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Introduction
There are two morphologically distinct types of adipose tissue: 
white adipose tissue (WAT) and brown/beige adipose tissue 
(BAT). WAT is the predominant type and critically regulates 
whole-body energy homeostasis by acting as a key energy res-
ervoir for the other organs. Efficient storage in times of food 
abundance is fundamental for survival during food shortage. 
Thus, the evolution of multicellular organisms has led to the 
development of specialized cells or organs that function to 
store nutrient excess as lipids, highly energy-dense nutrients 
(9 kcal/g versus 4 kcal/g for protein and carbohydrate). Excess 
caloric intake and low physical activity tips the energy balance 
into storage mode, and within the white adipocyte, free fatty 
acids (FFAs) are esterified into triglycerides that are packed 
into lipid droplets coated with regulatory proteins, ensuring  
lipid storage or mobilization (1).

In humans, WAT is organized as two major fat depots, subcuta-
neous and visceral, the latter of which surrounds the internal organs. 
In obesity, a high deposition of visceral adipose tissue is associated 
with increased risk of developing cardiometabolic diseases, such 
as type 2 diabetes, and their severe complications, whereas obese 
patients with predominantly subcutaneous fat storage may have a 
reduced risk of metabolic diseases (2–4) or at least exhibit delayed 
complications. However, the underlying mechanisms controlling 
the depot-specific growth of adipose tissue are not yet elucidated.

In adult mice, the paired gonadal fat depots around the 
ovaries (periovarian) or the testes (epididymal) found within 
the abdominal cavity are studied as a model of visceral adi-
pose tissue in addition to the mesenteric, retroperitoneal, and 
perirenal fat (5). The inguinal depots in the anterior and upper 

portion of the hind limbs are representative of subcutaneous 
adipose tissue in mice (5).

In addition to its energy-storing function, the adipose tissue 
displays critical endocrine functions. Leptin (6, 7), adiponectin (8–
10), and a myriad of other peptidic mediators or lipid metabolites 
derived from adipocytes or from the stroma (called adipokines) 
exert critical endocrine functions that maintain energy balance 
by targeting the central nervous system and/or by modulating the 
metabolic activities of peripheral organs. The role of these mole-
cules has been extensively reviewed (11, 12).

By contrast to WAT, BAT is found subcutaneously in specific 
locations mostly in newborns and in smaller amounts in adults 
and functions primarily as a thermogenic organ owing to the pres-
ence of multilocular adipocytes enriched with mitochondria and 
uncoupling protein 1 (UCP1) (13). BAT might also have a secretory 
role (14). Similarly, the development of beige adipose tissue in the 
subcutaneous or visceral WAT in response to cold or β

3
-adrenergic 

stimulation is referred to as “browning” (15, 16). Several studies 
associated brown/beige adipose tissue activity with protection 
against obesity and metabolic disease development (17).

In response to excess energy, while the amount of activity of 
brown/beige fat is reduced (18, 19), WAT depots undergo a mas-
sive expansion to buffer the nutrient overload. With chronic obesi-
ty, which is eventually accompanied by periods of weight variation, 
WAT depots display continual remodeling. It is now recognized that 
inflammatory cell accumulation and activation within the WAT 
mediate at least some aspects of obesity-related morbidity, such 
as insulin resistance (20). Besides immune cell accumulation, 
prolonged positive energy balance induces adipocyte hypertrophy 
and neovascularization. In addition, extracellular matrix accumu-
lation resulting in adipose tissue fibrosis participates in adipose  
tissue dysfunction. Inflamed and fibrotic WAT depots become del-
eterious for proper energy storage and endocrine functions, result-
ing in altered local and systemic metabolic control. We here review 
the current knowledge on obesity-induced WAT fibrosis and its 
local and systemic consequences.
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In humans, adipocyte turnover was quantified by analysis of 
the integration of atmospheric 14C into genomic DNA. This work 
proposed that adipocyte hyperplasia occurs from birth to early  
adulthood (20 years of age). By contrast, adipocyte renewal rep-
resents only 10% of adipocytes each year in adults (44), indicating 
that adipocyte hyperplasia is limited in adults. However, precur-
sors undergoing adipogenesis in vitro have been identified (45), 
and findings support that different subpopulations of precursors 
do exist in humans as in mouse models. Adipocyte precursors 
are enriched in CD34+, PDGFRα+, CD45– (a leukocyte marker),  
and CD31– (an endothelial cell–specific marker) cell popula-
tions derived from the stromal vascular fraction of WAT. Vari-
ous degrees of adipogenesis can also be observed in populations 
expressing CD36 (encoding the primary cellular fatty acid translo-
case) (46) and Msca1 (mesenchymal stromal cell antigen-1), which 
are induced during adipogenesis (47, 48). Importantly, small adi-
pocyte size is associated with insulin sensitivity (49), and a bet-
ter understanding of pathways controlling the production of new 
adipocytes (to limit adipocyte hypertrophy) could be of interest to 
limit the deleterious effects of obesity.

