaction. At intermediate sizes, multiple fish interactions could

be faithfully factorized into pair interactions albeit in a normalized

form. However we found that at even larger group sizes our

incremental modeling approach fails to accurately reproduce the

collective dynamics.

We explored this point further, still considering the statistical

behavior of each fish separately, but only using the data

corresponding to the large-group experiments. We concluded that

our model could still grasp the observed individual and collective

features but with smaller positional and alignment coefficients. We

believe that this decrease in reactivity to neighbors is a

consequence of the high density already imposed by confinement

effects. Indeed, our model predicts that large groups adopting the

high neighbor reactivity found in smaller groups would remain

polarized also in open space, keeping group cohesion with an

average distance to neighbors of about two body lengths (Fig. S6).

Since the largest groups we observed in the tank are already

characterized by such a typical neighbors distance due to

confinement effects, we argue that lower interaction strengths

may simply indicate the fish vanishing need to actively react to

neighbors position and heading in order to maintain a high

density. This could be, for instance, a physiological consequence of

the density per se: the physiological and behavioral consequences,

for an individual, of living in dense groups, known as group effect,

have been described in numerous species from insects to

vertebrates [44,45]. Our results investigation suggests that this

sensitivity may be represented in a quite straightforward manner,

preserving the model shape of Eqs. (4) and (6) and only modifying

the interaction parameters. This conjecture, of course, could only

Figure 4. Quantification of group size effect for N~2,5,10,15,30 fish. (A) The five parameters j, ŝs, k̂kW , kP and k̂kV are reported for each
replicate, as a function of group size. The first shell of Voronoi neighbors was used. The three parameters reflecting the autonomous part of the

behavior (j : persistence length, ŝs: variance of noise and k̂kW : wall avoidance strength) do not show systematic variations with group size. Interaction

strength parameters (kP: positional interaction, k̂kV : orientational interaction) clearly decrease with group size. (B) Comparisons between model
predictions and experimental data using the replicate-based parameters found in A. Left: global polarization P, Right: mean inter-individual distance
D (in meters). (Red circles: data, horizontal bars: predicted means, vertical bars: 95% confidence interval, dotted line: predictions under the null model
with no interactions). Model predictions were computed by averaging 103 different numerical simulation (with Euler timestepping) for each replicate,
starting from the experimental initial conditions, see Model Predictions.
doi:10.1371/journal.pcbi.1002678.g004
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be validated by experiments on large groups conducted in open

space or larger tanks. While we believe in a positive answer,

namely that without too strong a confinement, individuals would

react to the perceived neighbors the same way regardless of the

overall group size, we leave this question for future investigations

on group effect in fish schools.

Our approach yielded a novel type of fish school model whose

main features are its built-in balancing mechanism between

positional and orientational information, a topological interaction

neighborhood, and explicit dependencies on fish speed. Note that

similar features were recently uncovered for another species thanks

to a novel data analysis procedure [28]. The smooth transition from

a dominant alignment reaction when a neighbor is close to attraction

when it is far away is in line with a simple additive physiological

integration of both information [46]. The linear dependence of the

positional interaction strength on fish inter-distance obviously cannot

hold for sparse groups, and will have to be modified by introducing a

long-distance saturation when dealing with situations where

confinement effects are weaker. Even if we claim that a Voronoi

neighborhood was the best choice to account for our data thus

extending the relevance of topological interactions, we also checked

that our conclusions were robust against this choice, by testing a

simple K-Nearest Neighbors network of interactions (which remains

topological [25]). We computed the model predictions with the

parameters estimated for groups of N = 2 fish, but considering only

the K nearest neighbors for increasing values of K (K = 1 to 7, and

10). The results are reported in Fig. S7 ; the main impact of a lower

level of connectivity is a decrease of polarization, but it does not lead

to better predictions at the collective scale. Interestingly, the best

predictions were found with a number of nearest neighbors that

corresponds to the average number of neighbors belonging to the

first shell in a Voronoi neighborhood (K^6{8, Fig S7–B). This

number of influential nearest neighbors is remarkably similar to the

one found in starlings [25] and in contrast with recent results found

by Herbert-Read et al. in mosquito fish [47]. Further dedicated

experiments will be required to discriminate between alternative

choices of the relevant neighborhood.

The speed dependence of the parameters, directly derived from

our data, is in contrast with most previous fish school models. It

leads to an increase of group polarization with swimming speed, a

direct consequence of the predominance of alignment at high

speed (see Video S7). In natural conditions, this mechanism could

be involved in the transitions from shoaling at low speed often

associated with feeding behavior to polarized schooling at high

speed associated with searching for food. Such speed change could

also be elicited by the detection of a threat and abrupt transitions

can occur when fish suddenly increase their speed, for instance

generating a flash expansion (see Video S8). The question of

whether the propagation of such an excitation wave within large

schools can generate an efficient collective evasion call for further

experimental tests [48].

