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Abstract: The ecology of infectious disease in wildlife has become a pivotal theme in animal and public health.

Studies of infectious disease ecology rely on robust surveillance of pathogens in reservoir hosts, often based on

serology, which is the detection of specific antibodies in the blood and is used to infer infection history.

However, serological data can be inaccurate for inference to infection history for a variety of reasons. Two

major aspects in any serological test can substantially impact results and interpretation of antibody prevalence

data: cross-reactivity and cut-off thresholds used to discriminate positive and negative reactions. Given the

ubiquitous use of serology as a tool for surveillance and epidemiological modeling of wildlife diseases, it is

imperative to consider the strengths and limitations of serological test methodologies and interpretation of

results, particularly when using data that may affect management and policy for the prevention and control of

infectious diseases in wildlife. Greater consideration of population age structure and cohort representation,

serological test suitability and standardized sample collection protocols can ensure that reliable data are

obtained for downstream modeling applications to characterize, and evaluate interventions for, wildlife disease

systems.
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INTRODUCTION

Globally, emerging infectious diseases represent a threat to

human and animal health (Daszak et al. 2000; Woolhouse

et al. 2008). Most emerging diseases originate from wildlife

(Taylor et al. 2001), where they may infect multiple animal

hosts (Haydon et al. 2002). Understanding disease emer-

gence requires consideration of the pathogen, animal hosts

that are naturally infected by the pathogen and the ecological

interactions which facilitate pathogen perpetuation in nat-

ure (Childs et al. 2007). The One Health concept recognizes

that human, domestic animal, and wildlife health are inter-

connected and should be considered within an ecosystem

context (Kaplan et al. 2009), while promoting collaboration

between microbiologists, ecologists, epidemiologists, phy-

sicians, veterinarians, and modelers in the development of

conceptual and mathematical system models. Models can

guide appropriate disease surveillance, prevention, and

control strategies (Fooks 2007; Zinsstag et al. 2009, 2011).

Communication between these traditionally independent

disciplines relies on a mutual conceptual understanding of

disease surveillance methods and precise interpretation of

the data generated. Subsequent data use in predictive models

must recognize the strengths and limitations of the tech-

niques utilized (Table 1). This paper presents concepts and

examples that may appear obvious to immunologists and

microbiologists, yet may be unknown, or overlooked by,

ecologists, modelers, and policy makers.

The measurement of antibodies in blood is a critical

disease surveillance tool because antibodies are typically

easier to detect and persist longer than the inciting infectious

agents. Serological assays detect antibodies induced by

infection or vaccination, and provide evidence of past

exposure to a pathogen. Although ecologists, modelers and

policy makers may receive little training in immunology or

the technical aspects of measuring host immune response to

infection, they often must rely on serological data for infer-

ence to pathogen force of infection and transmission rates, as

well as to parameterize dynamic disease models. Here we

review the role of antibody assays and the interpretation of

results in wildlife disease investigations, for an audience with

little training in immunology or laboratory diagnostics. We

discuss common factors that lead to misinterpretation of

serological data, which primarily result from a lack of

understanding about host immune response to infection and

variation in test sensitivity and specificity. We address issues

relating to the interpretation of antibody prevalence data

from wildlife, and provide recommendations to guide study

design and inference using serologic data (Table 2).

APPROACHES TO STUDYING WILDLIFE

INFECTIONS

Incidence and prevalence are the most frequently used

measures to describe the epidemiology of infection in natural

populations. Incidence is the number of new infections in a

population-at-risk over time. Prevalence can be described as

point or period, with the former describing the proportion of

infected animals in a population at any particular moment,

and the latter describing the proportion of infected animals

in a population over a designated period of time (e.g., sea-

son). Antibody prevalence (i.e., seroprevalence) describes

the proportion of individuals within a population that

demonstrate pathogen-specific antibodies in the serum.

Longitudinal or cross-sectional sampling strategies gather

data on incidence and prevalence to infer temporal or spatial

infection dynamics in wildlife populations.

Longitudinal studies repeat sampling of individuals,

social groups, or populations, to detect changes in antibody

prevalence over time, and may be used to estimate infection

incidence if the sample size is large enough to detect antibody

seroconversion events in the population (Hazel et al. 2000).

