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ABSTRACT 

 

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, 

due in part to extensive intratumoral heterogeneity, high rates of metastasis and 

chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic 

basis of chemotherapy resistance in TNBC patients remains poorly understood. Here, 

using single-cell transcriptome datasets of matched longitudinal TNBC 

chemoresponsive and chemoresistant patient cohorts, we discover cell 

subpopulations associated with chemoresistance and the signature genes defining 

these populations. Notably, we show that the expression of these chemoresistance 

genes is driven via a set of TNBC super-enhancers and transcription factor networks 

across TNBC subtypes. Furthermore, genetic screens reveal that a subset of these 

transcription factors is essential for the survival of TNBC cells and their loss increases 

sensitivity to chemotherapeutic agents. Overall, our study has revealed transcriptional 

regulatory networks underlying chemoresistance and suggests novel avenues to 

stratify and improve the treatment of patients with a high risk of developing resistance. 
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INTRODUCTION 

 

Triple-negative breast cancer (TNBC) is a highly heterogeneous disease defined by the 

absence of oestrogen receptor (ER) and progesterone receptor (PR) expression and human 

epidermal growth factor receptor 2 (HER2) overexpression 1.  It is associated with a poorer 

clinical outcome due to a lack of early prognostic techniques, high incidences of relapse, 

metastasis and a lack of targeted therapeutics 2. In the neoadjuvant setting, chemotherapy is 

the standard treatment, which includes a combination of taxanes and anthracyclines. 

However, approximately 30%-50% of patients develop resistance, and their prognosis 

worsens to 13-15 months survival 3,4. Despite TNBC being grouped as a single disease, 

clinical, histological, and molecular profiling have highlighted its intrinsic heterogeneity 5.  This 

heterogeneity is further highlighted with the identification of unique TNBC subtypes (TNBC 

type-4 classification) that include: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M) and 

luminal androgen receptor (LAR) 6. Each subtype displays unique transcriptional patterns, 

biology and chemotherapy response 7,8. 

 

The distal gene regulatory landscape plays a critical role in driving disease-associated altered 

cell-fates9. A super-enhancer (SE) is a cluster of enhancers initially found to be essential in 

determining cell identity during differentiation but have progressively been implicated in 

disease initiation and progression, including tumorigenesis 10–12. In breast cancer, it has been 

demonstrated that enhancer and SE transcription can reveal insights into subtype-specific 

gene expression programs 13. SEs exhibit high transcription factor density, especially for Core 

Regulatory Circuitry (CRC) transcription factors (TFs) and drive the expression of key genes 

that strongly influence cellular identity and function 11,14,15. These CRC TFs have been shown 

to self-regulate, where they inwardly bind to SE regions and outwardly regulate SE-associated 

genes with the CRC, forming a forward-feeding loop. Accordingly, disrupting SE structure or 

inhibiting SE targeting factors has shown promising results as a potential therapeutic avenue 

for certain cancers 16,17.  Surprisingly, however, the contribution of SEs and associated CRC 

landscapes in regulating the gene regulatory programs underlying TNBC aggressiveness 

remains unknown. In particular, it remains to be known whether TNBC subtype-specific super-

enhancers and CRCs exist to confer different degrees of chemoresistance in these subtypes. 

 

In this study, we aimed to address these longstanding questions by characterising the 

epigenomic, transcriptomic and TF landscape underlying chemoresistance in TNBC patients. 

By profiling matched longitudinal single-cell RNA-sequencing data (scRNA-seq) of 

chemoresponsive and chemoresistant TNBC patients, we identified unique cellular 

subpopulations associated with chemoresistance and revealed genes that define these 

subpopulations. Notably, a subset of these signature genes outperformed existing gene 

panels in classifying pathologic complete response versus persistent residual disease against 

pre-operative neoadjuvant chemotherapy in TNBC. Furthermore, by analysing data from 

H3K27ac Chromatin immunoprecipitation followed by sequencing (ChIP-seq) of TNBC 

subtype patients, we define the SE architecture and CRCs associated with the gene 

expression programme underlying chemoresistance and reveal several TFs whose depletion 

can improve the efficacy of chemotherapy across TNBC subtypes. 
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RESULTS 

 

A subpopulation specific gene expression signature associates with aggressiveness 

in chemoresistant TNBC patients 

 

We began by outlining a stepwise plan to reveal the gene regulatory circuitry underlying 

chemoresistance in TNBC patients (Fig. 1A). Due to the high degree of intra-tumour 

heterogeneity associated with TNBC, scRNA-seq provides a higher level of resolution and 

enables the identification of minor changes in gene expression profiles within tumour cells, 

being embedded with multiple cell types in a varying proportion which could be lost in bulk 

RNA-seq analysis. To unravel the underlying mechanisms of chemoresistance in TNBC, we 

obtained and analysed a scRNA-seq dataset consisting of a total of 6,862 cells from four 

responsive (chemosensitive) and four resistant (chemoresistant) patients to neoadjuvant 

chemotherapy (NAC) at pre- and post-treatment time points, containing only tumour cells as 

they were pre-selected before sequencing (Supplementary Table 1). To classify the tumours 

as sensitive or resistant in the scRNA analysis, Kim et al18 had performed deep-exome 

sequencing on 20 patients in which they identified 10 patients where NAC led to clonal 

extinction (sensitive) and 10 patients where clones persisted (resistant) after treatment. From 

these 20, 8 patients (4 sensitive and 4 resistant) were selected for single-cell RNA 

sequencing18.  We hypothesized that by profiling TNBC chemoresistant patient data at the 

single-cell level, we could identify critical markers driving chemotherapy response. 