The reason why our approach was fruitful in spite of the limited

amount of data available lies largely in the suitable properties of the

behavior of the fish studied: the smooth fluctuations of tangential

speed and their de-correlation from angular velocity variations were

essential in limiting the number of variables at play but also allowed

for a faithful account of single fish behavior by a simple Ornstein-

Uhlenbeck process. Clearly it is likely that more complicated

solutions will be needed for other species where tangential and

angular accelerations are intimately coupled and/or the underlying

stochastic process is not as transparent [28]. Nevertheless, we expect

that, pending sufficient amounts of data, our approach could be

successfully applied to more complex situations occurring in various

biological systems at different scales of organization.

Materials and Methods

Ethics statement
Our experiments were all carried out in full accordance with the

ethical guidelines of our research institutions and comply with the

European legislation for animal welfare. The welfare of fishes in

the tanks was optimized with a continuous seawater flow, a

suitable temperature, and oxygen content. The maximum density

in the holding tank was lower than 3 m{3. During the

experiments, low mortality occurred (five individuals). At the end

of the experiment, the fish were released at their capture site.

Experimental procedures and data collection
The experiments were performed from April to June 2001 at the

Sea Turtle Survey and Discovery Centre of Reunion Island. Barred

flagtail Kuhlia mugil (Forster) were caught in March 2001 in the

coastal area around Reunion Island. 80–100 fishes were conveyed

to the marine station and housed in a holding tank of 4 m diameter

and 1.2 m depth. Fishes were fed daily ad libitum with a mixture of

aquaria flake-food and pieces of fish flesh. Fishes were considered

acclimatized when all of them feed on the aquaria flake-food. This

weaning period lasted 15 days. Experiments were performed in a

circular tank similar to the holding tank. Opaque curtains were

placed around and above the tank to obtain diffuse lighting and to

reduce external disturbances from the environment. The tank was

supplied with a continuous flow of seawater [49]. Since currents

may influence fish behavior, the seawater inlet pipe was placed

vertically and the water flow was stopped throughout the

observation periods. A digital video camera (Sony model CDR-

TRV 900E) was fixed at 5 meters above the tank and tilted at 450 to

observe the whole tank. The remotely operated video camera was

fitted with a polarizing filter and a wide-angle lens. Groups of N = 1

to 30 fish were introduced in the experimental tank and

acclimatized to their new environment for a period of 20 min.

Their behavior was then recorded at 24 fps for 2 mins. Prior to each

trial, the fish were deprived of food for 12 hours to standardize the

hunger level and were transferred to the experimental tank. The

relative shallowness of the water ensured quasi two-dimensional

motion. Five replicates per group size using different individuals

were performed. Eighty per cent of the trials were performed in the

morning to avoid possible conditions of strong wind that may

disturb the fish, and sunshine that may render light inside the tank

unsuitable for video recording. A first data processing consisted in

sampling 12 images per second out of the 24 images recorded by the

video camera. A custom-made tracking software was then used to

extract high-quality, smooth trajectories from the video recordings,

with crossing ambiguities resolved by eyes (see Video S3, S4). In

order to get even higher precision data, the head position and the

orientation of each fish in groups of N = 2 were acquired with a

manual tracking software (Video S1, S2).

Statistical analysis
Model parameters were estimated from each fish time series

separately (typical series are shown on Fig. S4). In order to

perform the estimation of the parameters t, s, Kw, KP and KV in

the stochastic differential equation (1), (3) and (5), we considered its

discrete-time version using Ito integration over Dt, assuming Dt is

small enough so that v�i is constant [50]:

vi(tzDt)~e{Dt
t vi(t)z 1{e{Dt

t

� �
v�i (t)zE(t) ð7Þ

where i = 1,2 and v�i is given by Eq. (3) or (5). Estimates for the

parameters were obtained using a standard non-linear least
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squares procedure (we employed the nls package of the statistical

environment R [51]) either separately for each fish using Eq. (3) or

for all fish together using Eq. (5). Residuals given by E(t) were

checked to be Gaussian-distributed (see Fig. S5) and their variance

yielded s.

