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After being long considered as “junk” in the human genome, non-coding RNAs (ncRNAs)

currently represent one of the newest frontiers in cardiovascular disease (CVD) since

they have emerged in recent years as potential therapeutic targets. Different types

of ncRNAs exist, including small ncRNAs that have fewer than 200 nucleotides,

which are mostly known as microRNAs (miRNAs), and long ncRNAs that have more

than 200 nucleotides. Recent discoveries on the role of ncRNAs in epigenetic and

transcriptional regulation, atherosclerosis, myocardial ischemia/reperfusion (I/R) injury

and infarction (MI), adverse cardiac remodeling and hypertrophy, insulin resistance, and

diabetic cardiomyopathy prompted vast interest in exploring candidate ncRNAs for

utilization as potential therapeutic targets and/or diagnostic/prognostic biomarkers in

CVDs. This review will discuss our current knowledge concerning the roles of different

types of ncRNAs in cardiovascular health and disease and provide some insight on the

cardioprotective signaling pathways elicited by the non-coding genome. We will highlight

important basic and clinical breakthroughs that support employing ncRNAs for treatment

or early diagnosis of a variety of CVDs, and also depict the most relevant limitations that

challenge this novel therapeutic approach.

Keywords: long non-coding RNA, microRNA, myocardial infarction, hypertrophy, atherosclerosis, diabetic

cardiomyopathy

INTRODUCTION

The discovery of the new class of ribonucleic acids (RNAs), namely non-coding RNAs (ncRNAs),
revolutionized our knowledge about the epigenetic, post-transcriptional, and post-translational
modification of gene expression in the regulation of tissue homeostasis in health and disease. Recent
advances in the field of genomics enabled with technologies like next generation sequencing (NGS),
ChIP RNA Seq, and transcriptome analysis have offered new perspectives and completely changed
our understanding on small ncRNAmolecules, once considered as “junk DNA.” Nearly 99% of the
genome consists of non-coding DNA, whereas only 1% codes for functional proteins, which reflects
the complexity and importance of ncRNAs in controlling gene expression. Regulatory ncRNAs such
asmicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have drastically impacted research
in multiple fields, including cardiovascular diseases (1–3) (CVD), diabetes (4, 5), and cancer (6, 7).
The epigenetic regulation of these ncRNAs, like miRs, plays a very significant role both in the early
stage of development and during the pathogenesis of heart disease (3, 8, 9).
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Cardiovascular disease (CVD) remains the leading cause
of mortality and morbidity worldwide (10, 11). CVD is a
broad term used to describe abnormalities affecting the heart
and its associated circulatory system, such as atherosclerosis,
myocardial ischemia/reperfusion (I/R) injury and infarction
(MI), hypertension, and arrhythmias. The occurrence of risk
factors, such as diabetes, obesity and advanced age leads to
substantial complications of CVD ultimately leading to heart
failure (HF). Although current management has improved
survival in patients with CVD, such therapies do not fully
address the underlying cause and, as a result, HF progresses.
This highlights an urgent need to develop novel diagnostic and
therapeutic approaches to alleviate symptoms, improve cardiac
function and quality of life, slow disease progression, and reduce
mortality in patients with CVD and HF (12, 13). Emerging
concepts based on genomic information have redesigned
diagnostic and treatment strategies, enabling early detection of
abnormalities and offering hope for more effective treatment
options. This review aims to provide the readers with an updated
summary on the role of ncRNAs in cardiovascular physiology and
pathophysiology, with emphasis on MI, atherosclerosis, diabetic
cardiomyopathy, and HF.We will also review the potential utility
of ncRNAs as a therapeutic option and describe some of the
current limitations.

NON-CODING RNAS: CLASSIFICATION
AND MECHANISMS

Non-coding RNAs are classified into several types based on their
length and mechanism of gene regulation. This includes miRNAs
(<25 nt), lncRNA (>200 nt), piRNAs (RNA-protein complexes),
and siRNAs (double-stranded RNA, ∼20–25 nt), which are
among the most thoroughly investigated ncRNAs. Even though
regulation of gene expression is the primary function of these
ncRNAs, they each achieve this goal via different methods.

miRNA Biosynthesis and Function
MicroRNAs (miRNAs) are small ncRNAs that are approximately
18–25 nt in length and regulate gene expression by binding to the
3′UTR of mRNA, leading to either degradation or translational
suppression of its target mRNA (14, 15). The first miRNA
was discovered in 1993 in a study examining developmental
regulatory genes in Caenorhabditis elegans (14). miRNAs are
among the most abundantly occurring ncRNAs that are widely
distributed in several tissues and are conserved among species.
There are more than 2,500 miRNAs reported in the human
genome (miRBase) (16) that are known to specifically regulate
gene expression. Almost all miRNAs are transcribed from either
introns or intergenic region, by the enzyme RNA polymerase II
or in some cases RNA polymerase III into a hairpin precursor
molecule called primary-miRNA. These primary-miRNAs (100
nt) undergo maturation process by the enzyme Drosha, which
cleaves them to Pre-miRNAs (∼70 nt) (17). Pre-miRNAs are
later exported to the cytoplasm by Exportin-5. Once out of
the nucleus, the pre-miRNA further undergoes cleavage to a
mature double-stranded miRNA of 22 nt by the enzyme RNase

III (18). The active strand of the mature miRNA binds to
RNA-induced silencing complex (RISC) and interferes in the
transactivation-responsive RNA-binding protein (TRBP) and
Argonaute 2 (Ago2) and inhibits the 3′UTR of the target mRNA
through base-pair interactions (19) and negatively regulates its
expression. These steps are collectively illustrated in Figure 1.
Each miRNA can have multiple targets and is primarily based on
the presence of complementary binding sequence in the mRNA.
The extent of sequence complementarity between the miRNA
and mRNA determines whether the target mRNA is destined
for complete degradation or translational inhibition. Nucleotide
sequence (2–7) at the 5′ end of miRNA, which forms the seed
region, is critical for the formation miRNA-mRNA binding
complex. Also, miRNAs can be generated from both guide as well
as passenger strands of the DNA and are denoted by 3-p or 5-p
suffix. The opposite strand, often called the passenger strand due
to its relatively lower levels in the steady state, is denoted with
an asterisk (∗) and is normally degraded. In some cases, miRNA
generated from both strands are viable and are incorporated
in RISC complex and become functional miRNAs that target
different mRNAs (20, 21). The loci of miRNA are located at
various genomic contexts and while the majority of them are
found in the intronic region, they can also be encoded at coding
transcripts and even in the exonic regions (22). Often, several
miRNAs that belong to the same cluster are co-transcribed
simultaneously, but may have their own individual function
after undergoing a separate post-transcriptional regulation (23,
24). Apart from the aforementioned classical canonical miRNA
biogenesis pathway, miRNA synthesis may also follow a non-
canonical pathway to maturation (25, 26), where short introns
are processed through splicing independent of Drosha/DGCR8
processing known as mirtron pathway (27–29). Several miRNAs
such as endogenous short hairpin RNAs (30), small nucleolar
RNAs (snoRNAs) (31), and tRNAs (31, 32) belong to this class
of miRNAs. Some mirtrons are processed through simtron route,
where Drosha is required but does not necessitate Drosha’s
binding partner DGCR8 or endonuclease (33). Both simtrons
and mirtrons are capable of silencing target transcripts and
are associated with the RISC complex as evidenced by their
interaction with Argonaute proteins. Regardless of the differences
in various miRNA biogenesis pathways, they all result in
functional mature miRNAs. The existence of several mechanisms
in the biogenesis of miRNAs further reflects the complexity of
RNA processing.

Long Non-coding RNA
Long non-coding RNAs (LncRNAs) represent a highly diverse
group of regulatory ncRNAs with respect to their characteristics,
localization, and mode of action. The lncRNAs are longer than
200 nucleotides in size and are regulators of gene expression both
at the transcriptional as well as post-transcriptional levels (34).

They are synthesized by RNA polymerase II as co-factors along
with gene activation and contain poly-A tail end and 5′capping.
They function as cis and trans acting elements for protein-
coding DNA sequences and therefore are powerful epigenetic
mediators (35, 36). Due to this functionality, they can act both
as negative or positive effectors of gene expression. LncRNAs
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FIGURE 1 | Biogenesis of miRNAs and their mode of transcript suppression. RNA-Pol, RNA polymerase; Drosha; RISC, RNA induced silencing complex; DGCR8,

diGeorge syndrome critical region-8; GTP, guanosine triphosphate; Ras, RAs-related nuclear protein; TRBP, human immunodeficiency virus trans-activating response

RNA-binding protein; Ago2, Argonaute 2.

are synthesized similar to regular mRNA transcripts but lack
a defined open reading frame (ORF). They also contain their
own promoter elements and can be transcribed as part of the
gene. Interestingly, they can also be regulated by miRNAs (37)
which adds another layer of transcriptional regulation. LncRNAs
contain complementary sequences to miRNAs and can act as
miRNA sponge/decoy. Briefly, lncRNAs are classified based on
their location in the genome, their length, proximity to protein-
coding genes, association with DNA elements, mechanisms of
action, and sub-cellular localization (nucleus or cytoplasm). They
are broadly classified based on their genomic loci and function

(34) (1) Sense lncRNAs are synthesized from exons of protein-
coding genes utilizing the same promoter region of the gene (38,
39), (2) Antisense lncRNAs are aberrant transcripts synthesized
from the opposite strand of protein-coding region (40, 41), (3)

Intronic lncRNAs are generated from an intron of a protein-
coding gene (39, 42), (4) Intergenic lncRNAs, also referred to as
large intergenic (or intervening) non-coding RNAs (lincRNAs),
are encoded between protein-coding genes and are transcribed
independently (43, 44), (5) Enhancer lncRNAs, also known as
enhancer RNA (eRNA), are synthesized from the transcription
binding regions i.e., activator/repressor elements of a protein-
coding gene (45), (6) Circular forms are RNAs where the 3′-5′

ends are covalently enclosed to create a circular loop derived from

splicing of a protein-coding gene (46, 47), and (7) Bidirectional
transcripts are transcribed from the same promoter as coding
genes, but in the opposite direction (48). The classification and
function of lncRNAs are illustrated in Figure 2.

A plethora of lncRNAs have been identified, but their function
and regulation are not yet completely understood (49, 50).
Nevertheless, several studies report a role for lncRNA in organ
development and differentiation, and also in human diseases (51–
53) especially in CVD (13, 54). Apart from direct gene silencing,
lncRNAs regulate histones and influence epigenetics through
modulation of DNA methylation at CpG dinucleotides, which is
critical for the repression of genes (55).

siRNA
Discovered in 1999 (56), small interfering RNA or short
interfering RNA (siRNA) is one of the most extensively exploited
ncRNA in RNA interference therapies. siRNAs are closely related
to miRNAs in terms of size and biogenesis, but slightly differ
in their mechanism of RNA silencing. Unlike miRNAs, which
are single-stranded RNA, siRNAs are double-stranded RNA
(dsRNA) and are approximately 20–24-bp in size with a well-
defined structure (57). siRNAs bind their target with 100%
complementarity in the sequence and typically cleave mRNA
before entering the translation process. Therefore, they are
very highly specific in annealing to their target. They are also
processed in a much similar fashion to miRNAs, synthesized by
RNA pol III, cleaved by the enzyme Dicer and induce mRNA
degradation via RISC formation (58–60). Due to their stability
and the convenience of generating synthetic dsRNA that can be
easily introduced exogenously into cells, siRNAs are widely used
in gene therapy to silence mRNA transcripts.
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FIGURE 2 | Classification of lncRNAs and their function. RBPs, RNA-binding proteins; QKI, quaking protein; Circ-RNA, circular RNA; TF, transcription factor.

Piwi-Interacting RNA (piRNA)
First identified in 1997 (61–64), piRNAs are ncRNAs that are
altogether different from miRNAs and lncRNAs. piRNAs are
mostly found in the genome as clusters and range in size from

25 to 30 nucleotides (65, 66). piRNAs interact with piwi (P-
element induced wimpy testis) proteins of Argonaute family,
thereby leading to the formation of silencing ribonucleoprotein
complex, which recognizes and silences the complementary
sequence (67, 68). The piRNA/PIWI complex primarily functions

as epigenetic silencer by targeting transposable elements (TEs)
in both germline and gonadal somatic cells and it regulates the
process of transcription itself rather than transcripts (69).