Re-sampling individual wild animals, however, is often

logistically difficult, therefore where it is possible to deter-

mine age in a species, age-structured antibody prevalence

data may be utilized to gain insight into pathogen trans-

mission processes (Farrington et al. 2001). However, insights

can be limited by available knowledge regarding individual

serological outcomes to infection (Evans 1976), including

the: probability that an infected individual will seroconvert;

incubation period and case fatality rate of infected individ-

uals; duration of the antibody response to infection; and

relationship between antibody status and resistance to

pathogen infection. Often, few data exist regarding these

fundamental questions and models generated from antibody

prevalence data should recognize such uncertainties.

Cross-sectional studies focus on the social group, popu-

lation, or species and, in contrast to longitudinal studies,

provide snapshots on current or past infection prevalence

rather than incidence. Antibody prevalence is only equivalent

to infection incidence when the duration of tested antibody is

orders of magnitude shorter than life-span of the host (e.g.,

IgM responses). Cross-sectional studies can document evi-
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dence for circulation of a pathogen within a group, popula-

tion, geographic area, or species; for example, during

exploratory or outbreak investigations when the infection

status of a population, or the natural host range of a pathogen,

is unknown (Swanepoel et al. 2007; Lembo et al. 2011). A

major limitation of single cross-sectional studies is that they

do not provide information on infection dynamics. However,

cross-sectional antibody prevalence data may still be useful for

disease ecology studies, and in some cases more useful than

infection prevalence data (Heisey et al. 2006). For example,

antibodies typically persist longer than antigen, and hence are

more likely to be detected within a population ‘snapshot’.

Repeated cross-sectional surveys that incorporate age-struc-

tured sampling may permit inference into temporal infection

dynamics of wildlife (Plowright et al. 2008; Hayman et al.

2012). Cross-sectional surveys can also be used to evaluate

spillover risk from wildlife populations. For example, cross-

sectional surveys of antibodies to Brucella abortus in elk or to

pseudorabies virus in wild swine inform managers where

spillover to livestock is most likely to occur, and hence where

to target management (Cross et al. 2007; Pannwitz et al. 2011).

Serology has also been used to evaluate risk of spillover from

domestic animals to wildlife, as with canine distemper virus

transmission from domestic dogs to Serengeti carnivores

(Alexander and Appel 1994; Cleaveland et al. 2000).

Cross-sectional antibody data are important in plan-

ning and evaluating wildlife disease management strate-

gies. For example, vaccination against rabies virus (RABV)

is undertaken annually in North America and Europe

through the use of recombinant or modified live virus

vaccines, enclosed in a bait for oral consumption by target

wildlife (Rupprecht et al. 2008). Cross-sectional surveys

are used to determine the pre-intervention spatial distri-

bution of immunity so that vaccine baits can be optimally

distributed (Vos 2003), and post-vaccination herd

immunity for inference to bait uptake and infection

resistance (Sidwa et al. 2005). RABV vaccination and

modeling of immunity were management strategies also

used to prevent the extinction of the Ethiopian wolf

(Canis simiensis) (Haydon et al. 2006; Knobel et al. 2008).

Another example involves management of bovine tuber-

culosis (Mycobacterium bovis) spillover to cattle through

Bacillus Calmette–Guérin (BCG) vaccination of a wildlife

reservoir, the European badger (Meles meles), in Great

Britain (Chambers et al. 2011). Discrimination of infected

versus vaccinated badgers was possible in this study

(Greenwald et al. 2003), though it is typically not possible

with antibody prevalence data.

A valuable step in designing ecological wildlife disease

investigation involves the development of a conceptual, and

ideally quantitative and predictive epidemiological model

of the system. Early communication and collaborative

model development ensure that appropriate data will be

collected to inform a predictive model of the system (Restif

et al. 2012) (Table 2). Traditional epidemiological models

identify the basic compartments which formally define

cohorts of susceptible, exposed, infected and (perhaps)

recovered or immune individuals (i.e., SEIR), and the

Table 2. Recommendations for the Use of Serologic Testing for Inference to Wildlife Disease Monitoring or Surveillance.

1. Investigations of wildlife disease should be developed from a conceptual, and ideally quantitative, model of the study system. Early and

continual communication with disease experts and diagnosticians in the specific field is imperative for consideration of the optimal

test(s) employed, along with associated strengths and limitations for the purpose of study.

2. Full biological information from sampled animals (i.e., locality, species, age, sex, reproductive status) should be collected and reported, and

ideally, longitudinal investigations should be conducted rather than cross-sectional studies, with an emphasis on age-structured sampling.

