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Deciphering robust portfolios 
 

Abstract 

Robust portfolio optimization has been developed to resolve the high sensitivity to inputs 

of the Markowitz mean-variance model. Although much effort has been put into forming 

robust portfolios, there have not been many attempts to analyze the characteristics of 

portfolios formed from robust optimization. We investigate the behavior of robust 

portfolios by analytically describing how robustness leads to higher dependency on factor 

movements. Focusing on the robust formulation with an ellipsoidal uncertainty set for 

expected returns, we show that as the robustness of a portfolio increases, its optimal 

weights approach the portfolio with variance that is maximally explained by factors. 

 

JEL classification:  C44; C61; G11 

Keywords:  Robust portfolio optimization; Mean-variance model; Fundamental factors 

 

1. Introduction 

As a result of the global financial crisis of 2008, asset managers have placed greater 

emphasis on managing portfolio uncertainty. The distinction between risk and uncertainty is 

made by classifying risk as events with unforeseen outcomes but attached probability 

distributions to the outcomes (Knight, 1921). In these terms, financial crises clearly falls 

under uncertainty since there are too many factors, mostly unforeseen, that lead to financial 

disasters. Furthermore, the existence of uncertainty directly affects decision-making, often 

resulting in behavior that cannot be explained by aversion to risk alone (Savage, 1954, and 

Ellsberg, 1961). This notion of uncertainty appears frequently in many studies in economics 

and finance (see, for example, Camerer and Weber, 1992).  
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One of the earlier approaches in forming optimal portfolios under parameter uncertainty 

was to utilize Bayesian methods (Klein and Bawa, 1976). Gilboa and Schmeidler (1989) 

axiomatize the maxmin expected utility decision rule with uncertainty aversion assumptions 

(see, also, Dow and Werlang, 1992, and Epstein and Wang, 1994). Alternatively, a number of 

studies apply methods from robust control theory for asset pricing and model robust decision-

making by allowing model misspecifications (Hansen, Sargent, and Tallarini, 1999, Hansen, 

Sargent, and Wang, 2002, Anderson, Sargent, and Hansen, 2003, and Maenhout, 2004, 2006). 

Moreover, Hansen et al. (2002) illustrate similarities between the control theory approach and 

the maxmin expected utility theory of Gilboa and Schmeidler (1989).  

Another method for forming robust portfolios that has gained momentum in the last 

decade is robust optimization. Robust portfolio optimization formulates robust counterparts 

within the mean-variance framework (Markowitz, 1952, and Elton and Gruber, 1997) and this 

development has been motivated to resolve the high sensitivity of mean-variance portfolios to 

its input parameters (Michaud, 1989, Best and Grauer, 1991a, 1991b, Chopra and Ziemba, 

1993, and Broadie, 1993). The method optimizes the worst case by defining uncertainty sets 

of uncertain parameters (Lobo and Boyd, 2000, Halldórsson and Tütüncü, 2003, Goldfarb 

and Iyengar, 2003, and Tütüncü and Koenig, 2004). The worst-case approach of robust 

portfolio optimization not only constructs portfolios that perform well under uncertainty but 

also results in efficiently solved formulations.
1
 

The 2008-2010 global financial crisis has made it clear that robustness of portfolios is 

extremely important and consequently a more thorough understanding of robust portfolios is 

required to motivate its proper use. There has not been much work on deciphering robust 

portfolios for the purpose of analyzing any noticeable attributes. Therefore, we analyze the 

                                                      
1
 For a thorough review on the development of robust portfolio optimization, please refer to Fabozzi et al. 

(2007a, 2007b), Fabozzi, Huang, and Zhou (2010), and Kim, Kim, and Fabozzi (2013a). 
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behavior of stock portfolios formed from the robust formulation with an ellipsoidal 

uncertainty set for the expected returns. Specifically, we look into how robust portfolios tilt 

their exposure to market factors. Controlling the exposure to factors is especially important 

because portfolio managers often manage the overall risk of portfolios by setting the amount 

of risk impacted by the movement in fundamental factors. We find that robust portfolios 

depend more on fundamental factor movements compared to classical mean-variance 

portfolios. In this paper, we provide a mathematical framework and analytic explanation 

along with empirical analyses as to why higher robustness of portfolios from robust 

optimization leads to increased dependency on market factors. 