Suboptimal angiogenesis and low-grade 
inflammation in obese WAT
Fat mass expansion requires the formation of new blood vessels 
(angiogenesis), which develop from those preexisting within the 
adipose tissue. To stimulate angiogenesis, growing adipocytes pro-
duce many angiogenic factors, such as leptin, VEGF, FGF-2, hepato-
cyte growth factor (HGF), insulin-like growth factor (IGF), placental 
growth factor (PLGF), VEGF-C, heparin-binding epidermal growth 
factor (HB-EGF), and angiopoietins. APCs also secrete high levels 
of angiogenic factors, including VEGF, HGF, and FGF-2 (50). Con-
sequently, antiangiogenic agents were first believed to represent 
encouraging therapeutic options to limit fat mass expansion during 
obesity. However, analysis of the mechanisms underlying the patho-
logical events associated with obesity suggests that over the course of 
obesity, capillary density and function fail to meet the demands for 
adipose growth. Most interestingly, promoting angiogenesis favors 
healthy adipose tissue expansion with enhanced adipogenesis and 
reduced adipose tissue inflammation and fibrosis (51–55). In humans, 
endothelial cells isolated from obese adipose tissue exhibit pheno-
typic alterations with increased expression of inflammatory and 
senescence-related genes (56). Moreover, a GWAS analysis revealed 
a link between angiogenesis gene loci and insulin resistance markers, 
supporting the notion that suboptimal vascularization could be of 
importance in maintaining insulin resistance in obesity (57).

Local inflammation is another critical alteration observed in 
obese adipose tissue depots. A potential mechanism to explain 
this finding is that impaired vascularization precipitates local 
hypoxia, leading to adipocyte necrosis that favors the infiltration 
of proinflammatory leukocytes (58). A seminal study highlighted 
a causative link between adipose tissue inflammation and insulin 
resistance, albeit in rodents (59). This finding was later substanti-
ated in humans with the discovery that macrophages accumulate 
in obese subjects’ adipose tissue (60). Since then, macrophages 
have been shown to critically control adipose tissue inflammation 
and favor the onset of insulin resistance, one of the major obesity 
comorbidities. Concomitantly, other innate and adaptive immune 