3. Extreme care should be taken to optimize sample quality prior to testing, including sterile technique, maintenance of proper cold chain

and storing multiple aliquots of a sample. Similarly, although difficult in many wildlife studies, all samples collected for a study should

be handled in an identical manner across study locations and years.

4. Whenever possible, all samples should be processed by the same operator using identical positive and negative controls. Otherwise, all

samples should be tested within the same test run.

5. Full reporting of test methodology and results are critical to allow comparisons with other studies, including a description of precise

protocols or modifications employed, including cut-offs, controls and confidence intervals for antibody prevalence estimates.

6. Where possible, results from one type of assay should be confirmed using an alternative test.

7. In the absence of demonstrating that a specific pathogen strain used in a test also occurs in the population sampled, or in systems where

cross-reactivity has been demonstrated, consider the possibility of cross-reactivity with other pathogens or strains of the pathogen of

interest.

8. Caution in interpretation should be exercised when antibody titers of individuals in a population are very low.
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interactions among these cohorts which facilitate the

invasion and maintenance of a pathogen in animal or plant

populations (Anderson and May 1979, 1986). To parame-

terize these models, knowledge of the actual infection status

of animals, and how this changes over time, is required.

Acquiring these data could involve the lethal sampling of

large numbers of animals, particularly if infection incidence

is low. As this usually is neither feasible nor ethical, anti-

body data are used as a proxy for prevalence of infection.

Serological data may be more useful than infection

prevalence data in determining the force of infection—the

rate at which susceptible individuals become infected and

the foundation for estimating transmission rates (Heisey

et al. 2006). If antibody loss is slow and disease-induced

mortality is well understood (Heisey et al. 2006, 2010),

serology as an indicator of past infection may be more easily

interpreted than prevalence data. For example, a low prev-

alence could be generated by a high force of infection and fast

recovery rate, or a low force of infection and low recovery

rate—problems avoided with serology if titers are long-lived.

Factors associated with the infection process, such as

pathogen dose, variant and route of inoculation, can all impact

the induction of a host antibody response to infection. While

detection of antigen-specific antibodies usually indicates prior

exposure to a pathogen, negative test results do not necessarily

rule out prior exposure (Turmelle et al. 2010b). Antibody-

positive animals are not necessarily infected animals, as one

study demonstrated during a survey for Puumala virus in wild

bank voles (Clethrionomys glareolus) (Alexeyev et al. 1998). It

is often assumed that the immune class (R) of animals in SEIR

models is equivalent to seropositive animals, when in fact

antibodies may not be a reliable indicator of infection resis-

tance (Raberg et al. 2009). In addition, variation in the sen-

sitivity of antibody detection methods may exist (Cleaveland

et al. 1999; Chambers et al. 2002; Troyer et al. 2005), with

apparent trade-offs between sensitivity (ability to identify

positive results and avoid false negatives) and specificity

(ability to identify negative results and avoid false positives)

for any assay. However, application of novel modeling

methodologies, such as site-occupancy models, may tolerate

imperfect detection probabilities based on serosurveys and

other diagnostic techniques (Lachish et al. 2012).

DETECTING INFECTIONS IN WILDLIFE

The objective of disease surveillance systems is to track the

incidence and prevalence of a specific pathogen infection in

populations of interest. Several diagnostic techniques can

obtain such data, each having its own strengths and limitations

(OIE 2010). Pathogen isolation (e.g., using cell culture or

animal models) permits identification and characterization of

the disease agent, and enables animal infection experiments

which are necessary to fulfill Koch’s postulates (Evans 1976)

and characterize host pathogenesis. Pathogen isolation also

permits a greater epidemiological understanding of the cir-

culating pathogen diversity within and among reservoir and

incidental hosts (Streicker et al. 2010). However, pathogen

isolation from wildlife can be challenging even under ideal

laboratory conditions. Infection burdens may be low, as ob-

served with henipavirus infections in bats (Middleton et al.