There have been several notable studies that extend our analytic findings. Kim et al. 

(2013a) empirically find that there is a high correlation of robust portfolio returns with factor 

returns, and Kim et al. (2013b) present revised formulations that control the factor exposure 

of robust portfolios. Furthermore, Kim, Kim, and Fabozzi (2013b) analyze weights given to 

individual stocks that compose robust portfolios. Finally, we note that our results are related 

to the findings of Maenhout (2006) who derives how the optimal robust portfolio weights 

depend on the volatility of the state variable, which is comparable to the factor variance in 

our work. His approach is similar to robust optimization in that it guards against the worst 

case; uncertainty exists in the state equation and alternative state equations measured by 

relative entropy are considered in order to gain robustness. However, Maenhout’s model 

differs from ours since the state vector follows a diffusion and the risk premium follows a 

mean-reverting process, thereby making our contribution unique and noteworthy. 

The remainder of the paper is organized as follows. In Section 2, a quadratic 

programming problem that has an equivalent effect on optimal portfolios as the robust 

portfolio optimization problem with ellipsoidal uncertainty is presented. Section 3 builds our 

mathematical arguments on the dependency of robust portfolios. The observations are further 
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empirically confirmed with simulations and historical stock returns in Section 4, and Section 

5 concludes.  

 

2. Robust formulation as quadratic programming representation 

We begin by reviewing how robust optimization is applied to portfolio selection and 

introduce the formulation with an ellipsoidal uncertainty set on the expected stock returns. 

Since this robust formulation results in a second-order cone program, we find a quadratic 

program with similar behavior that can be analytically observed for studying factor exposures 

of robust portfolios. 

2.1. Robust formulation with ellipsoidal uncertainty 

In the classical Markowitz problem (1952), the optimal portfolio is found by computing 

the tradeoff between risk and return. A portfolio that invests in n stocks is represented as a 

vector of weights,     , where each weight represents the proportion of wealth allocated 

to a stock. Then portfolio risk and return become      and    , respectively, where 

       is the covariance matrix of returns and      is the expected returns of n stocks. 

The mean-variance model solves a portfolio problem with a quadratic objective function, 

   
 

 
 

 
                 

and investors can adjust the framework to fit their risk levels by changing the value of  . In 

the above formulation,   is the risk-seeking coefficient where setting it to     finds the 

portfolio with minimum risk. The set   defines the universe of allowable portfolios and 

constraints on portfolio weights are often employed. Throughout our analyses, we set 

                 where      is the vector of ones, which is a requirement for 

fully investing in stocks. 

One of the main shortcomings of the mean-variance model is that the inputs   and   

are not known with certainty; robust models look for portfolios that are less sensitive to 
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changes in the input values. In robust optimization, a set of possible values for the uncertain 

parameters is defined and the optimal solution must be feasible regardless of which value is 

realized. Since robust optimization takes the worst-case approach, the robust counterpart of 

the classical problem finds a robust portfolio by looking at the worst case within the 

uncertainty set. We only consider uncertainty in expected returns because it is known to affect 

portfolio performance much more than errors in variance or covariance (Chopra and Ziemba, 

1993). The robust counterpart of the classical formulation can therefore be written as  

   
 

    
   

 

 
                   

where the uncertainty set   determines the possible values of expected returns. The 

maximization represents the inner problem of finding the worst case within   while 

assuming   to be fixed. One of the most studied uncertainty sets for expected returns is an 

ellipsoid around       that is defined as (Goldfarb and Iyengar, 2003) 

                     
             

where      sets the size of the uncertainty set and         is the covariance matrix of 

estimation errors for the expected returns. With the uncertainty set       , the robust problem 

can be reformulated as a second-order cone programming problem,
2
 

   
 

 
 

 
                              (1) 

This paper focuses on observing portfolios from this robust portfolio optimization problem 

with ellipsoidal uncertainty set. 