Adipocytes and progenitors in adipose tissue 
growth
In obesity, the growth of the adipose mass is mediated by adipo-
cyte hypertrophy (enlarged adipocytes) or hyperplasia (increased 
cell number). Both types of expansion are regulated by the local 
environment and genetic factors, although the molecular factors 
favoring one or the other pathway are largely unknown. A grow-
ing body of evidence indicates that these processes are closely 
associated with the maintenance of adipose tissue homeostasis. 
Adipocyte hyperplasia, in general, is more metabolically favorable 
than increased adipocyte size (21), as enlarged adipocytes exhibit  
numerous necrotic-like abnormalities such as ruptured plasma 
membranes, dilated endoplasmic reticulum, cell debris in the 
extracellular space, and the appearance of small lipid droplets in 
the cytoplasm (22, 23). In addition to these morphological abnor-
malities, hypertrophic adipocytes are dysfunctional, with increased 
expression and secretion of proinflammatory cytokines, including 
TNF-α, IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1), 
and acute-phase serum amyloid A proteins, among others (24). 
Basal lipolysis is also elevated in these cells (25, 26), increasing the 
leakage of FFAs to ectopic locations. As a consequence, hypertro-
phic adipocytes and associated features contribute to the loss of 
tissue homeostasis and can promote or at least maintain insulin 
resistance when initiated (24, 26). On the other hand, hyperplastic 
expansion of the adipose tissue requires the proliferation and dif-
ferentiation of precursor cells (also called progenitors or adipose 
tissue progenitor cells [APCs]) that reside within the adipose tis-
sue stroma, since mature adipocytes are postmitotic cells (27–29). 
In rodents, lineage tracing studies have revealed that the mode of  
adipose depot expansion in obese mice occurs in a depot- and 
sex-dependent manner, suggesting the importance of sex hor-
mones in driving the energy storage mode (30–32).

To identify WAT progenitors, studies tracing PPARγ-express-
ing cells revealed an adipocyte lineage tightly associated with the 
adipose vasculature (33). Concomitantly, Friedman’s group estab-
lished a strategy to purify an enriched cell population prone to 
adipogenesis from the stromal vascular fraction of adipose tissue 
(27). Combining the use of various antibodies previously reported  
as mesenchymal stem cell antigens to target cell surface epi-
topes, they delineated a cell population with a strong adipogenic 
potential that exhibited Sca1, CD34, CD29, and PDGFRα expres-
sion (27, 34). The progenitors also coexpressed PDGFRβ (35, 36). 
Interestingly, this population is not homogeneous, and subpopula-
tions with specific features could be discriminated (Figure 1). For 
instance, CD24+ precursors exhibit stem cell–like properties that 
play a role in the maintenance or the growth of local adipocyte 
precursors in line with the local microenvironment (27, 37). Spe-
cifically, the C2H2 zinc finger protein 423–expressing (Zfp423+) 
precursors constitute a subpopulation of progenitors with high 
adipogenic potential (38, 39).

Since the identification of specific markers allowing the track-
ing of adipose tissue progenitors within the adipose tissue, APCs 
have received considerable attention and have been classified as 
precursors undergoing adipocyte differentiation linked not only to 
developmental (40), homeostatic, and obesogenic (32, 37, 38) con-
ditions, or beige adipogenesis in response to cold or β

3
-adrenergic 

stimulation (41, 42), but also to fibrosis accumulation (43).
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Adipose tissue fibrosis identifies unhealthy 
remodeling in obesity
Unresolved inflammation is often associated with altered tissue 
remodeling in a number of pathological states and often progresses  
to fibrosis as a result of the persistence of inflammatory stress. 
Fibrosis is characterized by excessive extracellular matrix (ECM) 
component deposition, a dysfunctional process that ultimately 
causes severe disturbances in organ functions. Ten years ago, major 
changes in the expression of genes encoding ECM were described in 
the adipose tissue during obesity (70, 71). The ECM is a noncellular 
component of all tissues that is essential for tissue morphogenesis, 
differentiation, and homeostasis and includes structural (collagens) 
and adhesion proteins (fibronectin) as well as proteoglycans (bigly-
can, decorin), which preserve tissue architecture (72). The ECM is 
considered as a reservoir of secreted growth factors, cytokines, and 
proteases whose availability is highly regulated during ECM remod-
eling (73) while being particularly crucial for maintaining structural 
integrity of adipocytes and playing pivotal roles during adipogene-
sis (74–76). In obese human adipose tissue, collagens accumulate 
around the adipocytes to form pericellular fibrosis, or, alternative-
ly, collagen fibers can be organized as fibrotic bundles of various 
thicknesses containing few adipocytes isolated from the rest of the 
parenchyma (Figure 2).

Loss of adipose tissue plasticity in obesity
Studies in humans and rodents indicate that fibrosis alters adi-
pose tissue plasticity. Several findings support the concept that the 
global upregulation of ECM constituents may represent a physical 
constraint to adipose tissue expansion (69, 77). In mice, the pre-

cells (e.g., T cells, B cells, NK and NKT cells, eosinophils) are mod-
ulated in obesity (61) and insulin-resistant states (62).