Furthermore, identifying these markers could enable the prediction of chemotherapy response 

in untreated patients.  

 

As it is thought that chemoresistance occurs due to the clonal evolution of pre-existing clones 
18,19, we focused our analysis on markers unique to the pre-treatment chemoresistant patients 

to identify the critical transcriptional landscape defining chemotherapy response. In the original 

study20, the authors had highlighted that the batch effects were minimal between patient 

samples and hence we were convinced we could proceed with merging. By merging scRNA-

seq data from all 8 patients, we extracted the cells of the pre-treatment samples (Fig. 1B, 

Supplementary Fig. 1A-D). Clustering analysis of pre-treatment cells revealed that 

chemoresistant and chemosensitive patients had overlapping clusters, highlighting the lack of 

batch effects identified by Kim et al, but also a distinct, separate cluster of chemoresistant 

cells, highlighting a subset of cells that may play a role in patients showing a poor response 

to chemotherapy (Fig. 1B). Cell annotation analysis, performed by SCSA using established 

cell type markers from two public databases: CellMarker and CancerSEA. database21, 

revealed that chemoresistant clusters were predominately basal epithelial cells whilst 

chemosensitive clusters contained luminal progenitor and luminal epithelial cells 

(Supplementary Fig. 1B). Interestingly, progenitor cells are more likely to be sensitive to anti-

cancer therapies22, whilst luminal epithelial cells can give rise to basal epithelial cells upon 

oncogenic stress23. To gain an insight into the transcriptional landscape driving 

chemoresistance, in pre-treatment patient samples, we applied pseudobulk differential gene 

expression analysis between chemosensitive and chemoresistance annoataions. We 

identified distinct and statistically significant gene expression patterns for each condition (p-

value >=0.05 and logfc>=1) (Fig. 1C, Supplementary Fig.1E). Gene ontology analysis showed 

enrichment of extracellular matrix remodelling and transforming growth factor-beta (TGF-) 

signalling (Fig. 1D), processes associated with EMT, confirming the results from Kim et al, and 

which have previously been implicated in TNBC chemoresistance24. Together these results 
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highlight the existing differential transcriptional landscape of chemoresistant and 

chemosensitive TNBC patients prior to NAC treatment. 

 

Due to the low patient numbers in the scRNA-seq data, we next sought to identify genes with 

a reproducible expression in a larger cohort of patients. To address this issue, we obtained 

and processed bulk RNA-seq datasets (GSE20271, GSE25055, GSE25065, GSE20194 and 

GSE163882) consisting of 397 TNBC patients, pre-NAC, with known outcomes of pathologic 

complete response (pCR) and residual disease (RD). To ensure that batch effects between 

studies were minimal, we corrected using the established R package SVA and the function 

ComBat which uses empirical Bayes frameworks for adjusting data for batch effects25. We 

found that there were very little batch effects following merging that were corrected post-

analysis (Supplementary Fig. 2A-B). To assess the reproducibility of the genes in a larger 

patient cohort we compared expression levels of each gene between RD and pCR across 397 

TNBC patients total. This resulted in the identification of 300 marker genes which showed a 

significantly higher expression across all patients with RD (Fig. 1E). By implementing Kaplan–

Meier estimator survival analysis on RNA-seq data from the TNBC METABRIC cohort, we 

revealed that high average expression of these 300 genes is associated with a significantly 

decreased relapse-free survival in TNBC patients whilst using the median expression as the 

cut-off point to stratify patients into high and low subgroups (Fig 1F). In addition, following the 

reduction in gene numbers due to many having non-detectible expression in bulk RNA-seq 

data, Gene Ontology analysis revealed that these genes were significantly involved in EGFR 

signalling pathway (Fig 1D.), which is previously implicated in TNBC chemoresistance 26–28.  