2.2. A quadratic program for analyzing robust behavior 

The main goal of our study is to examine the behavior of portfolios as their robustness is 

increased. In other words, we analyze optimal portfolios while increasing the value of  , 

                                                      
2
 The derivation of the ellipsoidal model is explained by Fabozzi et al. (2007b) in pages 371 to 372. 
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which results in expanding the uncertainty set. However, since the second-order cone 

program given by (1) cannot be analytically solved, it is not a trivial task to reveal properties 

of robust portfolios generated directly from (1). Therefore, we instead find a quadratic 

program with an extra parameter similar to   where increasing this extra parameter has the 

equivalent effect on portfolios as expanding the uncertainty set of the robust formulation. 

Investigating the analytic solution of this quadratic program will provide behavioral patterns 

of robust portfolios. The existence of such a portfolio selection problem with a quadratic 

objective function is shown by the following lemma. 

Lemma 1.  There exists an     such that the optimal portfolio for the robust formulation 

given by (1) coincides with the optimal solution of the quadratic program given by (2), 

   
 

 
 

 
           

 

 
                  (2) 

Proof.  Appendix A. 

This shows that problems (1) and (2) can result in the equivalent optimal portfolio by 

properly setting the value of   in terms of  . More importantly, it proves that increasing the 

value of   in (1) has the same effect on portfolios as increasing the value of   in (2). 

The comparability between problems (1) and (2) are further confirmed by plotting the 

resulting portfolios on the mean-standard deviation plane, which is the standard approach for 

expressing efficient frontiers.
3
 Using a 3-year rebalancing period from 1970 to 2012, 

portfolios are formed every three years by solving the original robust formulation (1) with 

various levels of  . Every three years, another set of portfolios are also constructed by 

solving (2) with various levels of  . As shown in Figure 1, increasing the level of   in (1) 

influences portfolios in the same manner as increasing the level of   in (2) in terms of 

                                                      
3
 Industry portfolios (Fama and French, 1997) are used to represent the stock market. We elaborate on the use of 

industry portfolios in Section 4.2. 
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annualized risk and return of portfolios; they both modify portfolios to move to the lower-left 

region (lower risk and lower return) and the frontiers show similar curvature. The range of 

values for   is scaled for this demonstration so that the smallest value of   in (2) results in 

portfolios with risk levels similar to portfolios with the smallest value of   in (1), and this 

clearly displays how the two frontiers almost overlap. In the following sections, we use this 

finding to analyze the quadratic program given by (2) but conclude by applying the 

developed arguments to the original robust formulation given by (1). 

PLACE FIGURE 1 ABOUT HERE 

 

3. Stylized analytical approach 

In this section, we analytically emphasize that robust portfolios become more dependent 

on factor movements as robustness is increased. We investigate how increasing the value of 

  in problem (2) changes the optimal portfolio, which has the same effect as increasing the 

robustness. The analysis is carried out in two steps. In the first step, the portfolio that depends 

the most on factor variance is derived. In the second step, it is shown that the optimal 

portfolio asymptotically approaches the portfolio from the first step when increasing the level 

of  . Throughout the paper, the portfolio with maximum dependency on factors is referred to 

as the factor portfolio and denoted by     . 

3.1. Assumptions 

We make the following general assumptions on stock returns. There are a total of n risky 

stocks where the covariance matrix of returns,       , is positive-definite. Stock returns, 

    , are explained by a factor model,         , with the returns of m (≤ n) factors, 

    , and the variance of factor returns is denoted by        . The vector      is 

the intercept, and the factor loadings and error term of the factor model are        and 

    , respectively. Moreover, we assume that the error term is uncorrelated between stocks 
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and therefore its covariance matrix,        , becomes a diagonal matrix. Similarly, the 

estimation errors of expected returns between stocks are assumed to be uncorrelated. 

In addition to the above standard assumptions, we include the following stylized 

assumptions that   has the same diagonal terms and the same off-diagonal terms where 

   , and    also has the same diagonal values, 

   
      

   
      

  and     
  

   
   
    

 
   (3) 

Finally, suppose the estimation error covariance matrix has a simplified diagonal form as well, 

    
  

   
   
    

 
   (4) 

3.2. Portfolio with maximum dependency on factors 

Since our main goal is to show that increasing portfolio robustness increases its 

dependency on factor movements, we first look at the factor portfolio and later show that 

improving robustness results in the optimal portfolio to converge to this factor portfolio. 