Overall, the relationship between adipose tissue inflamma-
tion and metabolic alterations is better established in mouse 
models than in human conditions. As such, overfeeding experi-
ments in humans have shown that insulin resistance can be rap-
idly induced without substantial modification of systemic or tis-
sue inflammation (63). These observations have raised questions 
regarding the kinetics of inflammatory events in humans and 
whether they are involved in the development or maintenance 
of metabolic diseases. Nevertheless, the identification of key 
inflammatory mediators is of interest to understand and eventu-
ally control adipose tissue remodeling over the course of obesity. 
We have, for example, characterized the phenotype of PAFR–/–  
mice, which are deficient in platelet-activating factor receptor 
(PAFR). The platelet-activating factor (PAF) is a glycerophospho-
lipid able to initiate acute inflammation through activation of its G  
protein–coupled receptor (64). Activation of PAFR in adipose tis-
sue promotes leukocyte recruitment and stimulates local produc-
tion of proinflammatory cytokines such as TNF-α, IL1-β, and IL-6. 
PAFR–/– mice are protected against WAT inflammation and exhibit  
improved insulin sensitivity, albeit with increased adiposity and 
without any change in calorie intake (65). Thus, the phenotype of 
PAFR–/– mice, similarly to mice lacking leptin while overexpress-
ing adiponectin (66) or other mouse models (67–69), illustrates 
the beneficial impact of limiting local inflammation while main-
taining storage capacity in the adipose tissue. This increase or 
maintenance of storage capacity limits ectopic fat deposition and 
insulin resistance, as well as related complications.

Figure 1. Heterogeneity among progenitors in the adipose tissue. Adipose tissue progenitors (or precursors), often located in the vicinity of the vascu-

lar network, constitute a heterogeneous population. They can be discriminated through their capacity to differentiate into mature adipocytes and also 

by their level of commitment into the adipocyte differentiation program. The application of flow cytometry using various markers as well as single-cell 

RNA sequencing has enabled the identification of multiple cell populations. The CD9hi progenitors exhibited very limited adipogenic capacity with a 

high propensity for the production of extracellular matrix components. CD9hi progenitors include mesothelial cells, whose contribution in adipose tissue 

remodeling is currently unresolved. Further investigations are still needed to establish the relationship between these various populations of progenitors. 

In addition, a better understanding of the critical functional determinants and whether acquired phenotypes are reversible is needed.
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naling involving integrin and Yes-associated protein (YAP)/tran-
scriptional enhancer–associated domain (TEAD) pathways (80).

Consistently, numerous studies have linked ECM deposition 
to modified adipose tissue metabolic and endocrine functions 
(81–84). Pasarica et al. reported that type VI collagen gene expres-
sion is elevated in obese subjects, and obese subjects with high 
collagen VI display increased adipose tissue inflammation (82). 
Spencer et al. also described an association between collagen VI, 
fibrosis, and alternative activation of macrophages in the adipose 
tissue of insulin-resistant subjects (83).

In addition to the deleterious impact of fibrosis on adipose tis-
sue functions, subcutaneous adipose tissue fibrosis measured in 
severe obesity is associated with resistance to weight loss induced 
by bariatric surgery (71, 79).

In the future, use of scoring of adipose tissue fibrosis could be 
of interest to adapt the medical standard of care of obese patients 
in order to optimize patient follow-up and outcomes in obesity 
treatment (85).