Model predictions
The model was simulated within a virtual tank, using the

estimates of behavioral parameters extracted by statistical analysis

from v(t) time-series in groups of N~2 fish. The fish heading

(direction of motion) wi(t) and position ri(t)~ xi(t),yi(t)ð Þ were

updated by Euler integration, following:

wi(tzDt)~wi(t)zDtvi(t), ri(tzDt)~ri(t)zvDtni(t) ð8Þ

where ni(t)~ cos wi(t), sin wi(t)ð Þ.
For each v value, 104 numerical simulations were performed

over 120 seconds (a time corresponding to the duration of

individual experiments with real fish) with a time step

Dt~0:01 s. A transient time of 20 s was discarded before

measuring statistical averages. We computed the mean value

and the variance over time of the global polarization

Pt~vni(t)w~
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i~1

cos wi(t)

 !2

z
XN

i~1

sin wi(t)

 !2
vuut ð9Þ

and of the neighbor inter-distance

Dt~
2

N(N{1)

XN

i~1

XN

j~iz1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj(t){xi(t)
� �2

z yj(t){yi(t)
� �2

q
ð10Þ

This yielded an estimation of the expected measures distribution

under model hypothesis and over the typical observation time of

experiments. We then computed the mean and 95% confidence

interval of such distributions, to obtain the expected mean and

variance (with their confidence intervals) of alignment and of

neighbor inter-distance. This provided the check of the model

against experimental data. The above procedure was repeated

varying the mean speed v over the range covered by the

experimental data, with the results plotted in Fig. 3C. The same

procedure was adopted to make predictions for higher group sizes,

using the stimulus/response function vi as determined by

equation (5) with interacting neighbors defined by first neighbors

in a Voronoi tessellation (For a set A~ r1,:::,rnf g of N points,

Voronoi tessellation divides the space in N different cells, each the

locus of space closer to its center ri than to any other points in A:

at each time step space is divided in N Voronoi cells centered

around the N fish position, with Voronoi neighbors being the fish

lying in neighboring cells (Fig. 2B). For each experimental

replicate, the same measures were repeated with the parameters

extracted from the replicate, and the corresponding initial

conditions (Fig. 4B).

Model validation
By construction, our method does not ‘‘learn the parameters to

make the model fit’’, contrasting with a more usual procedure

which consists in stating an a priori model and searching a best set

of free parameters that optimizes its collective patterns towards the

observed collective properties (namely, make the model fit at the

collective scale). In such cases, it is known that several models can

adjust the data at the collective scale (because the search for best

match is unconstrained and can be performed for each model, so

that the collective level underdetermines the individual level).

In the present study, once the model has been formulated, that

is, once we identified in the experiments with pairs of fish the

nature of stimuli (the orientation and relative position of

neighboring fish, and how they combine to determine the

response of a focal fish), we estimated the values of 5 parameters

at the individual scale. So for each fish, we measured its behavioral

response (i.e. the change of its turning speed) for each configu-

ration of stimuli encountered in its path.

Only then, we tested whether these parameters measured at the

individual level can explain the observations at the collective scale

with no free parameters. For each group independently, we thus

checked that the model allows a quantitative matching concur-

rently at individual and collective scales. This confirmed that our

model calibrated with the parameters estimated from the third

derivative of the fish position (i.e. the change in the turning speed)

was able to reproduce quantitatively the statistics resulting from

the time integration of the coupling between fish (polarization,

inter-distance). Moreover the same procedure applied separately

on each group size revealed, on the one hand, the dependences of

the estimated parameters on the swimming speed (using groups of

N = 2 fish), and on the other hand, the modulation of interactions’

strength with group size (in the largest groups).

Supporting Information

Figure S1 Distance travelled by fish as a function of time in 3

different experiments with N = 2 fish (left panel), one N = 5 and

one N = 10 experiment (middle and right panel). In any given

experiment, fish synchronize their speed, but this value is replicate-

dependent.

(EPS)

Figure S2 Swimming speed and angular velocity of one fish.

Left: Time series of instantaneous speed v(t) and angular velocity

v(t) of one fish during a typical experiment (here N~2), together

with the respective histograms. Right: parametric plot of v(t) vs.

v(t). The speed fluctuates relatively mildly around its mean, while

v(t) varies wildly. The parametric plot reveals no correlation

between the two quantities.

(EPS)

Figure S3 Comparisons between experimental data at all group

sizes and predictions of the model, using the N~2 parameters and

the first shell of Voronoi neighbors. (Red circles: data, horizontal

bars: predicted means, vertical bars: 95% confidence interval,

dotted line: predictions under the null model with no interactions,

except interactions with wall). For each experimental replicate, 103

numerical simulations were performed over 120 s with a time step

of 0:01 s. Over each period of 120 s (corresponding to the

duration of individual real fish experiments), the mean value of the

global polarization and fish inter-distance were calculated, and

averaged in time. Very good agreement with experiments is found

for N~2 and N~5. From N~10 to N~30, the distance

predictions remain correct, but the discrepancy between model

predictions and data for the polarization increases with group size.