Proposition 1.  The factor portfolio is 

(a)      
 

    
    

    

  
    

     where      is the eigenvector corresponding to the 

largest eigenvalue of the matrix   
    

       
    

, 

(b) the equally-weighted portfolio when the covariance matrices   and    follow the 

simplified structures as given by (3). 

Proof.  See Appendix B. 

Proposition 1 states that the factor portfolio is the equally-weighted portfolio when the 

simplified structures for the covariance matrices are assumed and the assumptions are carried 

throughout our mathematical arguments. However, note that Proposition 1(a) holds even 

without the simplifications shown in (3) and the factor portfolio derived here is used in 



9 

Section 4 for analyzing robust portfolios in the generic case. So far, we looked at the factor 

portfolio with maximum dependency on factor movements and we next investigate the 

portfolio with maximum robustness. 

3.3. Portfolio with maximum robustness 

We decompose robust portfolios and study how increasing the robustness affects the 

composition of portfolios. We also derive the portfolio that is asymptotically reached when a 

portfolio has maximum robustness. For the remainder of this section, the structure of 

covariance matrices given by (3) and (4) is assumed. 

Let us define          for    . Then, since    has identical diagonal terms 

and identical off-diagonal terms, its inverse   
   also has the same structure and can be 

expressed as 

  
    

     

   
     

   (5) 

Note that because   and    are positive-definite from (3) and (4), so is    and thus   
   

is also positive-definite. From the definition of   , the problem given by (2) can be 

reformulated as 

   
 

 
 

 
                     (6) 

where    from (2) is represented simply by   in (6) since   is a constant term. The 

composition of robust portfolio selected from the formulation given by (6) is characterized 

below. 

Proposition 2.  The optimal robust portfolio constructed from the problem given by (6) is 

(a) a weighted sum of two portfolios u and v, where u is a portfolio with weights based on 

the expected excess returns where the excess return is obtained by subtracting the 

average expected return of n stocks from the individual expected returns,     
 

 
        , 
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and v is the equally weighted portfolio, 
 

 
 , and 

(b) approaches the equally-weighted portfolio as the value of   is increased. 

Proof.  See Appendix C. 

Increasing the value of   has the same effect as increasing the robustness. Therefore, 

Proposition 2 shows that higher robustness results in portfolios that deviate less from the 

portfolio with equal weights until asymptotically approaching the equally-weighted portfolio 

for maximum robustness.
4
 

3.4. Convergence of robust portfolios 

We finally reach the conclusion of our argument that robust portfolios approach the 

factor portfolio as robustness is increased. The findings for the portfolio problem (2) are 

summarized in the following statement. 

Proposition 3.  As a > 0 increases for the problem given by (2), the optimal portfolio 

converges to the factor portfolio. 

Proof.  The proof follows from Propositions 1 and 2, and the equivalence between problems 

(2) and (6).  □ 

We have demonstrated, under the assumptions made in (3) and (4), that the robust 

portfolio bets more on the factors than its non-robust version. Moreover, as the robustness 

parameter   increases, the portfolio depends more on the variance of factors. Even though 

structural simplifications are assumed for analytically solving the robust portfolio problem, 

we next provide empirical evidence that our claims hold without these assumptions. Recall 

that Proposition 1(a), which presents the closed-form solution of the factor portfolio, holds 

even without the stylized assumptions of (3) and (4). This provides insight on analyzing the 

                                                      
4
 Similar to our findings, Pflug, Pichler, and Wozabal (2012) focus on the Kantorovich metric for defining 

uncertainty sets and show that uniform diversification is the optimal investment decision in situations of high 

uncertainty. 
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dependency of robust portfolios on factors under the generic settings, and this will be 

explored in Section 4. 

 

4. Empirical approach 

We now observe that increasing robustness forms portfolios that are more dependent on 

factors without imposing the stylized structures. Unfortunately, since it becomes difficult to 

approach analytically when the assumptions are relaxed, we instead conduct several empirical 

analyses. We investigate robust portfolios from the problem given by (6) as well as the 

original robust problem given by (1). 