The mechanism of piRNA biogenesis and function is not
yet completely clear and rather very complex. However, reports

suggest that piRNAs regulate mobile sequences in the genome
by canonically involving endonucleolytic cleavage of the target
sequence after complementary base-pair recognition through
piRISC (piRNA-induced silencing complex) (70), as illustrated in
Figure 3. There aremore than 50,000 piRNA sequences identified

in the murine genome, but inconsistencies in the sequence

homology between species makes it difficult to determine their
function. Research to elucidate the function of piRNAs is still
in its early stages. Nevertheless, piRNAs are widely accepted to

play a strong role in epigenetics via regulation of TEs. Since TEs
are important for genetic diversity and genome instability, any
abnormalities in TEs can lead to gene deregulation, chromosome

rearrangement and gene mutations causing cancer and genetic
diseases (71, 72).

MICRORNAS AND CARDIOVASCULAR
DISEASES

The most extensively studied ncRNAs are miRNAs, which
are abundantly present in many cardiac cell types including
fibroblasts, endothelial cells (ECs), and cardiomyocytes.
They play a significant role in several cellular processes like
proliferation, apoptosis, autophagy, and cell metabolism.
Dysregulation of individual or cluster of miRNAs is linked to the
pathogenesis of heart diseases and its risk factors such as diabetes,
hypertension, atherosclerosis, myocardial I/R injury, and HF
(8, 73). The role of miRNAs in several CVD has been well-
established by taking advantage of genetically modified animal
models and in vitro cell lines, and utilizing miRNA mimics and
inhibitors (antagomiRs). Moreover, the aberrant expression of
miRNAs and subsequent impact on cellular signaling pathways
are well-documented in the literature (74, 75).

Adverse Cardiac Remodeling and Heart
Failure
Cardiac remodeling is a progressive reactive phenomenon to
myocardial injury that involves cellular, molecular and interstitial
changes that manifest physiologically and ultimately lead to
HF. Significant dysregulation of miRNA expression has been
implicated during cardiac hypertrophy andHF (8, 73) (Figure 4).
Preliminary evidence for the role of miRNA in myocardial
development was reported from studies using Drosophila, where
miRNA-1 (miR-1) was identified to regulate differentiation
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FIGURE 3 | Synthesis and processing of Pi-RNA. Piwi, P-element Induced WImpy testis in Drosophila; piRNA, Piwi protein interaction RNA; DNMT, DNA

methyltransferase; AGO3, Argonaute 3; HEN1, HUA ENHANCER 1; RISC, RNA induced silencing complex; Miwi, Mouse homolog of PIWI; TDRKH, Tudor domain to

arginine methylated Miwi.

of cardiac and somatic muscle progenitors through Notch 1
receptor (76). After aortic constriction-induced hypertrophy in
a mouse model, the muscle-specific miR-1 was significantly
downregulated, plausibly through a serum response factor (SRF)-
dependent mechanism (73). Overexpression of miR-1 inhibited
its in silico-predicted, growth-related targets, including Ras
GTPase-activating protein (RasGAP), cyclin-dependent kinase
9 (Cdk9), fibronectin, and Ras homolog enriched in brain
(Rheb), in addition to protein synthesis and cell size. In
this context, more supportive evidence was reported using
cardiac muscle-specific targeted deletion of miR-1-2 in mouse,
demonstrating a role of miR-1 in cardiac morphogenesis and
cell-cycle control (77). Two mature miRNAs, miR-1 and miR-
133, are derived from the same miRNA polycistron and
transcribed together during development, but have distinct roles
in modulating skeletal muscle proliferation and differentiation
in cultured myoblasts (78). miR-1 promotes myogenesis by
targeting histone deacetylase 4 (HDAC4), a transcriptional
repressor of muscle gene expression, whereas miR-133 enhances
myoblast proliferation by repressing SRF, a positive regulator
of cardiac growth and HF. Among the miRs that were down-
regulated during cardiac hypertrophy, both miR-1 and miR-
133 have been prominently repressed in the left ventricle and
atria in murine models as well as human subjects with cardiac
hypertrophy (79). Overexpression of miR-133 or miR-1 inhibited
cardiac hypertrophy. This notion was also confirmed in studies
using antagomiR-133 showing sustained cardiac hypertrophy
via RhoA, a GDP-GTP exchange protein target of miR-133.

In contrast, another study demonstrated that overexpression
of miR-1 in mouse cardiac progenitors has a negative effect
on proliferation, where it targets the Hand transcription factor
Hand2, which is involved in myocyte expansion (80).

A novel antifibrotic miRNA, miR-101, was found to be
frequently downregulated in hypertrophic and post-infarcted
hearts (81). MiR-101 plays a significant role in hypertrophy
by regulating ras-related protein-1A (Rab1A), a member
of the Rab family of small GTPases and an important
regulator of cardiac hypertrophy (82). Expression of miR-101
in cardiomyocytes was downregulated in both the transverse
abdominal aortic constriction rat model and angiotensin
II (AngII)-induced hypertrophy. In addition, overexpression
of miR-101 significantly suppressed AngII-induced cardiac
hypertrophy by targeting Rab1A. In contrast, the inhibition
of miR-101 expression promoted cardiac hypertrophy. The
expression of miR-29 cluster (miR-29a, 29b, and 29c) inhibits
the expression of targets involved in the extracellular matrix
production and fibrosis (83). Moreover, the miR-29 family also
controls pro-fibrotic genes such as elastin. Recent evidence
also suggests that TGF-β signaling, an important regulator of
fibrogenesis and collagen deposition, is regulated by several miRs
including miR-29b, miR-26, miR-101a, and miR-24 miR101a
(81, 84–86).

Overexpression of specific miRNAs evokes morphological
changes in cardiomyocytes, which subsequently leads to
ventricular hypertrophy and HF in humans (87). miRNA
expression in idiopathic end-stage failing human hearts showed
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FIGURE 4 | Illustration depicting the different miRNAs and their targets, which regulate corresponding cellular functions, like fibrosis, myocyte proliferation, apoptosis,

cardiomyogenesis, and remodeling during cardiac hypertrophy.

increased expression of miR-23a, miR-24, miR-125b, miR-195,
miR-199a, and miR-214 (8). In addition, cardiac overexpression
of miR-195 resulted in pathological cardiac remodeling and HF
in transgenic mice. Other miRNAs have also been identified
as important players in cardiac hypertrophy. For instance,
cardiac-specific miR-208 encoded by an intron of the α-
MHC (myosin heavy chain) gene is required for cardiomyocyte
hypertrophy, fibrosis, and expression of β-MHC in response to
stress and hypothyroidism (88). Moreover, the overexpression
of miR-212 and miR-132 directly targets the anti-hypertrophic
and pro-autophagic FoxO3 transcription factor and leads to
cardiac hypertrophy and HF by inducing pro-hypertrophic
calcineurin/NFAT signaling (89).

Several expression profile studies identified one of the most
abundantly expressed miRNAs, namely miR-21, in murine and
human hypertrophic and failing hearts. MiR-21 plays a crucial

role in cardiac fibrosis and hypertrophy (90). Multiple studies
reported that increased expression of miR-21 in fibroblasts of
the failing heart induces the extent of interstitial fibrosis and

cardiac hypertrophy by augmenting ERK–MAP kinase activity
via inhibition of sprouty homolog 1 (Spry1) (91) or enhancing
matrix metalloproteinase-2 (MMP-2) via PTEN (phosphatase
and tensin homolog) pathway (92). Recently, miRNAs have
emerged as regulators of intercellular communication in cardiac
tissue (93). Bang et al. identified a high abundance of miR-21-3p

(miR-21∗) in cardiac fibroblast-derived exosomes as a paracrine
signaling mediator that promotes cardiomyocyte hypertrophy
by targeting sorbin and SH3 domain-containing protein 2
(SORBS2), PDZ and LIM domain 5 (PDLIM5). On the other
hand, an antihypertrophic effect of miR-21 was also reported

in transverse aortic constriction (TAC) and Ang II-treated mice

(94). Overexpression of miR-21-3p suppressed TAC- and Ang II-

induced cardiac hypertrophy by targeting histone deacetylase-8
(HDAC8) and modulating p-AKT/p-GSK3β pathway.

Apart from the direct involvement of certain miRNAs
in hypertrophy and fibrosis, several other miRNAs were

shown to be pro-hypertrophic. By targeting p53-induced
nuclear protein (Tp53inp1), miR-155 regulates hypertrophy
and cardiac remodeling (95). It was shown that miR-499
expression was upregulated in pressure overload-inducedmurine
cardiac hypertrophy. This finding also correlated with increased
expression of miR-499 in human failing and hypertrophied
heart (94, 96, 97). Interestingly, miR-499 was responsible for
the differentiation of cardiac stem cells (CSCs) into mature
functional cardiomyocytes. To this end, overexpression of
miR-499 in human cardiac stem cells (hCSCs) enhanced
cardiomyogenesis by suppressing its target Sox6 and Rod1 (98).

MicroRNAs in Myocardial
Ischemia/Reperfusion Injury and Infarction
Ischemia/reperfusion (I/R) injury is a major cause of necrotic,
apoptotic and autophagic cardiomyocyte death, all of which are
highly regulated by miRNAs (Figure 5). Some of the prominent
regulators of cardiomyocyte death are miR-1(99) miR-15b (100),
miR-21 (101), miR-30b (102), miR-34a (103, 104), and miR-497
(105). Almost all these miRNAs target the anti-apoptotic gene
BCL2 and negatively regulate them. MiR-1 was found to be
markedly up-regulated during I/R injury and its expression level
was inversely correlated to Bcl-2 expression in cardiomyocytes
(99). In line with this finding, using miR-1 transgenic mice,
Pan et al. revealed that miR-1 exacerbated cardiac I/R injury
whereas knockdown of miR-1 with LNA-antimiR-1 alleviated
cardiac I/R injury (99, 106). The same study also showed
that inhibition of miR-1 can reduce apoptosis via regulating
protein kinase C (PKC) and HSP60. A recent study also
determined that myocardial I/R injury causes induction of miR-1
expression and subsequent downregulation of Bcl-2, which were
reversed with hydrogen sulfide treatment resulting in attenuation
of cardiomyocyte apoptosis (107). Functional studies indicate
contrasting roles of miR-1 and miR-133 in the regulation of
stress-induced cardiomyocyte survival, with a pro-apoptotic role
of miR-1 and anti-apoptotic role of miR-133 (108). Post-MI,
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FIGURE 5 | Schematic representation of miRNAs and their targets that are involved in cellular survival, apoptosis, angiogenesis, fibrosis, and inflammation during MI.

increased miR-1 represses multiple anti-apoptotic genes (i.e.,
Hsp60, Hsp70, IGF-1, and Bcl-2); whereas miR-133 negatively
regulates a pro-apoptotic gene (i.e., Caspase-9) (99, 108, 109).
Specifically, cardiac expression of miR-133 in patients who died
following MI was significantly reduced in the infarcted areas of
the heart compared to healthy adult hearts who died from non-
cardiac causes (110). On the contrary, down-regulation of both
miR-1 and miR-133 were reported in rat hearts after 30min of
coronary artery occlusion and 180min reperfusion (111).

Another miRNA, miR-320, was shown to be differentially
regulated in murine hearts after I/R injury both in vivo and
ex vivo. Transgenic mice with cardiac-specific overexpression
of miR-320 exhibited increased cardiomyocyte apoptosis and
MI following I/R injury relative to the wild-type controls
(112). Simultaneously, knockdown of endogenous miR-320 with
antagomir-320 reduced infarct size and cardiomyocyte death.
Using luciferase/GFP reporter assay, HSP20 (small heat-shock
protein) was proven to be a target of miR-320. HSP20 plays a
major role in cardioprotection against I/R injury by developing
an adaptive response (113).