The model predicts too high polarization values especially at large

speed values.

(EPS)

Figure S4 Example of experimental time-series used to estimate

the N = 2 parameters. From top to bottom: turning speed

response, wall effect stimulus, positional stimulus and directional
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stimulus. This shows that the tracking yielded a very good signal to

noise ratio.

(EPS)

Figure S5 Distribution of residuals for the N = 2 parameters

estimation. For each fish in the groups with N~2, the residuals

were plotted in a quantile-quantile plot (normalized experimental

quantiles vs theoretical quantiles under the normal hypothesis).

The linearity of the plots is a strong indication in favor of a

Gaussian distribution of the residuals (with an outlier for fish 2 in

experiment 2: M2-2, which exhibits large deviations). This justifies

a posteriori the use of a simple Wiener term in the stochastic

differential equation describing the model. The estimated variance

of the residuals yields an estimate of s.

(EPS)

Figure S6 Model predictions in open space, using the N = 2

parameters for every group size and the first shell of Voronoi

neighbors. (horizontal bars: predicted medians, vertical bars: 95%
confidence interval, Red circles: experimental data in the tank,

dotted line: predictions under the null model in the tank with no

interactions, except interactions with wall). (A) : global polarization

P, (B) : average inter-individual distance D (in meters), (C) :

average distance to the nearest neighbors D(NN) (in meters). As

swimming speed increases a high level of polarization with about

the same nearest neighbor distance is observed for all group sizes.

These results strongly contrasts with the experimental observations

suggesting a decrease in reactivity to neighbors as a consequence

of the high density already imposed by confinement effects.

(EPS)

Figure S7 Tests of the alternative neighborhood definition,

based on K-Nearest neighbors with K~½1::7,10�. We computed

the prediction errors for polarization and distances cumulated over

all groups and sizes, namely the sum of square differences between

the observed values and the predicted values, as those shown in

Fig. 4B. The prediction errors for distances are reported in blue,

and the prediction errors for polarization are reported in black.

The prediction errors for the Voronoi definition of influential

neighbors are also reported, for reference (dotted lines). (A) First,

to check whether the loss of polarization in large groups can be

explained by restricting the neighborhood to the few first nearest

neighbors as found by Herbert-Read et al. [47], we computed the

predictions of the model using the N = 2 parameters, with

K~½1::7,10�. Indeed, if fish were to react strongly but only to

the 3 nearest neighbors, the prediction error for the distances can

be about as low as for the Voronoi neighbors. However, this is not

the case for the polarization error, which remains by far greater

than with replicate-dependent parameters. Actually, interactions

with fewer neighbors can impede the global polarization, but still

allows for local polarization between nearest neighbors, a picture

which does not correspond to the homogeneous loss of

polarization noticeable in movie S4. We conclude that the lower

polarization in large groups cannot be simply explained by

considering a weaker coupling due to a limited number of

influential neighbors. (B) As a complementary check, we also

performed the complete inversion procedure over all groups, and

for each value of K~½1::7,10�, deriving in each case the model

predictions (as for Fig. 4, using here 100 simulated series for each

of the 25 groups and for each of the eight values of K). Doing this,

we observe that the prediction errors reach minimal values for

about K^7, and are then of same order as the prediction errors

under the Voronoi neighborhood hypothesis. We note that the

Voronoi definition yields a number of neighbors which fluctuates

with time around this value, and that the fish are more or less

homogeneously distributed in the tank. We conclude that the two

definitions of neighborhood practically overlap in the present

experimental setup.

(EPS)

Figure S8 Validation of the ansatzes. (A) Strength of the wall

avoidance term fW in the absence of strong positional and

directional stimuli from the neighboring fish as a function of wall

distance dW . Data (black circles) have been extracted considering

one fish in the fastest N~2 group under the condition

DfPzfV Dv0:1, so that Dv�D&DfW D. We estimated the response v�

from the turning speed by making use of Eq. (7). The two fitting

lines represent the best fit for the ansatz adopted in this paper

(black, DfW D~kW=dW , kW&0:97) and for the one of Ref. [29]