2007; Halpin et al. 2011), or the pathogen may be sequestered

in organs, thereby requiring lethal sampling, as with brucel-

losis in bison (Bison bison) and elk (Cervus elaphus) (Baldwin

and Roop 2002) or classical swine fever in wild swine (Sus

scrofa) (Kaden et al. 2006). Some infections may be latent, i.e.,

dormant in the body but with potential for reactivation, as has

been observed with pseudorabies in wild swine (Wittmann

and Rziha 1989). Often, animal infectious periods are short, as

seen with RABV and canine distemper virus (Deem et al. 2000;

Hampson et al. 2009), with few animals infected at any given

time, thereby requiring very large sample sizes to detect

infection. Finally, the handling and isolation of some patho-

gens requires high containment facilities only found in spe-

cialist laboratories. These factors might make obtaining

isolates from wildlife impractical in many cases.

Direct pathogen detection tests, other than isolation,

such as antigen-detection assays and molecular diagnostic

tools (e.g., the polymerase chain reaction—PCR), can be

used to detect evidence of active or latent infection. These

methods share many of the limitations of pathogen isolation:

unless a pathogen is circulating in blood, excreted in urine or

feces, or colonizing an accessible mucosal surface or super-

ficial lymph node, lethal sampling of wildlife will be re-

quired. Despite this, detection of host pathogen excretion via

accessible pathways (e.g., blood or mucosal surfaces) can

provide meaningful insights for parameterizing transmis-

sion probabilities and rates, although several studies also

recognized that pathogen excretion may be intermittent

among infected animals (Baer and Bales 1967; Chambers

et al. 2002; Middleton et al. 2007), potentially limiting

inference from cross-sectional snapshots. However, sample

integrity is a key factor for field studies and maximizing the

probability of successful pathogen isolation or detection

often requires cold-chain or laboratory capacity that is dif-

ficult in a field setting, especially in remote geographic areas.
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Given some limitations of pathogen isolation and antigen

detection methods, antibody prevalence data are often used to

elucidate infection dynamics in animal populations. The

presence of specific antibody, however, only demonstrates

past exposure to an antigen, while typically providing no

information about the timing, intensity or frequency of

infection. At a population level, antibody prevalence data

provide information about the cumulative exposure history of

the population, but not necessarily infection status. Antibody

prevalence does not change quickly in response to changes in

infection incidence, particularly when antibodies persist for

long periods and host population turnover is slow. Some

pathogens have evolved strategies to circumvent detection by

the host immune system (e.g., lyssaviruses and herpesviruses)

(Aleman et al. 2001; Faber et al. 2002; Wang et al. 2005), thus

complicating the reliance on serological techniques to track

infection dynamics. Notable testing limitations with serolog-

ical techniques include cross-reactivity, poor accuracy, and

undefined or non-standardized cut-off values to interpret an

antibody-positive result. Because presence of antibody may

not confer infection resistance, it is critical to explore the

significance of an antibody-positive status in the context of a

controlled infection process, using in vitro and in vivo models.

However, with careful study design and interpretation (Ta-

ble 2), antibody prevalence can be an invaluable tool for

understanding the ecology of disease dynamics, even in

poorly-understood systems such as wildlife populations.

OPTIMAL TEST SELECTION AND

INTERPRETATION

The two main classes of antibody targeted in serological

testing are IgM and IgG, where IgM is secreted first in response

to pathogen infection yet is usually short-lived, whereas IgG is

secreted later and persists longer in the circulation. Serological

assays typically detect either binding (BAb) or neutralizing

antibodies (NAb), and the type of test determines the type of

antibodies that are detected and the subsequent inference that

is possible from such data (Table 3).

Regardless of the assay selected, proper test validation,

and stringent laboratory quality control standards are key to

reliable collection and interpretation of antibody prevalence

data (OIE 2010). Standard practice requires that appropri-

ate positive and negative controls (ideally, relevant to the

host population sampled) be employed in every test. Al-

though laboratory strains of a pathogen may be employed

for assay standardization, a field-derived strain of the

pathogen may be more appropriate for certain systems or

questions. Where pathogen diversity within a population,

species or community is high, e.g. paramyxoviruses among

bats (Drexler et al. 2012), it may be desirable to include

multiple pathogen strains in serological tests (Kuzmin et al.

2011). The recent development of pathogen pseudotypes for

serologic testing can facilitate testing of diverse pathogen

repertoires using small sample volumes while minimizing

biohazards (Temperton et al. 2005; Wright et al. 2008).

Cross-reactivity of antibodies to multiple pathogens has

been important in vaccine development, but can also limit

the interpretation of antibody prevalence data (Weyer et al.