4.1. Simulation with generated returns 

Before eliminating the structural assumptions on the covariance matrices, we first 

confirm through simulation that the optimal portfolio from solving the robust problem given 

by (6) converges to the factor portfolio when the robustness is increased under the 

assumptions (3) and (4).
5
 The following steps describe a single iteration of the simulation but 

multiple iterations are performed to verify the observed behavior. 

Step 1: Generate a positive-definite matrix   that has identical diagonal elements and 

identical off-diagonal elements 

Step 2: Generate diagonal matrices    and    where each matrix has identical 

diagonal elements that are strictly positive 

Step 3: Compute the optimal solution     of (6) for          

Step 4: Conduct eigenvalue decomposition on   
    

       
    

 and derive      

                                                      
5
 For the two simulations in Section 4.1, we set     because the primary objective is to observe the effect of 

increasing the value of  . However, in Section 4.2, values of   between 0.01 and 0.09 are used because 

classical mean-variance portfolios constructed from the 49 industry data show annualized risk between 5% and 

30%. 



12 

Step 5: Plot the distance between the optimal portfolio and the factor portfolio, 

                 

Step 6: Repeat Steps 3-5 by varying the value of   

In Step 4,       is simply the equally-weighted portfolio for this simulation due to the 

assumptions. Figure 2(a) shows that as the value of   is increased from 0 to 100, the 

distance      measured by 2-norm approaches zero. 

PLACE FIGURE 2 ABOUT HERE 

Similar simulations are performed with randomly generated data but without the 

assumptions given by (3) and (4). 

Step 1: Generate a symmetric positive-definite matrix    

Step 2: Generate a factor-loading matrix   

Step 3: Generate diagonal matrices    and    with strictly positive diagonal elements 

Step 4: Repeat Steps 3-5 from the first simulation by varying the value of   

The above iteration is repeated multiple times and Figure 2(b) clearly displays that the 

Euclidean distance between the optimal portfolio and      decreases as the value of   is 

increased. Even though the distance does not asymptotically reach zero, the decreasing 

pattern clearly demonstrates that increasing robustness moves portfolios closer to the factor 

portfolio even in the generic case. 

4.2. Analysis with historical returns 

The analysis is further extended by relaxing not only all stylized assumptions but even 

the diagonality of the estimation error covariance matrix.
6
 Moreover, data from the US 

equity market is used to confirm our arguments with historical stock market returns; industry-

                                                      
6
 In our empirical analyses, we consider stock returns to be a stationary process and samples to be independent 

and identically distributed which allows estimating the error covariance matrix as    
 

 
 , where T is the 

sample size. 
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level and stock-level returns are used for forming portfolios. Since industries are good 

representative building blocks for stock portfolios (Kim and Mulvey, 2009), we mainly 

present results from using the 49 industry portfolios introduced by Fama and French (1997). 

In addition, for the fundamental factors, we use the three-factor model proposed by Fama and 

French (1993, 1995). Daily returns for the 49 industries and the three factors from 1970 to 

2012 are collected.
7
 The observations are not restricted to these values, but the results using a 

3-year rebalancing period, 90% confidence level, and a risk-seeking coefficient level of 0.03 

are primarily discussed.  

The portfolio problem given by (6), which is equivalent to solving (2), is solved using 

historical returns. The curves in Figure 3 clearly confirm our pattern for the optimal portfolio 

for all 3-year periods; the curves indicate that the optimal portfolio becomes closer to the 

factor portfolio as the magnitude of penalization increases. 

PLACE FIGURE 3 ABOUT HERE 

Even though it is illustrated in Section 2 that the quadratic program given by (2) can be 

used to analyze the behavior of the original robust formulation with an ellipsoidal uncertainty 

set given by (1), we confirm our findings by directly solving the original problem using 

historical returns. For this experiment, we change the confidence of the uncertainty set, which 

has the same effect of changing the value of a in the previous empirical tests; a higher 

confidence level expands the uncertainty set and is represented by a higher value of   in the 

objective function.
8
 From Figure 4, the relationship between the confidence level and the 

distance from the factor portfolio is consistent also in the robust formulation given by (1); the 

                                                      
7
 Data for the three factors and the industry returns are obtained from the Kenneth R. French online data library 

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html). 