(blue, DfW D~kW exp({k0Dc), kW&6:13 and k0&2:14). While the

sharp decrease of fW with dW is obvious, the scarcity of our data

and the stochastic nature of the effective fish response do not allow

to detect the fine difference between the two ansatzes, which yield

about the same average reaction. (B, C, D) Residual fish responses

to tank boundaries, neighbor position and neighbor orientation for

all N~2 groups (for the sake of clarity, we have confined our

analysis to couples of fish to avoid any ambiguity on neighboring

relations). For each fish i at each time t, the fish response cv�v�(i,t),
and the three stimuli fW (i,t), fP(i,t) and fV (i,t) were estimated

from the data by making use of Eq. (5) and (7), and using the

estimated parameters reported in Fig. 3A. (B) Wall response
1

v
cv�v�{fP{fV

� �
as a function of the wall stimulus sgn(wW )=dW .

(C) Positional response cv�v�{fV {fW

� �
as a function of the

positional stimulus dij sin hij . (D) Directional response

1

v
cv�v�{fP{fW

� �
as a function of the directional stimulus sin wij .

The 10|1200~12000 data points have been averaged over

discrete bins (full dots: mean, vertical bars: standard deviation) to

highlight the expected linear relation between residual responses

and stimuli. Red lines correspond to the results of the regression

analysis using the full model (see main text), showing a conclusive

agreement between our chosen ansatzes and the mean fish

response.

(EPS)

Video S1 Video recording of an experiment with N = 2 fish

swimming at low speed (v^0:088 m:s{1). Light blue lines

correspond to the fine-grained hand-tracking. Interactions among

fish lead to a succession of attraction and alignment phases.

(MOV)

Video S2 Video recording of an experiment with N = 2 fish

swimming at a higher speed (v^0:536 m:s{1). Fish exhibit a high

level of synchronization. The associated time series are shown in

Fig. 1B (polarization).

(MOV)

Video S3 Video recording of an experiment with N = 5 fish

swimming at high speed (v^0:564 m:s{1). The white dots

correspond to the position of the heads of the fish detected by

the tracking software. Fish maintain a high level of synchroniza-

tion and as a consequence group polarization is high.

(MOV)

Video S4 Video recording of an experiment with N = 15 fish

swimming at high speed (v^0:454 m:s{1). The white dots

correspond to the position of the heads of the fish detected by

the tracking software. Fish do not fully synchronize their motion

and as a consequence group polarization is lower than in smaller

groups.

(MOV)
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Video S5 Simulation of interactions in a group of N = 2 fish

swimming at low speed (v^0:088 m:s{1). The parameters

correspond to those in Figure S1. The polarization of fish motion

is low with a succession of attraction and alignment phases.

(MOV)

Video S6 Simulation of interactions in a group of N = 2 fish

swimming at higher speed (v^0:564 m:s{1). The parameters

correspond to those in Figure S2. The polarization of fish motion

is high.

(MOV)

Video S7 Transition in group polarization induced by velocity

change. The simulation was performed in unbounded conditions

with a group of 100 fish with parameters t~0:48, s~1, KP~0:6,

KV ~2:4. The swimming speed of all fish is initially set to

0:2 m:s{1, linearly increases to 1:0 m:s{1 in 60 s, is maintained to

this value for 30 s, and then decreases back to 0:2 m:s{1 in 60 s.

Movie time is 56 real time. The group switches from shoaling to

schooling dynamics (and back) as a consequence of the increase

(and decrease) of the swimming speed. As it increases, the relative

weight of the orientational interaction dominates the positional

interaction, leading to a better polarization which triggers a

motion of the center of mass of the group.

(MOV)

Video S8 Transition in group polarization induced by a sudden

velocity increase. The simulation was performed in the same

conditions and with the same parameters as those used in Video

S7, but with a different time profile of the change of the swimming

speed (from 0:2 m:s{1 initially, the speed abruptly increases to

3:6 m:s{1 in 0.2 s, then slowly decreases back to 0:2 m:s{1 in

15 s). When the swimming speed suddenly increases over a short

time interval in a shoaling group, the alignment interaction

becomes abruptly dominant over position interaction, and

neighboring fish align to each other. This polarization remains

local due to the lack of time to build up over the entire group so

that the initial isotropic distribution of headings is conserved for a

short time, and a flash-expansion pattern arises. After the speed

has decreased, the group returns to shoaling. Video S7 and S8

show that the speed-dependencies can trigger very different

collective responses, depending on the rate of change. This control

of collective behavioral response by speed is a parsimonious,

effective, and robust mechanism. It also suggests further

experiments aimed at identifying which external factors can affect

individual speed (light, food presence or depletion, predators

strike, …), and at elucidating the propagation of speed changes to

the neighbors.

(MOV)
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