MiR-494 has also attracted considerable attention in the
recent years. It is downregulated in failing human hearts and
animal models of cardiac ischemia/hypertrophy. Transgenic
mice with cardiac-specific overexpression of miR-494 displayed
remarkable protection against myocardial I/R injury by reducing
apoptosis and infarct size (114). Similarly, overexpression ofmiR-
494 in cultured adult cardiomyocytes demonstrated inhibition
of caspase-3 activity and reduced cell death upon simulated
I/R. Furthermore, in vivo silencing of miR-494 aggravated I/R
injury in mice. In this study, miR-494 was shown to target
both pro-apoptotic (PTEN, ROCK1, and CaMKIIδ) as well as

anti-apoptotic proteins (FGFR2 and LIF), but ultimately led
to protection against myocardial I/R injury by activating AKT
signaling.

miR-21 has also been shown to play a crucial role in
attenuation of I/R injury by inducing several pro-survival
signaling pathways in cardiomyocytes and targeting several
pro-apoptotic genes, i.e., programmed cell death 4 (PDCD4),
PTEN, and Fas ligand (FasL) (115–117). PTEN is essential
for the activation of pro-survival AKT kinase pathway (118,
119) and inhibition of PTEN is known to limit infarct size.
Transgenic mice with cardiac-specific over-expression of miR-
21 exhibited suppression of ischemia-induced up-regulation
of PTEN and FasL expression, increase in phospho-AKT,
which collectively resulted in attenuation of infarct size and
subsequent HF. Furthermore, ischemic pre-conditioning was
shown to induce miR-21 in the mouse heart, which may
mediate its cardioprotective effects against I/R injury (120, 121).
Overexpression of miR-21 in rat hearts reduced myocardial
infarct size with improved left ventricular remodeling 2 weeks
after acute MI (122). Interestingly, induction of miR-21 by
hydrogen sulfide was also proven to be beneficial in protecting
the heart against MI and inflammasome activation (123).
The protective effects of hydrogen sulfide were absent in
cardiomyocytes treated with antagomiR-21 and in miR-21
knockout mice. Recently, miR-21 was also found to be pivotal
in isoflurane-induced protection of cardiomyocytes against
hypoxia/reoxygenation injury (124, 125). The beneficial effects
of isoflurane against myocardial I/R injury were lost in miR-
21 KO. This study demonstrates that Akt/NOS/mPTP pathway
is involved in miR-21-mediated protective effect of isoflurane.
Collectively, these studies indicate that miR-21 is induced in
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cardiomyocytes in the early phase of MI and contributes to
myocardial protection. However, in the late phase of MI,
induction of miR-21 predominantly in fibroblasts was shown to
cause fibrosis and cardiac remodeling (125).

Another interesting player in myocardial I/R injury is miR-17-
92 cluster consisting of family members, miR-17, miR-18a, miR-
19a, miR-20a, miR-19b-1, and miR-92a, which is indispensable
for cell proliferation and normal cardiac development (126,
127). Several studies have demonstrated that miR-17-92 is vital
during cardiac morphogenesis and controls proliferation by
targeting PTEN (128–130). Upregulation of miR-20a in neonatal
rat cardiomyocytes following hypoxia/reoxygenation inhibits
apoptosis, while its targeted knockdown induces cardiomyocyte
apoptosis (131). The anti-apoptotic effect of miR-20a is
mediated through targeted suppression of the pro-apoptotic
factor Egnln3/PHD3 (prolyl hydroxylase 3). Moreover, cardiac-
specific overexpression of miR-17–92 cluster also alleviates MI-
induced injury and improves cardiac function in mice (128). A
recent study revealed that miR-17-3p contributes to exercise-
induced cardiac growth and protects against adverse ventricular
remodeling after cardiac I/R injury (128, 132).

On the contrary, this cluster was also indicated to negatively
affect angiogenesis (133) and the use of antagomiR-92a enhanced
angiogenesis, improved left ventricular function, attenuated
myocardial infarct size, and reduced apoptosis (134). This
conflicting observation was in part due to the ablation of multiple
miRNA members of the same cluster, as it is possible that
members of the same cluster may have independent/conflicting
functions by targeting different genes.

MiR-126 has been implicated as a protective miRNA, which
is highly expressed in the heart. It functions as a promotor
of new blood vessel formation by enhancing proangiogenic
factor vascular endothelial growth factor (VEGF), inhibiting
Sprouty-related protein-1 (Spred-1) and vascular cell adhesion
molecule 1 (VCAM-1) and Angiopoietin-1 (Ang-1) (135–138).
Consistent with this finding, Wang et al. demonstrated that
targeted deletion of miR-126 in mice resulted in defective
cardiac neovascularization with impairment of EC proliferation,
migration, and angiogenesis following MI (135). Consistently,
antogomiR-mediated silencing of EC specific miR-126 impaired
angiogenesis following hindlimb ischemia (139). Moreover, miR-
126 was also found in endothelial apoptotic bodies and was
shown to mediate chemokine factor CXCL12 production leading
to apoptosis during I/R injury. Similar to miR-126, miR-
210 also promotes angiogenesis since its overexpression under
normoxic conditions increased EC tubulogenesis and migration,
whereas miR-210 inhibition in the presence of hypoxia
decreased capillary-like formation, EC migration, survival, and
induced apoptosis (140). Ephrin-A3 plays a crucial role in the
development of the cardiovascular system and also in vascular
remodeling (141). In response to hypoxia, miR-210 directly
inhibits Ephrin-A3, which leads to stimulation of capillary-like
formation and angiogenic response to ischemia (140). MiR-210
is also upregulated in hypoxic cardiomyocytes through Akt- and
p53-dependent pathways and exerts cytoprotective effects by
potentially reducing mitochondrial ROS production (142). Hu
et al. demonstrated that induction of miR-210 rescues cardiac

function after MI by upregulation of angiogenesis and inhibition
of cellular apoptosis in the heart (143). Myocardial I/R injury is
accompanied by mitochondrial calcium (Ca2+) overload, which
contributes to mitochondrial dysfunction and cardiomyocyte
death (144).

MiR-214 is yet another cardioprotective mediator against
excessive Ca2+ overload in response to I/R injury. It targets
sodium/calcium exchanger 1 (Ncx1)—a key regulator of Ca2+

influx, and influences several downstream effectors of Ca2+

signaling and cell death (145). MiR-214 protects the heart against
I/R injury by inhibiting Ca2+ overload and cardiomyocyte death
in response to I/R injury through its repression of NCX1,
CaMKIIδ, CypD, and BIM. The beneficial role of miR-214 against
I/R injury was further supported by reports demonstrating
that genetic deletion of miR-214 in mice resulted in loss of
calcium homeostasis, cardiac contractility, increased apoptosis
and excessive fibrosis post-I/R (145). Alternatively, miR-214 can
also inhibit PTEN and thus can regulate PI3-AKT mechanism
during myocardial IR injury (146).

Recently, an interesting study showed miR-155 exacerbates
I/R injury by enhancing the inflammation process in human
muscle tissue (147). Data from this study showed that
upregulation of miR-155 aggravates inflammatory response,
leukocyte infiltration as well as cell death via induction of TNF-α,
IL-1β, CD105, and Caspase3. Moreover, experiments conducted
in miR-155 knockout mice displayed decreased inflammation
upon I/R injury by regulation of suppressor of cytokine signaling
1 (SOCS-1) in a ROS-dependent manner (147).

Rane et al. reported that miR-199a is acutely down-
regulated in cardiomyocytes during hypoxic conditions, which
is obligatory for the rapid upregulation of its target, hypoxia-
inducible factor HIF-1α, and hypoxia-induced apoptosis (148).
Downregulation of miR-199 also induces hypoxia-induced pro-
apoptotic genes like caspase −3,−6,−9, and−12 and FasL, AIF,
and Bnip1. Replenishing miR-199a during hypoxia inhibits HIF-
1α expression and reduces apoptosis. The same study also
identified Sirt1 as another direct target of miR-199, which is
responsible for downregulating prolyl hydroxylase 2 (PHD2)—
required for stabilization of HIF-1α.

MicroRNAs and Atherosclerosis
Atherosclerosis is a progressive disease of the coronary
arteries caused by plaque formation and lipid accumulation,
accompanied by inflammation in the interior wall of blood vessels
(149). The narrowing of the artery can limit or block coronary
blood flow and lead toMI and related complications. miRNAs are
important regulators of pathophysiological processes involved
in the development of atherosclerosis such as cellular adhesion,
proliferation, lipid uptake, and efflux, and recruitment of
inflammatory mediators (Figure 6). The liver plays a central
role in lipoprotein metabolism and several hepatic-enriched
miRNAs have been identified to have significant impact on
lipid homeostasis (150). Among these, hepatic-miR-122 was
the first to be identified as a crucial regulator of cholesterol
and fatty acid synthesis, and thus lipoprotein homeostasis (151,
152). A number of other miRNAs have been implicated in
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FIGURE 6 | Overview of miRNAs and their respective target genes regulating multiple cellular processes, like cholesterol efflux, foam cell formation, neutrophil

adhesion, inflammation, autophagy, monocyte activation, macrophage activation, apoptosis, cellular proliferation, and plaque remodeling during the pathogenesis of

atherosclerosis.

cholesterol efflux to apoA1, including miR-33 (153–155), miR-
758 (156), miR-26 (157), miR-106 (158), and miR-144 (159).
miR-33 is one of the most extensively investigated miRNAs
and it represses multiple genes involved in cellular cholesterol
trafficking (150). MiR-33a/b is embedded within introns of
the SREBP (sterol regulatory element-binding protein) genes,
the key transcription regulators of many cholesterogenic and
lipogenic genes (160). In concert with the transcription of
SREBP, miR-33 inhibits cellular cholesterol efflux by targeting
ATP-binding cassette transporter A1 (ABCA1) and ABCG1
genes (161). Studies using ApoE/miR-33 double knockout mice
demonstrated reduced atherosclerotic plaque with significant
increase in HDL levels and enhanced cholesterol efflux via
ABCA1 and ABCG1 (162). Interestingly, antagonism of miR-
33 in Ldlr−/− mouse models of atherosclerosis impeded
the progression of atherosclerosis (163) and also regressed
established atherosclerosis (155). Anti-atherosclerotic effects
of anti-miR-33 therapy have been attributed to increasing
circulating levels of HDL or improving macrophage cholesterol
efflux via ABCA1 and ABCG1, two of the well-established targets
of miR-33 (155, 162, 164). Macrophage-specific loss of miR-33
was determined to impede atherosclerotic plaque formation by
reducing inflammation and lipid accumulation in Ldlr−/− mice
under hyperlipidemic conditions (165). Alternatively, whole
body loss of miR-33 in Ldlr−/− mice resulted in increased
body weight, impaired insulin sensitivity, and a pro-atherogenic
lipid profile without significant changes in the plaque size.
Humans possess another isoform of miR-33, namely miR-33b.
However, bone marrow transplants from miR-33b-KI mice
into the Ldlr−/− background did not show any impact on

plaque formation or lipid accumulation (165). Recently, miR-
302a and miR-26 have also been reported to be involved
in cholesterol transport and efflux by targeting ABCA1 (157,
166).

Inflammatory activation of ECs promotes atherosclerosis by
recruitment of leukocytes (167). Vascular adhesion molecule
(VCAM)-1, intracellular adhesion molecule (ICAM)-1, and E-
selectin are important players in the leukocyte recruitment to
the vessel wall, which eventually leads to plaque formation
(168). In human ECs, E-selectin and ICAM-1 are direct
targets of pro-inflammatory cytokine TNFα-induced miR-31
and miR-17-3p, respectively, regulating neutrophil adhesion to
ECs (169). MiR-181b regulates NF-κB-mediated EC activation,
vascular inflammation as well as atherosclerosis via repression of
importin-α3, a protein that is required for nuclear translocation
of NF-κB (170, 171). MiR-146 maintains vascular homeostasis
with repression of the pro-inflammatory signaling pathways,
i.e., NF-κB pathway as well as the MAP kinase pathway
and downstream early growth response (EGR) transcription
factors through regulation of IL-1β signaling pathway adaptor
proteins (i.e., TRAF6, IRAK1/2) (172). In addition, miR-146
modulates post-transcriptional pro-inflammatory pathways via
targeting the RNA binding protein HuR (human antigen R),
which promotes endothelial activation by antagonizing eNOS
(endothelial nitric oxide synthase) expression (172).