2008; Horton et al. 2010; Mansfield et al. 2011). Cross

reactivity can pose particular challenges in disease investi-

gations of wildlife, as there is often no prior characterization

of circulating pathogen diversity or cross-reactivity within

and among populations. For example, antisera raised

against one flavivirus can cross-react with other flaviviruses

(Mansfield et al. 2011), but cross-reactivity within and be-

tween flavivirus serocomplexes has been inconsistent (Ca-

lisher et al. 1989a). One consequence of flavivirus cross-

reactivity is reduced specificity in serological assays (Hirota

et al. 2010), which led to the early misdiagnosis of the North

American West Nile Virus epidemic as St. Louis Encepha-

litis in New York City (Lanciotti et al. 1999; WHO 1999).

However, the idea of cross-reactivity limiting the specificity

of serological assays extends to a variety of systems, as

demonstrated among rhabdoviruses (Calisher et al. 1989b).

Evaluation of test repeatability and robustness is necessary

for sound interpretation of serological test results, particularly

for longitudinal studies. Inter-laboratory variation is a well-

recognized issue for all pathogen testing, but some assays,

particularly virus neutralization tests (VNTs), are prone to

variation even within the same laboratory. This is because they

are biologically dynamic tests, relying on consistent replication

of live virus populations in cell culture. The NAb titer of a single

control serum tested against a standard laboratory strain of

RABV in a closely controlled test can vary by more than two-

fold (Figure 1). The precise quantity of virus used in neutral-

ization assays affects estimated antibody titers. To counter this,

acceptable standards of variation must be developed with re-

gard to positive and negative controls, with any test results that

do not fall within strict and pre-determined values being dis-

carded. Although frequently not performed, longitudinal

samples from individuals should be tested in the same assay at

the same time, rather than in consecutive assays.

Within and between assay—and between laboratory—

variation has been carefully evaluated for serological assays
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in influenza, particularly in humans in relation to vacci-

nation (Wood et al. 1994), but also for horses (Mumford

2000). When considering the two most commonly used

and well-controlled serological assays available for human

influenza, hemagglutination inhibition (HI) and single ra-

dial hemolysis (SRH) assays, Wood et al (1994) reported

that although each technique was reproducible within

laboratories, variability between laboratories was higher for

HI (maximum variability 32-fold; geometric coefficient of

variation, GCV, 112%) than for SRH (maximum variability

3.8-fold; GCV 57%). The potential for such variation is

usually overlooked when interpreting serological data.

To determine population antibody prevalence and to

evaluate the sensitivity and specificity of a test, values ob-

tained with a given test sample are evaluated against a

reference cut-off value, meaning that all values below the

cut-off are considered antibody-negative and all values

above the cut-off value are considered antibody-positive.

Standard cut-off values are often not known, usually due to

a lack of well-characterized reference samples from target

wildlife populations. Modification of a cut-off value has a

direct impact on the sensitivity and specificity of the

serological assay—and hence estimated antibody preva-

lence. For this reason, it can be difficult to compare sero-

logical results across studies, particularly as cut-off values

usually are not standardized between laboratories and be-

cause many publications report only proportional antibody

prevalence rather than individual titers. Comparisons are

more difficult when pathogen strains or antigens used in a

serological test vary across studies. Estimating antibody

prevalence is most problematic with regards to the evalu-

ation of low-titer individuals and their proportion within a

population, such that reporting results as quantitative

values may be more informative (Peel et al. 2012).

An example of how different criteria can affect inter-

pretation of results involves the testing of 166 European bats

for European bat lyssavirus (EBLV) NAb. Using the same

cut-off threshold for a positive response (i.e., a 1:27 dilu-

tion), but a different level of virus neutralization (100%

versus 50% reduction in fluorescing fields) can lead to

variation in NAb prevalence estimates, ranging from 0.6%

(CI 0.0-3.3) under more stringent criteria (i.e., 100% neu-

tralization) to 4.8% (CI 2.1-9.3) under less stringent criteria

(i.e., 50% neutralization) (AVHLA, unpublished data).