Pathways perpetuating adipose tissue fibrosis
In various organs, the common underlying mechanism leading to 
fibrosis involves the generation and the proliferation of myofibro-
blasts producing excessive amounts of ECM components (86). In 
adipose tissue derived from obese humans, fibroblastic α–smooth 
muscle actin–positive (αSMA+) cells are enriched in fibrotic bun-
dles (Figure 2 and ref. 71). TGF-β1 usually represents the proto-
typic inducer of profibrotic myofibroblast differentiation from all 
precursor cell types (87). However, a combination of fibrogenic 
signals, increased in the fibrotic adipose tissue (43), cooperates 
to sustain the adipose tissue fibrotic transformation. TGF-β1 (88) 
and activin A (89, 90) belong to the TGF-β superfamily and pro-

dominantly expressed collagen mRNAs in adipose tissue encode 
type I, IV, and VI collagens, the latter being the most abundantly  
expressed. In collagen VI–null ob/ob mice, adipose tissue mass 
increases as a result of uninhibited volume expansion of individual  
adipocytes. As in mouse models discussed above, this increased 
adiposity is associated with lowered local inflammation together 
with a global improvement of metabolism in obese animals rela-
tive to collagen VI–expressing mice (69). Accumulation of ECM 
in adipose tissue might thus contribute to a failure to adequately 
limit the expansion in fat mass. This hypothesis is corroborated by 
other studies, such as those using mice lacking the pericellular col-
lagenase MT1–matrix metalloproteinase (MT1-MMP). MT1-MMP 
inactivation results in the formation of a rigid network of collagen 
fibrils, which compromises adipocyte differentiation and lipid 
accumulation (77). Similarly, inhibition of lysyl oxidase (LOX), 
an enzyme involved in collagen cross-linking, dampens meta-
bolic dysfunctions and WAT inflammation in obese mice (78). 
In human adipose tissue, decreased adipocyte size is detected in 
regions with fibrosis as compared with fibrosis-free cells (71). The 
development of a prototypic tool (AdipoScan) based on elastogra-
phy shows that adipose tissue fibrosis is associated with significant 
change in tissue stiffness (79).

To further investigate the functional impact of increased inter-
stitial fibrosis, the consequences of collagen deposition for adipo-
cyte biology have been examined. Mature adipocytes, cultured 
in a peptide hydrogel containing decellularized material isolated 
from adipose tissue of obese subjects, showed that fibrosis itself 
induces adipocyte functional alterations similar to those observed 
in obese adipose tissue, such as decreased lipolysis and adipokine 
secretion and increased proinflammatory cytokines production. 
Those effects appear to be dependent on mechanosensitive sig-

Figure 2. Illustration of adipose tissue fibrosis in obese subjects. Obesity increases collagen deposition and myofibrocyte distribution in adipose tissue. 

(A) A section of adipose tissue with no fibrosis. (B) In contrast, fibrotic adipose tissue contains fibrosis-forming collagen bundles that trap adipocytes. 

Fibrosis can also be observed around a blood vessel (lower left) and around a crown-like structure with macrophages and inflammatory cells. 
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formation and adipose tissue fibrosis (108). Transcriptomic profil-
ing of macrophages showed that Mincle modulates macrophage 
functions important for the control of ECM production, fibroblast 
proliferation, and ECM degradation, further suggesting that mac-
rophages may be of importance in myofibroblastic transformation 
with ECM deposition (108). Additionally, macrophages partici-
pate in fibrosis clearance through collagen uptake and lysosomal 
degradation involving the collagen receptors mannose receptor 1 
(Mrc1) and urokinase plasminogen activator receptor–associated 
protein (Endo180, also known as Mrc2) (109), or milk fat globule 
epidermal growth factor 8 (Mfge8), a secreted glycoprotein that 
binds collagen to target it for removal from the ECM (110). None-
theless, the involvement of other bone marrow–derived cell types 
in this process cannot be ruled out (111).

Limited vascular outgrowth is also of importance in unhealthy 
adipose tissue remodeling, since it results in hypoxia. In adipose 
tissue, HIF1α links the hypoxic milieu to fibrosis and inflamma-
tion (78, 112). Overexpression of HIF1α promotes a transcriptional  
program associated with the induction of ECM proteins and 
inflammation. Conversely, the selective inhibition of HIF1α using 
an inhibitor or induction of WAT-specific dominant-negative Hif1a 
in obese mice alleviates WAT fibrosis and inflammation (112).