A wealth of evidence suggests the involvement of miR-126
in the inflammatory responses associated with atherosclerosis
(173, 174). MiR-126 suppresses VCAM-1 expression and limits
leukocyte adherence to ECs and regulates vascular inflammation
(138). Overexpression of miR-126 poses beneficial effects by
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decreasing the pro-inflammatory cytokine expression (TNF-
α, IL-6) and reducing the accumulation of macrophages in
atherosclerotic lesions by inhibiting MAPK pathway proteins
(p38, ERK1/2, and JNK) (174). Another interesting study showed
that overexpression of miR-126 prevented against ox-LDL-
induced injury in HUVECs through restoring autophagy flux
via repressing PI3K/Akt/mTOR pathway. This observation was
supported by decreased LC3-II, Beclin 1, and p62 expression
profiles that were induced by ox-LDL.

HUVECs treated with ox-LDL exhibited a robust increase
in the expression level of miR-365 and downregulation of its
target Bcl-2 (175). However, inhibition of miR-365 attenuated
ox-LDL-induced EC apoptosis by restoring the expression of
Bcl-2 (175). In contrast to this finding, miR-365 levels were
downregulated in plaques (vs. healthy adjacent tissue) and in
monocytes of coronary atherosclerosis (AS) patients compared
to control subjects (176). Interestingly, the levels of IL-6 (direct
target of miR-365), in both plaques and monocytes correlated
with the expression level of miR-365 (176), suggesting a role
for miR-365 in the pathogenesis of AS. MiR-365 was also
reported to reduce proliferation of vascular smooth muscle cells
(VSMCs) by targeting cell cycle-specific cyclin D1 (CD-1) both
in vitro and in balloon injury-induced carotid artery proliferation
model in rat (177). In specific, transfection of miR-365 mimics
in VSMCs blunted PDGF (platelet-derived growth factor) or
ANG-II-induced cell proliferation by decreasing the level of
Proliferating Cell Nuclear Antigen (PCNA) through targeting
CD-1 (177).

Recent studies reported that miR-92a is induced by oxidative
stress in ECs (178) and is also involved in the development of
atherosclerosis (179). MiR-92a targets the 3′ untranslated region
of mRNAs encoding sirtuin 1 (SIRT1), Krüppel-like factor 2
(KLF2), and KLF4, and impairs eNOS-driven NO bioavailability
(180). Specific in vivo inhibition of miR-92a expression in mice
was shown to reduce endothelial inflammation and limit the
development of atherosclerosis (179).

Macrophage foam cell formation, a hallmark of
atherosclerosis, was determined to be regulated by miR-
27a, which can activate CD14, CD68 expression, and CD206 and
DC-SIGN, a marker of M2 and secretion of IL-10. Experiments
using monocytes indicated that overexpression of miR-27a
increased IL-10 secretion by activating ERK signaling pathway
(181). MicroRNA expression profile reveals that macrophage-
derived miR-342-5p and miR-155 are selectively upregulated
in early atherosclerotic lesions in ApoE-knockout mice (182).
This study indicates that miR-342-5p promotes atherosclerosis
and induces the pro-inflammatory activation of macrophages by
suppressing Akt1-mediated inhibition of miR-155 expression.
In turn, miR-155 also promotes atherosclerosis by directly
repressing the expression of BCL6 (B-cell leukemia/lymphoma
6), a transcription factor that attenuates pro-inflammatory
NF-κB signaling (183). Systemic delivery of antagomiR-
155 diminishes lipid-loading in macrophages and reduces
atherosclerotic plaques in ApoE knockout mice (184). Ectopic
overexpression and knockdown of miR-155 identified that
HMG box-transcription protein 1 (HBP1) is a novel target of
miR-155. miR-155, by direct repression of HBP1 expression,

promoted lipid uptake and ROS production of macrophages to
enhance foam cell formation (184). Furthermore, miR-155 also
directly inhibits SOCS1 expression and induces p-STAT3 and
PDCD4, which leads to production of inflammation mediators
in macrophages to promote atherosclerotic plaque formation
(185).

Aging is one of the major risk factors for type 2
diabetes mellitus and its associated endothelial dysfunction and
atherogenesis (186). Interestingly, endothelial senescence seems
to be dependent on the age-progressive increase in miR-217
(187). Upregulation of miR-217 was shown to negatively regulate
Silent information regulator 1 (Sirt1) in human atherosclerotic
plaques (187). This study reported a fascinating role linking
miR-217 to aging ECs. Data showed a progressive upregulation
of miR-217 during aging in cell lines including young human
umbilical vein endothelial cells (HUVECs), human aortic ECs
and human coronary artery ECs (187). Sirt1, a master regulator
of aging was identified as a direct target of miR-217 and was
shown to decline over age in correlation with potentiation of
miR-217. Conversely, inhibition of miR-217 restored the levels
of Sirt1 and modulated forkhead box O1 (FoxO1) and enhanced
angiogenesis (187). Similarly, increased miR-34a in concert with
suppression of SIRT1 expression were also reported in aged
mouse aortas and in replicative senescent human aortic smooth
muscle cells (HASMCs) (188). In addition, overexpression of
miR-34a increased several pro-inflammatory factors like IL1β,
IL8, IL6, and Mcp-1 in both endothelial and VSMCs (188).
miR-34a was also found to be upregulated in HFD-induced
ApoE−/− mice and ox-LDL-treated HAECs (189). Inhibition
of miR-34a decreased atherosclerotic lesions and reduced EC
apoptosis in HFD-induced ApoE−/− mice through suppression
of its target Bcl-2 (189). Moreover, anti-miR-34a released the
cell cycle arrest at the G1 phase induced by ox-LDL treatment
of HAECs, suggesting that miR-34a promoted cell proliferation
(189). Taken together, these reported findings imply that miR-34a
regulates growth and apoptosis in ECs and plays an important
role in atherosclerosis.

MiR-21 has received significant attention with respect to
its role in CVDs because it was shown to be up-regulated
in the arteries of patients with atherosclerosis (190). In early
stages of atherosclerosis, miR-21 exhibits pro-inflammatory
effect in ECs via activation of pro-inflammatory protein VCAM-
1 and MCP-1 (monocyte chemotactic protein-1 (191). However,
in later stages of the pathological process, it can facilitate
suppression of inflammation via induction of eNOS with
enhanced production of athero-protective NO, which suppresses
activation and adhesion of monocytes and expression of pro-
inflammatory cytokines (192). To this end, numerous studies
identified the controversial role of miR-21, as a pro- or anti-
atherogenic miRNA (193–195). A recent study revealed that
miR-21 expression increased in macrophages and decreased in
serum of patients with non-calcified coronary plaque. miR-21
participates in plaque instability by inducing the expression
and secretion of pro-MMP-9 and active-MMP-9 in human
macrophages via targeting gene RECK (Reversion-inducing
cysteine-rich protein with Kazal motifs) (196). A report also
suggested that miR-21 is the most abundantly expressed miR
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in macrophages and its absence leads to atherosclerosis in
Ldlr−/− mice fed with western diet (197). Initial data from
RNA sequencing using bone marrow-derived macrophages
(BMDMs) identified rich expression of miR-21 in macrophages
(197). Further experiments showed that Ldlr−/− mice that
received BM frommiR-21-deficientmice developed larger lesions
than mice transplanted with wild type BM. In this context,
mitogen-activated protein kinase kinase 3 (MKK3), a target gene
of miR-21, was significantly increased in macrophages derived
from miR-21−/− mice, which resulted in the activation of the
p38 MAP Kinase-C/EBP homologous protein (p38-CHOP) and
c-Jun N-terminal kinase (JNK) signaling pathways (197). The
study also revealed that the absence ofmiR-21 reduced expression
of the ATP-binding cassette transporter G1 (ABCG1), thus
promoting the development of foam cell formation (197).

Shear stress plays an important role in the induction
of inflammation in ECs and contributes to the severity of
atherosclerosis by increasing proinflammatory factors in plaque
regions (198–200). In this regard, miR-663 was reported
to regulate shear stress in ECs (201). miRNA microarray
analysis using HUVECs identified an upregulation of miR-
663 upon exposure to oscillatory shear stress (OS) for 24 h
(201). Antagonism of miR-663 using miR-663-locked nucleic
acids (LNAs) blocked OS and TNF-α induced monocyte
adhesion (201). This study identified 35 potential miR-663
targets including inflammatory genes (BMP, IL-6, and PCK)
and transcription factors (FOSB, CEBPB, DDIT3, ATF3, and
MYCN) that are differentially regulated with OS HUVECs
(201). These observations suggest that miRNAs, including miR-
663, are sensitive to shear stress and can play a delicate
role in regulating inflammation and plaque formation during
atherosclerosis. Similarly, studies using inner aortic arch of pig
suggest that miR-10a expression was significantly reduced in
the athero-susceptible regions (202). Overexpression of miR-10a
inhibited the expression of VCAM-1 and E-selectin as well as
phosphorylation of IκBα and NF-κB signaling in human aortic
ECs. Experiments using knock-in and knockdown of miR-10a
suggested that miR-10a regulates proinflammatory endothelial
phenotypes in athero-susceptible regions both in vivo and in ECs
by targeting NF-κB, MAPK and Homeobox A1 (HOXA1) genes
(202). Importantly, a recent study reported lower expression of
miR-10a and simultaneous higher expression of IL-6 and TNF-
α in peripheral blood mononuclear cells (PBMCs) of patients
with coronary artery disease (CAD) compared to control subjects
(203).

Apart from mechanical shear stress, abnormal remodeling
of plaques also increases its susceptibility to rupture. To this
end, miR-29 was shown to impose positive remodeling of
plaque and thus reducing the risk of plaque lesion (204).
Interestingly, administration of LNA-miR-29 biweekly for 14
weeks reduced atherosclerotic lesion size in APOE−/− mice fed
with high fat diet (204). Further, LNA-miR-29 increased fibrous
cap thickness and SMA staining and reduced necrotic zones in
lesions. Mechanistically, LNA-miR-29 increased collagen COL1A
and COL3A1 (targets of miR-29) only in the risk-prone plaque
region and stabilized them without inducing systemic fibrosis
(204). Similarly, overexpression of miR-145 in APOE−/− mice

before the onset of western diet for 12 weeks displayed reduced
plaque formation (205). Specifically, VSMC-targeted expression
ofmiR-145 resulted in plaque stability and decreasedmacrophage
infiltration (205). Furthermore, overexpression of miR-145
resulted in a reduction in KLF4 levels with a concomitant
increase in myocardin expression to promote a contractile
phenotype of VSMC (205).

MicroRNAs in Diabetes and Insulin
Signaling
Diabetes is a major risk factor for CVD and is characterized
by elevated blood glucose, insulin resistance/deficiency and
metabolic abnormalities. Several miRNAs were identified to play
a role in diabetes by regulating insulin signaling and glucose
metabolism (Figure 7). Some of the prominent players are miR-
34a (206), miR-204 (207), miR-103/107 (208), miR-134 (209),
miR-130a (210), miR-155 (211), miR-21 (212), miR-320 (213),
and miR-27b (214).

Formation of Advanced Glycation Products (AGE) that
leads excessive reactive oxygen species (ROS) generation is a
major mechanism of diabetes-related complications (215, 216).
AGE plays an important role in the activation of PKC/Rho
pathway induced by hyperglycemia (217, 218). Using Akita
type 1 diabetic mice and miR-143/145 cluster knockout mice,
Hien et al. established a pivotal link between hyperglycemia
and smooth muscle cell (SMC) contractility (219). This study
demonstrated that inhibition of PKC/Rho/MRTF (myosin
phosphatase-targeting protein) signaling and genetic knockdown
of miR-143/145 cluster reduced glucose-induced contractile gene
expression.