Similarly, in a study of RABV NAb among sera collected

over two years from 1,058 bats in the United States, an

increase in test cut-off threshold from 0.06 international

units per ml (IU/ml) to 0.1 IU/ml led to a reduction in

RABV NAb seroprevalence from 38% (CI 35-41) to 28% (CI

25-31) (CDC, unpublished data). While variation in testing

conditions can be accounted for by using reference positive

control sera of known potency, the above examples high-

light the difficulties in running longitudinal samples across

different years or operators and demonstrate that different

estimates of antibody prevalence from the same samples are

possible. Instances where positive control sera are not in-

cluded or reported are especially troubling, and make it

difficult to control for test variation across operators or

laboratories. Efforts must be made to standardize methods

and result interpretation and reporting across laboratories.

SEROLOGICAL INTERPRETATION IN WILDLIFE

POPULATIONS

In most systems, the duration of detectable antibody fol-

lowing infection is not known. While positive reactions for

one antibody class (i.e., IgM) can be taken as evidence of

active or recent infection, it is not possible to infer timing of

infection from more commonly detected antibody classes

Figure 1. The correlation between results obtained from testing one

control serum against one virus in multiple assays (n = 3167) in a

rabies virus neutralization test using a single challenge virus standard

(CVS). A linear regression model (solid line, R2 = 0.16, P < <0.01)

shows a 0.18 log2 reduction in serum titer for every twofold increase

in virus titer and substantial variance in serum titer (standard

deviation 0.42 log2). Virus titer is measured for each test, and results

are discarded if the infectious dose is outside pre-determined limits

(4.32–8.23 log2 median tissue culture infective dose–TCID50).
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(e.g., IgG). Repeated infection may be necessary to induce an

antibody response in some animals (Turmelle et al. 2010b),

and antibodies may persist from weeks to years, depending

on the host–pathogen system and individual variation (Au-

bert 1992). Importantly, the loss of detectable circulating

antibody does not necessarily represent a loss of immunity

with respect to subsequent pathogen infection (e.g., memory

lymphocytes). Rather, the animal may be primed immuno-

logically to respond to re-infection, or mechanisms such as

cell-mediated immunity may also play a significant role in

infection resistance. It is typically impossible to know the

exposure histories of wild free-ranging animals, particularly

during cross sectional studies, and extremely challenging to

differentiate seronegative animals that were previously

seropositive from animals that have never encountered the

pathogen under study (i.e., are truly naı̈ve) (Table 1).

With age-structured sampling of mammalian wildlife,

maternally-derived antibody (MDAb) may be identified in

nursing or recently weaned young, but the function of MDAb

in most wildlife host-pathogen systems has not been well-

characterized (Boulinier and Staszewski 2008). The presence

of MDAb can also interfere with individual immune responses

and can compromise the response to vaccination in offspring

(Xiang and Ertl 1992; Muller et al. 2001; Siegrist 2003). Eval-

uating the proportion of antibody-positive dams is necessary

for interpreting proportional antibody prevalence among

offspring in a social group or population, as the antibody titer

of the dam may impact the probability of transfer to, and the

level of MDAb in, respective offspring (Muller et al. 2002;

Boulinier and Staszewski 2008; Kallio et al. 2010). MDAb often

wane in juveniles around the time of weaning (Muller et al.

2002; Plowright et al. 2008), yet may be detected for a much

longer period of time using antibody-binding compared to

VNT assays (Muller et al. 2005). The effects of MDAb may vary

across and within host-pathogen systems, and few have been

adequately studied. Susceptibility to infection is presumed to

be high among offspring nursing from seronegative dams and,

where breeding is seasonal, the infection of offspring that are

naı̈ve or have waning MDAb may modulate seasonal pulses of

infection or disease outbreaks (Fouchet et al. 2007; Kallio et al.

2010; George et al. 2011; Plowright et al. 2011). Age-structured

serological studies have great potential for providing highly

informative insights for disease modeling (Heisey et al. 2006)

and disease management strategies (Farrington et al. 2001),

although timing of sampling intervals and proper cohort

representation are key considerations.

Despite substantial variation in the longevity of wild-

life, the immune response to repeated pathogen infection in

long-lived hosts has received little attention. For example,

humoral immune responses may be less important fol-

lowing repeated infection of bats with RABV (Turmelle

et al. 2010b), perhaps due to an increasing role of cell-

mediated defenses (Moore et al. 2006; Horowitz et al.

2010), potentially complicating a reliance on antibody

prevalence data for dynamic disease models in some host-

pathogen systems. Certainly, expanding immunological

surveillance among wildlife to include different measures of

immunity holds exciting promise for modeling the per-

petuation and emergence of infectious diseases in wildlife

(Graham et al. 2007).