8
 A υ% confidence level is represented by setting    as the value of the υth percentile of a    distribution 

with the number of stocks as its degrees of freedom (Fabozzi et al., 2007b). 



14 

distance decreases as the confidence increases from 0% to 99%. In particular, Figure 4(b), 

which focuses on the results for confidence between 0% and 10%, clearly displays a sharp 

decrease in distance when the confidence level is increased from zero. This demonstrates that 

robust portfolios are more dependent on the Fama-French factors compared to the classical 

mean-variance portfolios. 

PLACE FIGURE 4 ABOUT HERE 

The analyses in this section demonstrate several important points. First, our argument 

that was initially presented with assumptions is shown to hold empirically even without those 

simplifications. Second, observations not only show that increasing the robustness of robust 

portfolios increases dependency on factors, but they also reveal that the increase in 

dependency is large between non-robust portfolios and robust portfolios with even a small 

uncertainty set. 

 

5. Conclusion 

Robust portfolio optimization has had a major impact on resolving the sensitivity issue 

of the mean-variance model. Although the worst-case approach to portfolio selection 

proposes a method for forming robust portfolios, not much is known on how robust portfolios 

behave. Focusing on the robust portfolio formulation with an ellipsoidal uncertainty set for 

expected returns, we show that an increase in robustness results in the optimal portfolio being 

more dependent on factor movements. Due to the limitations of analytically solving a second-

order cone problem, we find a quadratic program with equivalent behavior and provide 

mathematical proofs on the pattern of the relationship between the magnitude of the 

penalized matrix and the distance from the factors. In addition, we present several empirical 

results which support our findings even without simplified assumptions using simulated and 

historical stock market returns. The main contribution of this paper is revealing the factor 
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exposure of robust equity portfolios and providing evidence that robust portfolios might be 

robust since they are betting more on market factors. 

 

Appendix A 

Proof of Lemma 1.  We first introduce two portfolio selection problems with extra inequality 

constraints, 

   
 

 
 

 
                           

      (A1) 

and 

   
 

 
 

 
                         

      (A2) 

where    is non-negative. The problems given by (A1) and (A2) are considered identical 

because the estimation error covariance matrix is positive-definite.  

Next, we discuss the relationship between problems (1) and (A1) and also between 

problems (2) and (A2). 

(i)  (1) and (A1): 

For the robust formulation given by (1), the Lagrangian is written as 

          
 

 
                              

and its first-order conditions for the optimal solution         are 

          
    

        
                             

Similarly, the Lagrangian function for (A1) is 

             
 

 
                                   

and the Karush-Kuhn-Tucker (KKT) conditions for the optimal solution        
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includes
9
 

           
 

     

    
      

                       
        

We see that problems (1) and (A1) will have the same optimal portfolio,       , 

when      
  and       . 

(ii)  (2) and (A2): 

By taking the same approach as in (i), the first-order conditions of problem (2) for the 

optimal solution         are 

                                           

and the following should hold for the optimal solution        
       of (A2) from its 

KKT conditions, 

            
                             

        

Again, problems (2) and (A2) will find the identical optimal portfolio,       , when 

      
  and       . 

In summary, since problems (A1) and (A2) are identical, it follows that solving the revised 

formulation given by (2) becomes equivalent to solving the original robust problem given by 

(1) with proper choices of parameters. Therefore, there exists an   in (2) that finds the same 

portfolio as (1).  □ 

 

Appendix B 

The following lemma is introduced before proving Proposition 1. 

Lemma 2.  For a matrix with identical diagonal terms and identical off-diagonal terms 

                                                      
9
 We omit the rest of the KTT conditions to demonstrate how the optimal   of (A1) satisfies the first-order 

conditions of (1). This is also the case when analyzing problem (A2). 
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expressed as        , where        is the matrix of ones,        is the identity 

matrix, and      , 

(i) the characteristic polynomial is                                , 

(ii) if    , the largest eigenvalue of   is     , 

(iii) if     , the eigenvector corresponding to the largest eigenvalue of   is 
 

  
 . 

Proof of Lemma 2. 