Zampetaki et al. revealed that reduced miR-126 expression
levels are responsible for impaired vascular repair capacities in
diabetes (220). Patients with type 2 diabetes exhibited significant
reduction in the level of vesicular miR-126, while non-vesicle-
associated miR-126 was unchanged. Jansen et al. also reported
decreased miR-126 in circulating micro-particles from patients
with stable CAD and diabetes (221).

miR-1 was also found to play an important role in diabetes
by directly targeting insulin-like growth factor-1 and its receptor
(222) or signaling cascades related to IGF pathway (223).
MiR-1 increases from the early to the late phases of diabetic
cardiomyopathy, which leads to consequential cardiomyocyte
apoptosis through targeting Pim-1 (proviral integration site for
Moloney murine leukemia virus-1) (224). Intriguingly, blocking
miR-1-dependent inhibition of Pim-1 using anti-miR-1 resulted
in elevation of phosphorylated Akt and abrogation of diabetic-
induced cardiac apoptosis.

Wang et al. reported that miR-320 was directly involved
in regulation of insulin-like growth factor-1 in T2D rats
and led to impaired angiogenesis in diabetes (213). The
study also revealed that in diabetic myocardial microvascular
endothelial cells (MMVECs), miR-320 is potentially targeting
multiple angiogenesis-related genes, including Flk-1 (fetal
liver kinase), VEGF, IGF-1 (insulin growth factor-1), IGF-
1R (IGF-1 receptor), and FGFs (fibroblast growth factors).
A notable finding was reported by Trajkovski et al. showing
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FIGURE 7 | Schematic diagram illustrating multiple miRNAs and their targets, which mediate various cellular events, like SMC contraction, apoptosis, angiogenesis,

hypertrophy, and glucose homeostasis during diabetic cardiomyopathy.

upregulation of miR-103/107 in obese mice. Adenovirus-
mediated overexpression of miR-103/107 impaired glucose
homeostasis in liver and fat, whereas antagomir-based inhibition
of miR-103/107 increased insulin sensitivity and glucose uptake.
The study also implicated caveolin-1 as a functional target gene
of miR-103/107. Whether such mechanism exists in diabetes-
related cardiovascular complications remains to be answered.
Another miR, namely miR-216a, also targets caveolin-2, a
scaffolding protein and substrate of the insulin receptor that
helps recruit IRS-1 to the insulin receptor and propagate insulin
signaling (225). Loss of caveolin expression results in the
activation of a program of progressive hypertrophy in cardiac
myocytes, and its deletion results in severe cardiomyopathy
(226). Greco et al. revealed that miR-216a is induced in failing
hearts of patients with and without diabetes, and this induction is
negatively correlated with left ventricular ejection fraction (225).

The expression of miR-34a was found to be highly induced
in H9c2 cells subjected to high glucose and concurrently,
Bcl-2 expression was markedly reduced (227). In vivo
experiments using miR-34a mimic prevented cardiac recovery
post-MI in neonatal hearts whereas inhibition of miR-34a
in adult hearts improved cardiac repair (228). Many key
proteins involved in apoptosis and necrosis, such as Bcl-
2, CD-1, and SIRT1 are also regulated by miR-34a (228).
He et al. identified that members of the miR-34 family
are direct transcriptional targets of p53 (229) and p53 is
stimulated in high glucose cultured cardiomyocytes with
induction of miR-34, which was also associated with a
marked diminution of pro-survival SIRT1 (230). Therefore,
the induction of miR-34 in diabetic heart may promote
cardiomyocyte apoptosis in diabetic patients. Furthermore,
miR-30 and miR-181a have also been recently shown to
regulate p53 expression in cardiomyocytes (231, 232). Raut

et al. revealed that myocardial expression of p53 and p21
genes is increased with simultaneous reduction in miR-30c
and miR-181a in hearts of diabetic patients, rats with diabetic
cardiomyopathy and in high glucose-treated cardiomyocytes
(233).

MiR-483-3p is a critical regulator of heart development
and a prognostic factor for heart disease (234). Induction of
diabetes using streptozotocin in miR-483 transgenic mouse
model increased cardiomyocyte apoptosis by silencing insulin
growth factor 1 (IGF-1) (235). IGF-1 is known regulator of
Myocyte enhance factor 2C (MEF2C), which plays an active
role in diabetes-provoked cardiac hypertrophy (236). In this
regard, it was observed that downregulation of miR-133a in
diabetic cardiomyopathy resulted in an upregulation of serum
and glucocorticoid regulated kinase 1 (SGK1) and IGFR1
(237). This in turn leads to the activation of MEF2C and
p300 gene, paving the way for myocyte hypertrophy. On
the contrary, miR-133 was also shown to target MEF2C and
suppress it expression thereby blocking hypertrophy (237, 238).
Downregulation of miR-133a is associated with induction of
cardiac autophagy in diabetic patients with HF (177). MiR-133a
improves the contractility of diabetic hearts by targeting tyrosine
aminotransferase which leads to induction of norepinephrine
biosynthesis, and consequently, activating β-adrenergic receptor
(175).

Glucose transporter 4 (Glut4) is a major regulator that
facilitates entry of glucose into cells and miR-223 was reported
to control the expression of Glut4 gene in cardiomyocytes.
A broad miRNA analysis study using left ventricular biopsies
from patients with or without type 2 diabetes who presented
with left ventricular dysfunction revealed that miR-223 was
robustly upregulated in patient with diabetes, whereas Glut4
expression was low (239). Moreover, Horie et al. found that

Frontiers in Cardiovascular Medicine | www.frontiersin.org 12 July 2018 | Volume 5 | Article 73

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Das et al. nc-RNAs and Cardiovascular Disease

miR-133 overexpression lowered Glut4 levels by targeting KLF15
(Kruppel-like factor) and reduced insulin-induced glucose
uptake in cardiomyocytes (240).

Overexpression of let-7 has been reported to mediate insulin
resistance and impair glucose metabolism in high fat diet-
induced diabetic mice (241), whereas the inhibition of let-7
resulted in improvement of glucose metabolism and insulin
sensitivity (242). Recently Li et al. established that inhibition
of the let-7 family improves glucose uptake and insulin
resistance in streptozotocin-induced diabetic rats and confers
cardioprotection against I/R injury through Akt and mTOR
pathways (243). The study also determined that inhibition of let-7
enhanced the expression of IGF-1R, InsR (insulin receptor), and
Glut4 in diabetic hearts.

Zheng et al. demonstrated that miR-195 is induced in
streptozotocin-induced type 1 and db/db type 2 diabetic
mouse hearts with reduction of its target proteins (B cell
leukemia/lymphoma 2, Bcl-2 and sirtuin 1, Sirt1) (244). They
also indicated that upregulation of miR-195 in diabetic hearts
is associated with oxidative stress, apoptosis, myocardial
hypertrophy, and dysfunction as well as reduction in coronary
blood flow. Additionally, silencing of miR-195 reduced
myocardial hypertrophy and apoptosis, increased myocardial
capillary density and improved coronary blood flow and
myocardial function in diabetic mice.

NCRNA AS PREDICTORS AND
PROGNOSTIC TOOLS IN CVD

The identification of circulating miRNAs in blood and other
liquid samples has immediately gained the attention of clinical
research for their potential utility as biomarkers. Perhaps one of
the most highly focused areas of research in ncRNAs is miRNAs
as predictors and prognostic tools for human diseases (Table 1).
These miRNAs are quite stable and withstand degradation in
the blood stream largely due their association with proteins
(266), apoptotic bodies (267), microvesicles (268), and exosomes
(269). The feasibility of obtaining serum samples from human
patients accelerated the research in this field and therefore
several miRNAs were identified as biomarkers for various
diseases such as cancer (270, 271), diabetes (272, 273), and
CVD (274, 275).

In patients with acute MI, miR-1, miR-133a, miR-499, and
miR-208a have consistently been reported to be elevated in
plasma (245, 246, 276). Clinicians are in pursuit of a reliable
miRNAmarker, similar to cardiac troponin, to evaluate the extent
of MI injury. Numerous clinical studies indicated that miR-1
is markedly increased in the blood of patients with acute MI
(245–247, 276). Similar to miR-1, miR-133 was also increased in
plasma after coronary artery ligation in rats (245). Interestingly.
miR-133 was also elevated in plasma of acute MI patients
and positively correlated with cardiac troponin levels (251). A
recent study conducted in patients with hypertrophic obstructive
cardiomyopathy undergoing trans-coronary ablation of septal
hypertrophy (TASH) procedure to identify time-dependent
release of acute miRNAs that may be specific to cardiac tissue as

an indicator of cardiomyocyte necrosis. The study showed that
miR-1, miR-133a, and miR-208a increased continuously during
the first 4 h post-MI (248). Interestingly the plasma concentration
of miR-1 significantly increased (>3-fold) as early as 15min after
MI and reached peak level (>60-fold) after 75min. A similar
trend was also observed for miR-133a. In line with this finding,
a comparative study between human and murine circulating
miRNAs determined that the concentration human of miR-1,
miR-133a, and miR-133b peaked even before cardiac troponin
T post-MI, whereas in mice undergoing permanent coronary
artery occlusion, miR-499 appeared to be amore sensitive marker
of acute MI (247). Besides serving as diagnostic markers, miRs
were also identified as predictors of disease prognosis. In a
large cohort study involving 444 patients with acute coronary
syndrome (ACS), the expression of miR-1, miR-133a, miR-133b,
and miR-208b, were higher compared to patients with unstable
angina (249). These patients were monitored for 6 months
and the study concluded that miR-133a and miR-208b levels
were significantly associated with the risk of mortality (249).
In another interesting study involving 424 patients suspected
for MI during a 30-day follow-up period, elevated plasma
levels of miR-208b and miR-499-5p were strongly associated
with increased risk of mortality or HF (250). Another study
also suggested that the high expression level of a cluster of
three miRs, including miR-134, miR-198, and miR-370, can
also be used to distinguish between with CAD patients and
healthy subjects (252).

Several reports suggest that miRNA expression can indicate
the response to therapy. In this regard, miR-126 and miR-
508-5p served as independent prognostic factors of chronic
HF secondary to ischemic cardiomyopathy or non-ischemic
cardiomyopathy (253). Recently, a study in patients with acute
HF revealed that declining levels of circulating miR-18a-5p and
miR-652-3p are associated with increasing acuity of HF (256).
Interestingly, miRNAs may also serve as effective biomarkers in
distinguishing responders and non-responders who received left
ventricular assist device (LVAD) and cardiac resynchronization
therapy (CRT) (257, 258) procedures. Patients who received
LVAD had a consistently high expression of miR-483-3p, whereas
levels of miR-1202 were able to identify responders vs. non-
responders. The study also showed that patients with higher
expression of miRNA-26b-5p, miRNA-145-5p, miRNA-92a-3p,
miRNA-30e-5p, andmiRNA-29a-3p responded well to CRT (257,
258).