Beyond initial decisions about which specific serological

test will be employed for a study, sample size and sampling

strategy must be carefully considered. Strategies might in-

clude capture of free-ranging animals or capture within a

roost, shelter, nest or burrow. Capture of refuging animals

may bias collection of sick or moribund animals which may

be more likely to be infected and seropositive. Comparison of

studies investigating RABV NAb seroprevalence in popula-

tions of bats suggests different NAb seroprevalence in bats

captured while roosting versus those in flight (Constantine

et al. 1968; Steece and Altenbach 1989; Turmelle et al. 2010a).

Furthermore, individual immunological response to infec-

tion among wildlife populations may vary due to host or

environmental factors (Bouma et al. 2010; Graham et al.

2010; Hawley and Altizer 2011). All studies must consider

that age and social structures of populations can vary in space

and time, potentially leading to variation in the types of

individuals sampled and estimates of antibody prevalence.

CONCLUSIONS

As new diagnostic techniques develop in the study of

wildlife disease, the challenges of interpretation of results

from all systems are increasing. When properly employed,

serological data can be very powerful for inference and

modeling of infectious disease dynamics in wildlife, but the

limitations must also be acknowledged. Development of

conceptual and mathematical models prior to field sam-

pling, greater consideration of pathogenesis and age

structure in the population infection process, investment in

longitudinal studies whenever possible and standardized

sample collection, storage and testing protocols can ensure

that reliable and meaningful data are obtained for modeling

applications to effectively characterize, and evaluate inter-

vention strategies for, wildlife disease systems.
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Table 3. Understanding Serological Assays.

Antibodies raised by individuals against a range of infections can be detected in sera in a variety of ways. Below is a short summary of

what can be detected, which typical assays measure this and the type of results.

Antigen-binding assays and their results

Antigen-binding assays measure the attachment of antibodies to pathogen

proteins which have been attached to a surface (e.g., bead, slide, plate)

(Fig. 1i). Once bound (Fig. 1ii), antibody is subsequently detected

using anti-antibody proteins (Fig. 1iii), often conjugated to an enzyme

that fluoresces for detection. Often the serum is diluted prior to

testing.

Schematic of antigen-binding assays

1. Western blots (WB) give qualitative results, based on the presence or

absence of antibody-antigen binding, detected by electrophoresis and

compared to positive and negative controls (Fig. 2). Occasionally

semi-quantitative results are given depending on the strength of the

band.

The presence of anti-Ebolavirus antibody (sample number

49) in a serum sample binding to antigen is detected using

electrophoresis in a western blot test

APPENDIX
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Table 3. continued

2. Immunofluorescence tests (IFAT) give qualitative depending on

the presence of antibody–antigen binding (Fig. 3) at serial

dilutions, and can be used to give quantitative results depending

on which dilution(s) the antibodies were detectable.

The presence of anti-antigen antibody in a serum sample detected

by an immunofluorescence test

3. Enzyme-linked immunosorbent assays (ELISA, EIA) are by default

quantitative. A seropositive result is defined by the strength of

color or fluorescence change, indicating the strength of signal and

the amount of binding (Fig. 4), and a threshold is used to decide if

it should be classified as positive, in order for qualitative results to

be reported. A competitive ELISA is a variation where antigen and

antibody are incubated together and conjugated antibody binds

unbound antigen, thus a reduction in strength of signal is used.

The presence of fluorescence due to increasing antibody–antigen

binding in an ELISA test in this schematic

Antibody-function assays and their results

Antibody-function assays measure the actions of antibodies for a specific pathway or function. These tests may be used to ‘‘type’’ or

‘‘characterize’’ the history of infection (e.g., influenza), or as an indirect measure of antibody levels. Sera may be serially diluted.

1. Hemagglutination inhibition and complement fixation assays give

qualitative results, based on the presence or absence of

hemagglutination, hemagglutination inhibition, or complement

fixation, and quantitative results by serially diluting the sera.

The presence of hemagglutination, the agglutination of

erythrocytes (Fig. 5a), shown in this 96-well plate (Fig 5b),

demonstrates viral particles are binding to the surfaces of

erythrocytes. Antibody in a serum sample would prevent this

and quantitative results can be determined by finding the

cut-off at which agglutination inhibition ceases.

The presence of hemagglutination, the clustering of red blood

cells, shown schematically (a) and in this 96-well plate (b).
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