Progenitors in fibrosis: adipogenic versus 
myofibroblastic precursors
In fibrotic organs, the excessive deposition of ECM, a defining 
feature of fibrosis, starts with cells that are sensitive to profibrotic  
stimuli acquiring a myofibroblastic phenotype. Myofibroblasts are 
characterized by de novo expression of αSMA, formation of cellular 
stress fibers, and abundant production of ECM proteins and auto-
crine growth factor that maintains cell proliferation and survival 
(113). Some studies suggest that in mouse models of renal, hepatic, 
or pulmonary fibrosis, myofibroblasts could arise from the differen-
tiation of local epithelial cells via epithelial-mesenchymal transition 
(114). However, this view is now challenged by strong evidence from 
lineage tracing studies in various organs highlighting that myofibro-
blasts originate from local mesenchymal cells (115, 116). As such, 
ADAM12+ and Gli1+ cells were identified as a minimal subset origi-
nating myofibroblasts (115, 116).

mote activation of SMAD2/3 transcription factors (91). Activa-
tion of SMAD2/3 modulates the expression of several profibrotic 
genes (91), including collagens, ECM-remodeling enzymes such 
as matrix metalloproteinases (92), or the integrin transmembrane 
receptor, activation of which can perpetuate fibrotic signaling 
(93). In addition, multiple studies, using activation or inhibition 
approaches, show that platelet-derived growth factor-α (PDGFα) is 
another critical profibrotic signal that binds tyrosine kinase recep-
tors such as PDGFRα and PDGFRβ for an important contribution 
to the proliferative phenotype of fibrosis-producing cells (94–97). 
PDGFRβ was also found expressed on adipose progenitors, but its 
exact role in adipose tissue needs to be clarified, though its profi-
brotic activity was described in the liver (98). Moreover, connec-
tive tissue growth factor (CTGF), a secreted matricellular protein, 
can affect multiple signaling pathways that contribute to the per-
sistence of fibrosis. CTGF is indeed involved in ECM remodel-
ing and deposition, myofibroblast activation, cell adhesion, and 
migration (80, 99).

Emerging knowledge has provided the necessary informa-
tion to start deciphering the molecular networks involved in the 
fibrotic process (Figure 3). During obesity, the production of vari-
ous endogenous activators of TLR4 is augmented (including LPS, 
tenascin C, HMGB1, and fetuin-A) (100–104). Such activation of 
TLR4 on bone marrow–derived cells mediates the development 
of obesity-associated adipose tissue fibrosis (88). This suggests 
that obesity-induced adipose tissue inflammation (105) involves 
TLR4 activation on leukocytes, which in turn may secrete factors 
critical for the promotion of fibrogenesis. For example, stimula-
tion of TLR4 potentiates PDGFRα signaling (106) and TGF-β pro-
duction (88), and adipose tissue fibrosis is dampened upon treat-
ment with a neutralizing anti–TGF-β antibody (88). In addition,  
macrophage-inducible C-type lectin (also known as Mincle, 
Clec4e, or Clecsf9) is induced in macrophages by LPS via TLR4; 
during obesity, Mincle is localized to macrophages within crown-
like structures (CLSs) in adipose tissue. CLSs represent a site of 
interaction between adipocytes and macrophages that facilitates 
scavenging of residual lipid droplets, and increased CLS formation 
is associated with insulin resistance in humans (22, 107). Interest-
ingly, Mincle-KO mice are protected against obesity-induced CLS 

Figure 3. Adipose tissue fibrosis in obese subjects. With chronic obesity, WAT depots undergo continual remodeling, becoming pathological. Combined 

with unadapted vascularization promoting hypoxia and unresolved inflammation, alteration of the equilibrium between the myofibroblast and the 

adipogenic fate of adipose progenitors is important in the unhealthy growth of adipose tissue. Various signals and transcription factors were found to be 

important in controlling the fate of progenitors.
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In injured muscle or in muscular dystrophy, bipotent fibro/ 
adipogenic progenitors have been shown to give rise to adipocytes 
and collagen-producing cells that compromise muscle function. 
These progenitors were identified with markers very similar to those 
found on adipogenic progenitors isolated from WAT (117–119).