Several studies have been conducted to examine whether
the levels of circulating miRs can assist in outcome prediction
of diabetic patients with impaired glucose metabolism and
high-risk cardiovascular complications (220, 221, 254). A
cohort study involving 80 patients with type 2 diabetes
showed upregulation of miR-28-3p and downregulation of
miR-20b, miR-21, miR-24, miR-15a, miR-126, miR-191, miR-
197, miR-223, miR-320, and miR-486 (220). The study also
used Lep(ob) mice to show a decline in miR-126 content of
endothelial apoptotic bodies upon exposure to high glucose
concentrations. Recently, it was demonstrated that expression
levels of circulating miR-126 were decreased in the blood
samples of type 2 diabetic patients with or without CAD
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TABLE 1 | Non-coding RNAs as biomarkers in cardiovascular diseases.

ncRNA Disease Expression Model Type of marker References

miR-1 AMI Up-regulated Rat, pig (CAO)

Human (TASH, STEMI, ACS)

Diagnostic (245–250)

miR-133a and b AMI Up-regulated Pig (CAO)

Human (AMI, ACS)

Diagnostic (247–249, 251)

miR-499 AMI

HF

Up-regulated Human (STEMI) Diagnostic/Prognostic (247, 250)

miR-134, miR-198 CAD Up-regulated Human (252)

miR-208b, miR-499-5p MI HF Up-regulated Human (STEMI, ACS) Prognostic (245, 248–250,

252, 253)

miR-126, Ischemic HF

CAD, T2DM

Down-regulated Human Prognostic (253–255)

miR-508-5p HF Up-regulated Human Prognostic (253)

miR-18a-5p and

miR-652-3p

Acute HF Down-regulated Human (AHF, COPD) Predictor (256)

miR-483-3p LVAD Up-regulated Diagnostic/Predictor (256–258)

miRNA-26b-5p,

miRNA-145-5p, miR-1202

Heart Failure

LVAD

Up-regulated Human (CRT) Predictor/Prognosis (257, 258)

miR-28-3p T2DM UP-regulated Human Diagnostic (220)

miR-20b, miR-21, miR-24,

miR-191

T2DM, CAD Down-regulated Human Diagnostic (220)

miR-663b AMI Up-regulated Human Diagnostic (259)

miR-181 IR injury Up-Regulated Rat, Pig Diagnostic (260)

miR-30a AMI Up-regulated Human Diagnostic (261)

LIPCAR AMI, Down-regulated Human Diagnostic (262)

NRON, MHRT HF Up-regulated Human Diagnostic (263)

piR_2106027 MI Up-regulated Human Diagnostic (264)

Circ-MICRA AMI Down-regulated Human Prognostic (265)

CAO, Coronary Artery Occlusion; CAD, Coronary Artery Disease; AMI, Acute Myocardial Infarction; HF, Heart Failure; MI, Myocardial Infarction; TASH, Trans-coronary Ablation of Septum

Hypertrophy; STEMI, ST-elevation myocardial infarction; ACS, Acute coronary syndrome; AHF, Acute Heart Failure; COPD, Chronic obstructive pulmonary disease; LVAD, Left Ventricular

Assist Device.

(254). It has also been suggested that miR-126 correlates
negatively with LDL in diabetic patients with CAD (254, 255).
Circulating levels of miR-663b, was shown as a reliable marker
for atherosclerosis related acute myocardial infarction (AMI)
(259).

MicroRNAs and Exosomes
Recently researchers have shown interest in miRNAs packed in
exosomes, largely due to their role in cell-cell communication
(277) and ease of delivery into cells. Exosomes are small transport
vehicles that measures 40–100 nm in diameter and are secreted
membrane vesicles that originate from intracellular endosomes
(278–280). Exosome-mediated cellular communication has been
shown to play an important role in MI (281, 282). Transport
of miRNA via exosomes can act as a potential mechanism
for molecular cross-talk of combined gene and cell therapy
in ischemic heart disease (283). Ibrahim et al. established
that cardiosphere-derived cell exosomes (CDCexo) contain a
distinctive complement of miRNAs, with particular enrichment
of miR-146a (284). MiR-146 in exosomes plays a key role
in mediating the beneficial effects of CDCexo in infarcted
heart, but alone does not suffice to confer comprehensive

therapeutic benefit. Circulating levels of miR-663b were shown
to serve as a reliable marker for atherosclerosis related to AMI
(259).

Recently de Couto et al. proposed that CDCexo contains
several miRNAs, including miR-146a, miR-181b, and miR-
126 and when delivered at reperfusion limits infarct size in
a pig model of MI (260). They also showed that miR-181b
within CDCexo is a critical mediator of macrophage polarization
in vitro and cardioprotection in vivo. Using EC-specific miR-
126 knockout mice, Chen et al. showed a brain-to-heart
communication through miR-126 in cerebral artery occlusion
model (285). Interestingly, studies conducted in rat showed that
miR-17-92 cluster enriched exosome delivery restores function
after stroke via targeting PTEN-PI3K pathway (286).

Yang et al. detected that miR-30a is highly enriched in
exosomes from the serum of acute MI patients in vivo and also
in culture medium of cardiomyocytes after hypoxic stimulation
in vitro (261). The study showed that hypoxia inducible factor
(HIF)-1α controls miR-30a, which is efficiently transferred via
exosomes between cardiomyocytes after hypoxia. Exosomes
released from hypoxic cardiomyocytes inhibit autophagy by
transferring miR-30a in a paracrine manner.
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In addition, specific lipids found on lipoproteins, such as
phosphatidylcholine (PC), have been shown to form stable
ternary complexes with RNAs (287). In addition to exosomes,
lipoproteins—especially high-density lipoprotein (HDL)—play
a critical role as carriers of miRNAs in cardiometabolic
disorders (288). HDL transports endogenous miRNAs and
delivers them to recipient cells with functional gene regulatory
consequences (289). Cellular export of miRNAs to HDL
is regulated by neutral sphingomyelinase. Moreover, mouse
models of hypercholesterolemia and dyslipidemia exhibit a
significantly distinct HDL-miRNA profile compared to healthy
subjects, indicating that miRNA cargo of HDL may be involved
in the atherosclerotic disease and cardiometabolic disorders
(289). HDL-bound miRNAs may also be used as biomarkers
in cardiometabolic disorders (290). Several angiogenesis and
inflammation-associated miRNAs, including miR-92a, miR-126,
miR-150, miR-378, and miR-486 were also found in circulating
HDL of patients with CAD (288, 291). A recent study
revealed that normalization of miRNAs with HDL level shows
significant decrease in cardio-enriched miRNAs (particularly
miR-1, 133, and 499) in diabetic patients undergoing coronary
artery bypass graft (CABG) surgery for ischemic heart disease
(292). The study proposed the need to normalize miRNA
levels with HDL to increase its sensitivity as a diagnostic
biomarker.

Overall, accumulating evidence implicates multiple
circulating miRNAs as potential diagnostic tools as well as
prognostic biomarkers of CVD. Therefore, multicenter and large
cohort studies should be carefully designed to further identify
and confirm specific circulating miRNAs as novel biomarkers for
early diagnosis and/or prognosis of CVD in patients.

LNCRNA IN CARDIOVASCULAR DISEASES

LncRNAs regulate various biological processes, including cell
proliferation, differentiation and apoptosis (293, 294), and are
aberrantly expressed in several pathological conditions such
as CVD (2), diabetes mellitus (5, 295), and cancer (296,
297). Moreover, the expression of lncRNAs is predominantly
unique to tissues and cell types (49, 297) and lncRNAs are
therefore relatively precise in their functionality. LncRNAs act
as powerful epigenetic modulators and also play an important
role in heart development. Global transcriptome analyses
identified deregulation of thousands of novel lncRNAs during
cardiac development and pathology, but only a few have been
well-characterized (298–302) (Table 2). Perhaps, one of the
earliest known lncRNA is myosin heavy chain-associated RNA
transcript (Mhrt/myheart), which plays a role in cardiomyocyte
proliferation (304). Mhrt is inhibited by Brg1-HDAC-PARP—a
chromatin repressor, which governs the transition of alpha-MHC
to beta-MHC. Pathological stress activates Brg1, represses Mhrt
and results in cardiac hypertrophy in adults (304).

Recent pioneering work has identified a significant role for
Braveheart (BVHT) lncRNA in cardiac lineage (303). It was
observed that Bvht directs mesoderm toward cardiac fate via
mesoderm posterior 1 (MesP1), a mediator of cardiovascular

progenitors. The study also showed that Bvht interacts with
SUZ12, a core component of polycomb-repressive complex
2 (PRC2), suggesting an epigenetic regulation of chromatin.
Moreover, several important transcription factors necessary for
the commitment of cardiac lineage such asMesP1,Gata4,Hand1,
Hand2, Nkx2.5, and Tbx5 are activated by Bvht.

LncRNAs are also being recognized as rigorous regulators
of DNA methylation through interactions with DNA
methyltransferases (DNMTs) and thereby act as epigenetic
modulators both in normal and in pathological conditions
(330). Evidence also suggests that cardiac-enriched lncRNAs,
such as Cardiac Hypertrophy-Associated Epigenetic Regulator
(Chaer), can block the methylation of histone H3 lysine 27
by interacting with polycomb repressor complex 2 (PRC2)
and contribute to cardiac hypertrophy (302). This Chaer-
PRC2 interaction is transiently enhanced at the onset of
hypertrophic stress in a mammalian target of rapamycin
complex 1 (mTORC1)-dependent manner, and is prerequisite
for epigenetic reprogramming and induction of hypertrophic
genes. Both genetic and siRNA-mediated inactivation of Chaer
significantly attenuate cardiac hypertrophy and pathological
progression. Cardiac Hypertrophy-Associated Transcript
(Chast) is another novel cardiomyocyte-specific lncRNA known
to be upregulated in TAC-induced hypertrophy in mice and
aortic stenosis patients (305). It was shown that Chast impedes
the expression of Pleckstrin homology domain-containing
protein family member 1 (Plekhm1) as a cis regulatory element,
which hampers cardiomyocyte autophagy and promotes
hypertrophy.

Interestingly, lncRNAs can also interact with miRNAs and act
as a decoy to regulate gene expression. Cardiac Hypertrophy-
Related Factor (CHRF), another lncRNA, is able to directly
bind to miR-489 and regulate the expression of MyD88
(myeloid differentiation primary response gene 88, as a miR-
489 target) and consequent cardiac hypertrophy (306). MyD88
knockout mice and transgenic miR-489 overexpressing mice
are resistant to hypertrophic stimuli with AngII treatment.
Mechanistically it was shown that CHRF binds to miR-
489 and acts as an endogenous sponge of miR-489 to
downregulate its expression. Another lncRNA, ROR, was
identified to be upregulated in hypertrophic mouse heart and
cardiomyocytes (307). The pro-hypertrophic effect of lncRNA-
ROR is mediated via repressing the expression and function
of miR-133, overexpression of which attenuates lncRNA-ROR
and expression of fetal genes (ANP and BNP). As evident
from recent findings, gene regulation and the interplay among
networks of ncRNAs is increasingly complex and yet precise.
One such example is a three-way interaction between lncRNA
H19, miR-675, and CaMKIId that was established in a mouse
model of phenylephrine-induced hypertrophy (312). The study
showed that overexpression of H19 attenuates cardiomyocyte
hypertrophy in response to phenylephrine, whereas knock-
down of H19 exacerbates it. Furthermore, in vivo silencing of
miR-675 in a pressure overload-induced mouse model of HF
increases cardiac CaMKIIδ expression and aggravates cardiac
hypertrophy. Moreover, H19 was shown to be elevated in serum
of patients with atherosclerosis as well as in atherosclerotic
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TABLE 2 | Long non-coding RNAs and their function in the cardiovascular system.