(i) From the structure of matrix  , we can write 

           
   where    

     
   
     

  and     
  
 

  
   

Since   is invertible, from the matrix determinant lemma (Ding and Zhou, 2007), 

               
              

     
 

   
                               

(B1) 

(ii) From the definition of characteristic polynomials, the eigenvalues of   are the solutions 

to            . From (B1), the eigenvalues of   are   and     . Since    , 

       for all   and thus the largest eigenvalue is     . 

(iii) For the largest eigenvalue     , since 

                                          

the vector of ones is the corresponding eigenvector and the normalized solution is 
 

  
 . □ 

We now present the proof of the proposition on the factor portfolio. 

Proof of Proposition 1. 

(a) For a portfolio  , its variance can be decomposed from the factor model as 

                                        

Note that          is the variance of the portfolio due to the factors, whereas 

      is the variance attributable to the errors. Thus, the portfolio with variance that is 
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the most dependent on f is the solution to 

   
 

 
        

     
           (B2) 

The maximization problem without the constraint of (B2) becomes  

   
  

   
   

   
   

    
       

    
   

   
   

   
   

   
    

   
   

 (B3) 

where    represents the unconstrained weight, and the value of   
   

   that 

maximizes (B3) is the eigenvector      corresponding to the largest eigenvalue of the 

matrix   
    

       
    

. Then, the optimal unconstrained portfolio is     

  
    

     and thus the factor portfolio becomes  

     
 

    
    

    

  
    

      

(b) From the factor model and our assumptions on the structure of matrices   and   , the 

matrix       also has the same diagonal terms and also the same off-diagonal terms. 

Moreover, since   
    

 is a diagonal matrix with identical values, the matrix 

  
    

       
    

 can be written in the form       for proper choices of     and 

 . It follows from Lemma 2 that the eigenvector of   
    

       
    

 corresponding to 

the largest eigenvalue is 
 

  
 , and      becomes the equally-weighted portfolio, 

 

 
 , 

that sums to one.  □ 

 

Appendix C 

Proof of Proposition 2. 

(a) The optimal portfolio for (6) can be found from the first-order optimality conditions. 

From the Lagrangian function 
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the optimality conditions for the equality-constrained problem (6) are 

                                  

for the optimal values        . The optimal portfolio is 

      
     

      
     

    
   

  
                

 

 
         

 

 
  

due to (5) and this proves our claim by letting      
 

 
        and   

 

 
 . 

(b) From (a), the weights of   sum to zero and the weights of   sum to one. Thus, the 

value of          determines how much the weights given to each stock deviate 

from the equally-weighted portfolio. Since   is a constant, the value of   affects both 

the value of       and the optimal portfolio. 

First, note that         since   
   is a positive-definite matrix. Then, it is 

sufficient to show that            is a decreasing function of a > 0. The matrix 

   can be represented from (3) and (4) as 

                  
             

By defining       
            and        , the Woodbury matrix identity 

(Woodbury, 1950, and Henderson and Seale, 1981), 

        
         

 

           
       

     

and the expression given by (5) result in 

      
 

   
         

  

It is shown that            is a decreasing function of a > 0 and thus the optimal 

portfolio approaches 
 

 
  as   is increased.  □ 
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Figure 1  Portfolios from solving problem (1) (in gray) and problem (2) (in black) for increasing values of δ 

and a (from upper-right to lower-left) 

Portfolios from solving (1) during the same period (and differ only in the value of δ) are connected in gray. 

 

0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Risk

R
et
u
rn



25 

 

 

(a) 

 

(b) 

Figure 2  Distance between      and the optimal portfolio from simulation 

Results for 10 simulations with 100 stocks and four factors are shown. Figure 3(a) and 3(b) are performed with 

and without stylized assumptions, respectively. 
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Figure 3  Distance between      and the industry-level optimal portfolio  

Each curve represents portfolios during the same 3-year period that differ only in the value of a. For a, the range 

of 1 to 100 is used because it forms portfolios with annualized risk roughly between 10% and 20%. 
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(a) 

 

(b) 

Figure 4  Distance between      and the industry-level robust optimal portfolio when varying the 

robustness (confidence level) 

Dotted lines connect values for 0% and 1% confidences to present how using even a small uncertainty set (1% 

level) shows higher dependency on factors than the case without incorporating uncertainty (0% level). Figure 

5(b) zooms into results between 0% and 10% confidence levels. 
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