In adipose tissue fibrosis accumulation, PDGFRα+ progeni-
tors are identified as the main contributors to ECM production. 
PDGFRα+ progenitors were initially identified for their ability to 
differentiate into white adipocytes (34). However, in fibrotic adi-
pose tissue, we and others observed that PDGFRα+ cells produce 
the highest levels of fibrosis markers such as collagens as compared 
with adipocytes, endothelial cells, or macrophages, and they accu-
mulate in fibrotic adipose tissue (43, 88).

This bipotent capacity to differentiate into adipocyte or myo-
fibroblast suggests that heterogeneity among adipose tissue pro-
genitors could be pathologically relevant. Accordingly, the expres-
sion level of CD9, a surface marker protein whose expression was 
coregulated with fibrosis markers (70), defines two progenitor pop-
ulations. In lean mouse adipose tissue, PDGFRα+CD9hi progenitors 
are driven toward ECM production, whereas PDGFRα+CD9lo cells 
are committed to adipogenesis. In the fibrotic WAT, the PDGFRα+ 

CD9hi subset accumulates, while the PDGFRα+CD9lo popula-
tion is lost. These observations in mice were further translated 
by observations in visceral fat (i.e., omental adipose tissue) from 
severely obese subjects. CD9 expression also defines two popula-
tions among the CD34+CD45–CD31– cells. An increased frequency  
of CD9hi over CD9lo progenitors is also observed together with 
omental adipose tissue fibrosis in these subjects with severe obesity 
with or without diabetes. Interestingly, the number of CD9hi pro-
genitors was also associated with glucose control in this population.

Furthermore, boosting PDGFRα-mediated profibrotic sig-
naling in PDGFRα+ progenitors (94, 120, 121) favored the accu-
mulation of CD9hi over CD9lo cells. This phenotypic switch was 
concomitant with collagen deposition, reduced fat accretion, and 
local insulin resistance, supporting a direct local role for PDGFRα+ 
progenitors in WAT metabolic alterations (43).

The use of single-cell RNA sequencing to examine the tran-
scriptional profile of individual cells enables exploration of the cel-
lular diversity in different adipose tissue microenvironments. An 
elegant study confirmed the fibrotic fate of CD9hi progenitors and 
added a layer of complexity, showing that CD9hi progenitors also 
include mesothelial cells (122). Mesothelial cells form a mono-
layer, known as the mesothelium, that covers internal organs. In 
some circumstances, they are shown to be able to undergo meso-
thelial-mesenchymal transition to acquire a myofibroblastic phe-
notype with secretion of inflammatory mediators and ECM com-
ponents (123, 124). However, to date, the exact role of mesothelial 
cells in visceral adipose tissue homeostasis remains unelucidated, 
especially in the context of energy imbalances.

Several recent studies now depict great heterogeneity among 
adipose progenitors, along with functional differences. In adipose 
tissue, these progenitors also produce chemokines and cytokines, 
suggesting that they may be involved in obesity-induced WAT fibro-
sis and the orchestration of adipose tissue inflammation (122, 125). 
Accordingly, among progenitor cells, those that exert a regulatory 
function on immunocyte expansion can be distinguished from adipo-
cyte precursors. Through the production of IL-33, IL-33+ progenitor 

subsets function to control the accumulation of regulatory T cells in 
the adipose tissue, suggesting progenitors as an important orchestra-
tor of the tissular immunological response (126). In addition, IL-33 
was shown to be a positive inducer of fibrosis in lung and liver (127).

In addition to heterogeneity in function, progenitor subsets 
are defined along a developmental hierarchy with specific loca-
tion. DPP4+ progenitors located in the reticular interstitium sur-
rounding the adipose depot give rise to precursors committed to 
adipocyte fate as ICAM1+ and CD142+ preadipocytes distributed 
between the mature adipocytes in the fat depot cells (128). Nota-
bly, in a separate work, a subpopulation identified as CD142+ 
displays adipogenesis-regulating properties, as these cells can 
suppress adipocyte formation in a paracrine manner without adi-
pogenic potential (35). Interestingly, TGF-β signaling functions to 
maintain DPP4+ progenitor identity and to inhibit the adipogenic 
transformation of DPP4+ and CD142+ cells (128).