LncRNA Disease Expression Functional outcome Target regulation References

Braveheart Cardiac hypertrophy Down-regulated Cardiac differentiation

Cardiac lineage

Mesoderm posterior1 SUZ12,

Gata4

(303)

Mhrt/myheart Cardiac hypertrophy Down-regulated α-MHC–β-MHC Brg1 (304)

Chaer Cardiac hypertrophy Up-regulated Methylation of histone PRC2, mTORC1 (302)

Chast Cardiac hypertrophy Up-regulated Cardiomyocyte

autophagy

Plekhm1 (305)

CHRF Cardiac hypertrophy Up-regulated Sponge of miR-489 miR-489, Myd88 (306)

ROR Cardiac hypertrophy Up-regulated Sponge of miR-133,

fetal gene expression

miR-133, ANP and BNP (307)

NRF Myocardial infarction/IR

injury

Up-regulated Necrosis of

cardiomyocytes

miR-873, RIPK1/RIPK3 (308)

APF Ischemia reperfusion injury Up-regulated Suppress miR-188-3p miR-188-3P, ATG7 (309)

CAIF Myocardial infarction,

Dilated cardiomyopathy

Up-regulated Sarcomere

development,

autophagy

P53, LC3-II (310, 311)

H19 Cardiac hypertrophy,

Atherosclerosis

Down-regulated VSMC proliferation and

apoptosis

miR-675, CaMKIId, P38 and

P65, MAPK and NF-kB

(312, 313)

MIAT Myocardial infarction,

hypertrophy

Up-regulated Biomarker for MI miR-150 (314, 315)

LIPCAR Myocardial infarction Up-regulated Biomarker for MI and

predictor of mortality

Mitochondrial Pathway (262, 316)

MALAT1 Hind limb ischemia Up-regulated Angiogenesis MMP-2 (317)

BACE1 Ischemic heart failure

Atherosclerosis

Up-regulated Biomarker for heart

failure

Akt-mTOR pathway (318, 319)

NRON and MHRT Heart failure Up-regulated Biomarker for heart

failure

Myosin Heavy Chain, HDL, LDH (263)

CARL Myocardial infarction Up-regulated Mitochondrial fission miR-539,

PHB2

(320)

Meg3 Myocardial hypertrophy Up-regulated Cardiac remodeling MMP-2, p53 (321)

ANRIL Atherosclerosis

CAD

Up-regulated Cell proliferation CDKN2A/B (322–325)

SENCR Diabetes Down-regulated Biomarker for LV

dysfunction in T2DM

FOXO1, TRPC6 (31, 262, 316)

SMILR Atherosclerosis Down-regulated VSMC proliferation HAS2 (326)

HOTAIR AMI, hypertrophy Down-regulated Biomarker of MI,

myocardial apoptosis,

miR-1, miR-19 (327, 328)

E330013P06 Atherosclerosis

Diabetes

Up-regulated Inflammation and

macrophage activation

Cd36, inflammatory genes (329)

plaques of ApoE-knockout mice treated with high-fat diet
(313). The study also demonstrated that overexpression of
H19 enhances the expression of P38 and P65 and increased
proliferation while reducing apoptosis in VSMC and HUVECs).
The data suggested that H19 may regulate MAPK and NF-
kB in atherosclerosis. Human MI-associated transcript (MIAT)
was identified as a novel lncRNA associated with increased
risk of MI (314). Vausort et al, reported that MIAT is
significantly elevated in whole blood from patients with
non-STsegment-elevation MI (NSTEMI) compared to STEMI
patients, suggesting that MIAT may be associated with chronic
cardiomyopathy. A recent study also revealed that MIAT is
significantly increased in Ang II-induced cardiac hypertrophy
in mice and in H9c2 cells with reduction of miR-150

(315). Accordingly, the study suggested that MIAT acts as
sponge to inhibit miR-150 expression and enhanced cardiac
hypertrophy.

Similarly, another lncRNA, Necrosis-Related Factor (NRF)
served as a sponge to reduce the expression of miR-873
(308). MiR-873 suppresses myocardial infarct size upon
experimental I/R injury by reducing the translation of
RIPK1/RIPK3 as well as RIPK1/RIPK3-mediated necrotic
cell death in cardiomyocytes. Knockdown of NRF reduces
necrosis and MI upon I/R injury. The transcription
factor p53 has been identified as an activator of NRF
expression and regulates cardiomyocyte necrosis and
myocardial I/R injury through NRF-miR-873-RIPK1/RIPK3
pathway.
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Autophagy is a clearancemechanismwhere degraded proteins
or damaged organelles are removed from the system to alleviate
cellular burden (331). A recent study revealed that among
lncRNAs, only AK079427, named as autophagy promoting factor
(APF) is significantly upregulated following I/R injury in mouse
heart along with reduction in miR-188-3P (309). The study
also shows that enforced expression of miR-188-3p in vivo
attenuates autophagy and myocardial infarct size in response to
I/R injury by targeting ATG7, an autophagy-regulating protein.
Accordingly, the study indicates that I/R induces APF expression,
which interacts with miR-188-3p and inhibits its repressing
activity on its downstream target ATG7, and finally leads to
autophagy. Similarly, cardiac autophagy inhibitory factor (CAIF),
was reported to suppress cardiac autophagy and attenuate MI
(310). CAIF directly interacts with p53 protein and prevents
its binding to the promotor region of myocardin and abolishes
its transcription. The loss of myocardin, in turn, decreases the
accumulation of LC3-II and attenuates autophagy. However,
reports also suggest that myocardin transcription factor in
cardiomyocytes is required for healthy sarcomere development.
Ablation of myocardin causes loss of cardiomyocytes due to
increased apoptosis and results in dilated cardiomyopathy (311).

The homeostasis of mitochondrial dynamics in heart during
I/R injury is critical. Mitochondrial fusion is able to inhibit
apoptosis, while growing body of evidence indicates that
abnormal mitochondrial fission could initiate cellular apoptosis
in the pathogenesis of many diseases (320). Prohibitin complexes,
PHB1 and PHB2, are present in the inner mitochondrial
membrane and play an important role in mitochondrial fusion
and fission (332). PHB1-overexpressing transgenic mice that
are subjected to MI showed reduced mitochondrial fission and
lesser myocardial infarct size (333). On the other hand, Wang
et al. demonstrated that overexpression of PHB2 inhibits post-
ischemic mitochondrial fission with reduction in myocardial
apoptosis and MI (320). They also identified that PHB2 is
negatively regulated by miR-539, which can affect mitochondrial
fission and apoptosis. Intriguingly, the same study revealed
that cardiac apoptosis-related lncRNA (CARL) acts as a
sponge and negatively regulates miR-539 and enhances PHB2
expression to inhibit mitochondrial fission and myocardial
apoptosis, consequently attenuating MI. Another mitochondrial
lncRNA, LIPCAR/uc022bqs.1 (long intergenic non-coding RNA
predicting cardiac remodeling), was found to be decreased early
during MI, but upregulated during later stages. Circulating
LIPCAR was used as a biomarker for MI and as a prognostic tool
for cardiac remodeling (262, 316).

In a landmark study, Michalik et al. elucidated the role
of metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) in ECs. Using genetic MALAT1 knockout mice the
authors showed MALAT1 is necessary for proper development
of blood vessels and regulates the angiogenic features of vascular
cells (317). In contrast, suppression of maternally expressed 3
(Meg3) lncRNA resulted in enhanced expression of angiogenesis-
promoting genes (321) and prevented cardiac fibrosis and
remodeling by reducing MMP-2 (334).

BACE1 has recently been recognized to play an important
role in neurodegenerative diseases like Alzheimer’s disease via

regulating beta-amyloid peptide (Aβ) production (335–337).
Interestingly, a recent study showed that Beta-Site Amyloid
Precursor Protein Cleaving Enzyme (BACE1) and BACE1-
AS expression was upregulated in left ventricle biopsies from
patients with non-end stage ischemic HF (338) and in animal
models of ischemic HF (318). The report demonstrated that
BACE1 increased the production of beta-amyloid peptide and
decreased the number of ECs and cardiomyocytes by activation
of apoptosis. In a separate study using high fat diet-induced
obesity in mice, Kim et al. showed that BACE1 transcriptional
activity was activated through Akt-mTOR signaling in response
to palmitic acid treatment resulting in increased beta amyloid
peptide accumulation in neuronal cells (339). Whether similar
mechanism exists in cardiomyocytes needs further investigation.
Moreover, BACE1 was also found to play a role in atherosclerosis
(319) and MI-induced neuro-inflammation in brain (318).
Another human lncRNA, ANRIL (antisense non-coding RNA
in the INK4 locus) has been associated with a locus implicated
in CVD (340). ANRIL was shown to be highly upregulated in
atherosclerotic plaques in patients with genetic polymorphism
in chromosome 9p21 locus, which overlaps with ANRIL coding
region (322–324, 340). A recent study suggests that the higher
expression level of ANRIL is associated with presence of CAD
in diabetic patients and could be considered as a potential
peripheral biomarker (325).

According to reports, the smooth muscle and EC-enriched
migration/differentiation associated long non-coding RNA
(SENCR) was downregulated in VSMCs of diabetic mice
and enhanced VSMC proliferation and migration through
induction of FOXO1 and short transient receptor potential
Channel (TRPC6), a target of SENCR (31, 341). SENCR is also
recognized as a strong circulating biomarker for left ventricular
dysfunction in type 2 diabetes (316). In line with this, smooth
muscle-induced lncRNA enhances replication (SMILR) was also
shown to be highly upregulated in unstable atherosclerotic
plaques and in plasma of patients with increased plasma C-
reactive protein levels (326). Further, knockdown of SMILR
in primary human saphenous vein-derived endothelial cells
(HSVECs) treated with IL-6/PDGF reduced proliferation (326).
Another interesting lncRNA, E330013P06, is upregulated in
macrophages from db/db and diet-induced insulin-resistant
type 2 diabetic mice and in monocytes of diabetic patients
(329). It is also increased along with inflammatory genes in
mouse macrophages treated with high glucose and palmitic
acid. Overexpression of E330013P06 in macrophages induces
the expression of pro-inflammatory and pro-atherogenic genes,
which leads to enhanced inflammatory signals and foam cell
formation. Silencing E330013P06 was shown to reverse the
upregulation of inflammatory genes induced by diabetes (342).
Another lncRNA, MeXis, was identified to play a role in
macrophage cholesterol efflux and atheroegenesis (343). A
causal link between liver X receptors (LXRs), sterol-activated
nuclear receptors that regulate the expression of genes involved
in cholesterol homeostasis, and MeXis was established by
Sallam et al. (343). The study showed that MeXis and
ABCA1 expression were induced by LXR in macrophages.
MeXis knockout mice displayed decreased expression of
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Abca1 in heart and enhanced development of atherosclerosis.
Induction of MeXis expression in response to activation of
LXRs augmented Abca1 expression and macrophage cholesterol
efflux.

A recent clinical study identified two cardiac-specific/relevant
circulating lncRNAs, namely NRON (non-coding repressor
of NFAT) and MHRT (myosin heavy-chain-associated RNA
transcripts), which are significantly elevated in plasma of HF
patients as compared to healthy participants (263). The study
suggested that circulating levels of NRON and MHRT may be
new independent predictors for HF. Spearman’s rank correlation
analysis showed that NRON is negatively correlated with HDL
and positively correlated with LDH (lactate dehydrogenase),
whereas MHRT is positively correlated with AST (Aspartate
aminotransferase) and LDH.

Interestingly, HOX (Homeobox) antisense intergenic RNA
(HOTAIR), a reportedly cardioprotective lncRNA, was reduced
in AMI patients and its concentration was inversely correlated
with cTnI and miR-1 levels (327). Moreover, adenovirus-
mediated overexpression of HOTAIR reduced hypoxia-induced
apoptosis in cultured cardiomyocytes with suppression of miR-1
expression (327). Reports in the literature also indicate that the
expression of HOTAIR is dramatically down-regulated in both
hypertrophied heart tissues and cultured cardiomyocytes treated
with Ang-II, which correlated with increased cell surface area and
up-regulated expression of ANP and BNP (328). Overexpression
of HOTAIR reduces the expression of pro-hypertrophic markers
like ANP, BNP, and β-MHC in response to Ang-II stimulation
(328). The same study also suggests that HOTAIR serves as a
miR-19 sponge and functionally interacts with it. Overexpression
of HOTAIR inhibits miR-19 with subsequent retrieval of the
expression of PTEN (a direct target of miR-19), which is involved
in HOTAIR-mediated inhibition of cardiac hypertrophy.

Taken together, although muchmore is known about miRNAs
than lncRNAs, there are exceedingly more lncRNAs (∼30,000)
compared to miRNAs (∼2,000). More targeted research to
provide comprehensive understanding of lncRNAs, coupled with
improved delivery methods will further advance the field of
lncRNAs and offer more insight into their involvement in CVD
before they can be used as therapeutic targets.