Our current understanding is that adipose tissue progenitors 
can undergo differentiation toward either adipogenic or fibrogenic  
cell programs. Thus, a switch in progenitor orientation toward 
either the adipocyte or fibrotic lineage might be instrumental in 
the adipose tissue response to obesogenic conditions. This orien-
tation is probably critical in cell fate determination, and fibrosis 
orientation may alter the healthy expansion of adipose tissue with 
a reduced ability to form new fat cells. In agreement with this view 
in which adipogenesis and fibrogenesis are interconnected, limit-
ing of the precursor adipogenic phenotype through PPARγ dele-
tion or PDGFRα activation favors the fibrotic transformation of 
WAT (21, 94), and results in a maladaptive response of the adipose 
tissue to obesogenic stress. These observations also argue for an 
interplay between the adipogenic and the myofibroblastic fate.

Generation of white adipocytes is not solely connected to the 
fibrotic pathway. Adipose progenitors can also form beige adipo-
cytes (16, 41), a process named adipose beiging (wherein WAT 
develops characteristics of metabolically active BAT), and com-
pelling evidence supports that adipose beiging and fibrosis are 
opposing pathways. As such, the PRDM16 transcriptional com-
plex not only activates brown/beige fat development (17), but also 
potently represses adipose tissue fibrosis through its direct inter-
action with GTF2IRD1. Interestingly, this phenomenon is inde-
pendent of UCP1’s uncoupling function (129).

In addition, PRDM16-dependent metabolic signals arising 
from adipocytes regulate progenitor fate, blocking fibrosis while 
enhancing beige adipogenesis (130). The transcription factor 
MRTFA has also consistently been highlighted as another critical 
inducer of progenitor fibrotic fate (131) with critical roles in beige 
adipogenic orientation (132) and improvement of the metabolic 
health of adipose tissue.

An understanding of adipose tissue fibrosis 
resolution is still needed
Antiobesity treatments mostly rely on approaches limiting caloric 
intake in order to promote weight loss. In severe obesity, bariatric 
surgery is a therapeutic procedure that efficiently leads to drastic 
weight loss, amelioration of low-grade inflammation, and even dia-
betes resolution in some (but not all) patients along with reduction of 
cardiovascular risks. Surprisingly, analysis of human WAT revealed 
that weight loss induced by surgery is accompanied by increased 
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deposition of ECM (133), suggesting that weight loss has a profound 
impact on tissue remodeling. Other studies have confirmed these 
findings and suggest that adipose tissue inflammation could be of 
importance in this process, as leukocyte and macrophage infiltra-
tion remained after loss of fat mass (134, 135) and could then sustain 
the lack of fibrosis resolution. The functional consequences of this 
WAT remodeling deserve further attention, as this process could 
favor/potentiate tissue metabolic deteriorations in patients who fre-
quently experience weight loss and rebound.

Conclusions and perspectives
With excess energy pressure, expandability and remodeling 
appear to be critical adipose tissue functions for clinical outcomes 
(136). WAT fibrosis accumulation, characterized by pathological 
remodeling and reductions in adipose expandability, is consid-
ered to be an aggravating factor in obesity and associated meta-
bolic diseases. As a solution to control the balance between adi-
pose tissue expandability and fibrosis, adipose progenitors have 
become a target of interest. This is highlighted by the fact that 
intradermal adipose-derived myofibroblasts remain multipotent 
and can be reprogrammed during wound healing to generate fat 
cells (137, 138). More studies are necessary to delineate the crit-
ical pathways controlling adipocyte and myofibroblast balance 
in subcutaneous and visceral fat. Deeper understanding of these 

pathways would lay the groundwork to develop new therapeutic 
strategies to maintain (or rescue) adipose tissue plasticity in order 
to break the deleterious link between obesity and associated met-
abolic dysfunctions.
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