Piwi-RNA
P-Element induced wimpy testis RNAs (PIWI-RNA, piRNA)
are lncRNAs that interact with piwi protein family and act as
RNA-guided gene regulatory elements (342, 344). They play
an important role in epigenetic control of gene expression
through DNA methylation, regulation of TEs, and maintenance
of genome integrity (345–351). They are involved in the
pathogenesis of various types of cancer (352–356) and are master
regulators of inheritance. However, relatively much less is known
about the functional role of piRNAs in the field of CVDs. piRNAs
are generally known to interact with several TEs and silence them
to maintain genome stability (63, 67). In this regard, piRNAs
influence long interspersed nuclear elements (LINEs) in the
heart and suppression of LINE-1 decreases ischemic damage
through activation of the Akt/PKB signaling (357, 358). Similarly,
global microarray analysis revealed differentially expressed

piRNAs in cardiosphere and cardiosphere-derived cells. The
study also reported that 181 piRNAs are upregulated and 129
are downregulated in cardiosphere-derived cells with respect
to cardiac fibroblasts (357, 359). Interestingly all upregulated
piRNAs targeted LINE elements and in particular, piRNAs
DQ594975, DQ572313, DQ586118 activated pro-survival AKT
signaling. The overall result indicated that piRNAs could play a
functional role in cardiomyocyte proliferation and regeneration.
Reports also speculate that piRNAs can regulate AKT signaling
through interaction with PIWIL2 protein. One study showed that
PIWIL2 protein is highly expressed in tumor cells. Experiments
using constitutive expression of PIWIL2 in NIH-3T3 cells
demonstrated that it inhibits apoptosis through activation
of Stat3/Bcl-XL pathway (360). Since piwi-interacting RNAs
predominantly regulate TEs, aberrant expression mostly results
in gene mutations leading to cancer and genome instability in
inherited genetic disorders. Nevertheless, research findings of
piRNAs in heart disease, such as cardiac hypertrophy and other
proliferation related abnormalities are emerging and can further
enhance our understanding on the role of piRNAs in CVD. In
a recent publication, Rajan et al. reported abundant expression
of piRNAs in the cardiac system and altered expression profile
during cardiac hypertrophy in both chronic swimming-induced
hypertrophied rat heart and control rat heart in vivo, and
alpha-2 macroglobulin-induced hypertrophied H9c2 cells and
control H9c2 cells in vitro (264). The study identified 22
potential piRNAs showing differential expression during cardiac
hypertrophy, which was validated by qPCR and by RNA
immunoprecipitation using piwi antibodies for piR_2106027.
Analyzing the expression of piR_2106027 in different patients
with and without MI, Rajan et al. also revealed that piR_2106027
is significantly elevated in patients with MI. Interestingly, they
also identified that the level of piR_2106027 correlates with
cTnI levels as this piRNA was not elevated in cTnI-negative
MI patients. Accordingly, piRNAs were suggested as vibrant
diagnostic markers as well as potential therapeutic targets for
CVD.

Circular RNA (circRNA)
Relatively new players in the world of ncRNAs, much less
is known about the role of circular RNA (circRNA, a closed
continuous loop of ncRNAwith 3′ and 5′ ends joined together) in
CVD. However, circRNAs have gained much attention recently
due to their sustained stability (361) and recognized as novel
biomarkers (362, 363). CircRNAs were identified as competing
endogenous RNAs (ceRNAs) that sponge specific miRNAs by
complementary base pairing (364). A recent publication reported
that mice with overexpression of ARC (apoptosis repressor
with caspase recruitment domain) exhibit reduced hypertrophic
response and that ARC is a direct downstream target of miR-223
(365). A heart-related circRNA (HRCR) acts as an endogenous
miR-223 sponge and inhibits miR-223 activity, which resulted
in the increase of ARC expression and attenuation of cardiac
hypertrophy and HF.

Studies using mouse models of MI and isolated
cardiomyocytes subjected to hypoxia showed that cerebellar
degeneration-related protein 1 transcript (Cdr1as) is highly
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upregulated with MI and overexpression of miR-7 rescues
Cdr1as-induced cardiac apoptosis (366). It was also observed
that overexpression of Cdr1as induces the transcript levels
of PARP and SP1 and that Cdr1as functions as a miR-7a
sponge in promoting MI-related injury. Similarly, cZNF292
was identified to play a role in endothelial function and was
up-regulated upon hypoxic treatment. Inhibition of cZNF292
reduced angiogenic sprouting of ECs and its overexpression
increased endothelial proliferation (367). Several circRNAs were
implicated as novel biomarkers in MI. A recent study using
blood samples from 472 patients with acute MI showed MICRA
as a novel biomarker for risk classification of MI patients (265).
The study analyzed the correlation between the expression of
MICRA to patient group to reduced EF (rEF), mid-range EF
(mrEF), and preserved EF (pEF). Interestingly the data suggest
that MICRA could be a significant predictor of LV dysfunction in
patients after acute MI. A recent clinical study identified another
circRNA, hsa_circ_0124644, which was remarkably increased
in the peripheral blood of 137 patients with CAD compared to
control subjects, suggesting that it may be a promising diagnostic
biomarker (363). Gupta et al. identified specific circRNAs derived
from Ttn (Titin), Fhod3 (Formin homology 2 domain containing
3), and Strn3 (Striatin, calmodulin-binding protein 3), which
are altered in the heart upon doxorubicin treatment (368).
Knockdown of Ttn-derived circRNA was shown to enhance the
susceptibility to doxorubicin, elucidating the functional role of
circRNAs in doxorubicin-induced cardiotoxicity.

Therapeutic Approach: Current and Future
Perspectives and Controversies
Several promising therapeutic outcomes in animal models and
pre-clinical trials have encouraged pharmaceutical companies
to conduct ncRNA-based clinical trials in patients with CVD
and other diseases. MRG-201, an anti-fibrotic synthetic miRNA
mimic (promiR) of miR-29b, is designed to decrease the
expression of collagen and reduce fibrotic scar in diseases like
idiopathic pulmonary fibrosis and recently completed its phase
I clinical trial in healthy volunteers to evaluate its tolerability
(Miragen Therapeutics, Inc.). Miragen also has several miRNA-
based pipeline projects including MRG-110, which targets miR-
92a to enhance the revascularization process in ischemic heart
disease. MGN-1374 (miR-15 family) to treat MI and MGN-9103
(miR-208) for the treatment of obesity and diabetes are also
among the novel potential therapeutic candidates developed by
Miragen. LNA-antimiR-34a, which targets Notch1 and Sema-
4b (104, 369), is also being considered for the treatment of
MI by miRNA Therapeutics, Inc. Several other miRNA-based
therapies that are currently in clinical trials can be found on the
National Institutes of Health (NIH) website (https://clinicaltrials.
gov/). NcRNA-based therapies to treat CVD in clinical trials are
very limited and are still in the developmental stage. However,
RNA-based clinical trials, especially with siRNA and miRNA
to treat devastating diseases like cancer (370–372) have shown
promising results and are therefore encouraging to extend similar
approaches to treat CVDs.

Although the path to ncRNA-based therapy looks promising,
it is also fraught with limitations. The fact that a single miRNA
can target several mRNAs, which is considered an advantage
to exert broad effects on multiple pathological pathways can
also be viewed as a major limitation that may evoke undesired
responses. Moreover, a critical issue with ncRNA-based therapy
is delivery of miRNA mimics/antagomiRs to the target organ
while withstanding degradation in the blood stream. Researchers
have tried several approaches to circumvent this problem such
as adhesive hydrogel patch delivery (373), nanoparticle-mediated
delivery (371, 374), exosome-mediated delivery (375, 376), and
antibody-fused nanoparticles (377). Important considerations to
improve miRNA based therapy include enhancement of target
affinity, stability, specificity and ADME (absorption, distribution,
metabolism, and excretion) (378). Several chemically modified
oligonucleotides either antagonizing or mimicking miRNAs have
been efficiently used in preclinical models (379–381). These
synthetic oligonucleotides possess better stability, absorption
in the cell and offer greater affinity toward their target
(382, 383). The efficacy of these novel oligonucleotide-
based drugs has accelerated clinical trials to target miRNA-
based gene therapy. Several classes of oligonucleotide drugs
with unique modifications in their structure have enhanced
their pharmacokinetics, metabolism, stability, resistance against
nuclease activity in the blood stream and allowed for better
bioavailability (380, 384).

Since exonucleases cleave the phosphodiester bond, a
substitution of phosphodiester group with phosphorothioate
in the nucleotide backbone and replacing the ribose sugar
moieties with 2′-O-methyl or other 2′s confer substantial
resistance toward nuclease activity (381, 385, 386). Antisense
oligonucleotides (ASO) are first generation miRNA inhibitors,
with increased oligonucleotide stability but less binding affinity
toward target RNA due to the presence of phosphorothioate.
However, this obstacle was overcome with the use of 2′-O-
methyl (2′-OMe) modification of RNA (2′-OMe-RNA), which
possesses both improved binding affinity and nuclease resistance
(387–389). Among the ASOs, 2′-O-methoxyethyl (2′-MOE) is
the most successful and widely used oligonucleotide inhibitor,
with increased nuclease resistance and substantially higher
binding affinity than its predecessors (390, 391). Several other
modifications, such as 2′-fluoro (2′F), which further increases
the affinity of oligonucleotides also proved effective (392,
393). Locked nucleic acid (LNA) is another modified RNA
oligonucleotide that has an additional bond between the 2′

oxygen and 4′ carbon that was shown to have increased
binding affinity for its target (394–396). LNA-based miRNA
inhibition has the advantage over other chemically modified
oligonucleotides by interfering in the alternative gene splicing
(397) and is also widely used in pharmaceutical industry (398).
Indeed, the first miRNA-targeted drug tested for safety in phase
II clinical trial of HCV infection was based on LNA chemistry
(399). Several other chemically modified ASOs, such as aptamers,
single-stranded oligonucleotides that bind to the protein and
disrupt the protein-protein interaction (400), and LNA modified
with constrained ethyl’ (cEt) (401) and Ribonuclease H1-
dependent LNA-Gapmers (402) have also been investigated with
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moderate success. All these methodologies have been used with
considerable success in animal models thus far and are promising
for further development. Novel delivery methods using AAV
vectors guided with cardiac specific promoters such as α-MHC
or troponin can also be considered when translating these
findings to human subjects. Emerging revolutionary genome
editing techniques like Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR-CAS9) are already considered
for clinical trials to correct genetic disorders like β-thalassemia
(372), cystic fibrosis transmembrane conductor receptor (CFTR)
mutation (373), and Duchenne muscular dystrophy (374)
(DMD). CTX001 is a new initiative by European Union and
United States Food andDrug Administration (FDA) for CRISPR-
based treatment of β-thalassemia, which is expected to start in
2018. Exploiting CRISPR/CAS9 technology to edit miRNA and
other ncRNAs is also a novel option and demonstrated to be
viable for stable suppression of miRNAs (403). Nevertheless,
the scientific community should approach these new treatment
strategies with extreme caution to avoid off-target effects.

In spite of its therapeutic potential, miRNA-based gene
therapy is also challenged with controversies. One such example
is miR-21, where antagomir-mediated inhibition of miR-21 was
protective against pressure overload-induced cardiac stress (91),
yet genetic ablation or LNA-based inhibition of miR-21 in

mice failed to protect against TAC (404). These discrepancies
between studies caution us to consider the efficiency of inhibition
when using different types of inhibitors, such as LNA- or
cholesterol-based antagomir. In addition, the non-specificity of
blocking multiple miRNAs that have similar complementary

sequences in the seed region may contribute to the functional
outcome. Genetic knockout and antagomir-based inhibition
of miR-143/145 demonstrated different response to stress in
VSMCs (405, 406). Ablation of miR-143/145 blocked the
induction of VSMC proliferation and developed neointimal
lesions (405, 406). In striking contrast, miR143/145 knockout

mice displayed reduced neointima formation in response to

carotid artery ligation (407). However, these studies investigated
different targets of miR-143/145 that are involved in cytoskeletal
regulation (405–407). Therefore, these controversial outcomes,

either due to the redundancy of miRNA targets or the types of
methods used for miRNA inhibition, warrant further in-depth
studies.

CONCLUSION

The robust development and the application of ncRNAs in
myriad fields has opened up venues for many novel research
areas such as precision and personalized medicine and may offer
a unique class of biomarkers. The powerful role of ncRNAs in
defining cell fate both in normal and pathological states has
provided an opportunity to device new therapeutic strategies
to combat CVD. Recent preclinical and clinical studies suggest
that ncRNA-based gene therapy is not too far from clinical
trials. However, despite the recent surge in the field of ncRNAs,
our understanding about the function of these small molecules
remains rather limited. Future studies are warranted to shed new
light on the involvement of ncRNAs in CVD so we may be able
to utilize them as biomarkers and/or target them to carefully
regulate cell function for treatment of CVD and its risk factors.
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