 

Distinct transcription factor regulons are active in pre-treatment chemoresistant cells 

  
Currently the regulatory landscape driving TNBC chemoresistance is unknown. We sought to 

address this by investigating potential regulatory mechanisms which govern expression of 

chemotherapy resistant genes, we deployed a single-cell regulatory network inference and 

clustering (SCENIC) 29 computational pipeline to identify regulons (TFs and their targets) and 

assess their activity in the chemoresistant cell populations compared to chemosensitive ones 

(Fig. 2A). In brief, first co-expression modules were identified using GRNBoost. Next, the 

motifs driving resistant cells were discovered using cisTarget. Finally, the regulon activity was 

quantified by assessing enrichment of the regulon target genes using AUCell30. Through this 

analysis, we identified regulons with high activity and specificity scores for both 

chemoresistant and chemosensitive cells (Fig. 2B-C, Supplementary Table 2). Of note, the 

Transcription Factor (TF) TFAP2C was identified among the top regulons based on the AUCell 

score in chemoresistant cells and not present in chemosensitive cells (Fig. 2C-D) and has 

previously been implicated in EMT signalling and chemoresistance in lung adenocarcinoma, 

but not yet in TNBC 31,32. Additionally, we discovered SP1 which was shown to promote 

chemoresistance and metastasis in ovarian cancer and breast cancer33. In both cases, it has 

been implicated in EGFR transactivation and facilitating migration and invasion through 

Smad3 and ERK/Sp1 signalling pathways 33,34.  Furthermore, another regulon TFAP2A has 

also have been associated with chemoresistance in colorectal cancer but not yet in TNBC 35. 

Interestingly, expression of many of these TFs including TFAP2C, TFAP2A and SP1 were 

higher in treatment naïve chemoresistance patients as compared to the chemoresponsive 

patients and these patterns persisted post-chemotherapy (Fig. 2E). Such higher expression 

and activity of these TFs in resistant patients compared to sensitive implicates these TFs 

among the key contributors of chemoresistance in TNBC patients. 
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A minimalistic gene signature of 20 genes can predict chemotherapy response in 

treatment naïve TNBC patients with high accuracy 

 

In TNBC, patients achieving a pathologic complete response to neoadjuvant chemotherapy is 

a crucial predictor of a patient's long-term outcomes and can allow an early evaluation of the 

effectiveness of systemic therapy3,36. We next wanted to investigate whether the genes 

identified are potentially the critical drivers of chemoresistance in these patients by identifying 

a significant gene set that could accurately stratify RD and pCR patients. By utilising Lasso 

and Elastic-Net Regularized Generalized Linear Models, we identified a significant gene set 

that could accurately differentiate between pCR and RD in TNBC patients. We derived our 

training dataset by combining GSE20271 and GSE25055 datasets with 177 TNBC patients 

(57 pathologic complete response, 120 residual disease), and to derive the validation dataset, 

we combined GSE25065 and GSE20194 datasets with 130 TNBC patients (46 pathologic 

complete response, 84 residual disease). We combined these datasets to increase the training 

and testing cohorts to improve the strength and validity of the proposed gene model as 

previously shown37. In brief, we built a single-fold lasso-penalised model for all genes, in the 

training dataset, then performed 10-fold cross-validation (Supplementary Fig. 3A-B) to identify 

the best predictors of RD vs pCR. We then took our top predictors (Fig. 3A), built a new model 

and performed ROC analysis on our validation dataset. This analysis revealed a total of 20 

genes (CLCN3, NDUFA6, PTPRJ, GDAP2, RNF19B, MKKS, TSHZ2, COL21A1, LOXL2, 

SLC11A2, ESM1, CTDSPL, RAI1, EFEMP2, DTNA, EPHB3, EGFR, HOXA1, MSH3 and 

PPFIA2) to have the strongest discriminatory power between RD and pCR, training AUC = 

0.90 (Fig. 3B), Validation AUC = 0.89 (Supplementary Fig. 3C). 

 

As we have been focusing on TNBC only, we next sought to explore the role of the 20 gene 

model in other breast cancer subtypes. We first investigated the the expression of all 20 genes 

in the TCGA-BRCA dataset containing the four primary subtypes of breast cancers. In 

combination, the average expression of the 20 genes showed significantly higher expression 

in the Basel subtype compared to Luminal A and B breast cancer subtypes but lower in the 

HER2 subtype (Supplementary Fig. 3D). We next wanted to expand the utility of our 20 gene 

panel to include a prognostic capability through testing 5 year relapse free survival. Notably, 

survival analysis of all TNBC patients from the METABRIC cohort, using median expression 

as the cut-off value, revealed that in combination high expression of this gene signature is 

associated with significantly reduced relapse-free survival over five years (Fig. 3C). However, 

in luminal A/B and HER2 patients’, higher expression of the gene set had no correlation with 

increased or reduced survival (Supplementary Fig. 3E-F). Highlighting that higher expression 

of these genes in TNBC only, is underlying their chemoresistance potential. Furthermore, 

when filtering TNBC METABRIC patients for those only receiving NAC we found that high 

expression of the 20 genes is again associated with reduced survival irrespective of the 

chemotherapy regimen (Fig. 3E). Altogether, these findings suggest that increased expression 

of these genes in treatment naïve TNBC patients may drive chemoresistance leading to poor 

outcomes.  

 

Whilst we had built and tested the model on two large cohorts we next sought to further 

validate our model’s predictive strength by  applying it to the TNBC METABRIC cohort. Again, 

whilst not considering which chemotherapy regime was applied and using patients’ relapse- 

free status as a determination of pCR and RD, our model successfully predicted 89.4% of RD 

and 82.9% of pCR patients correctly (Fig. 3E). This outcome successfully highlights, not only 
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the predictive strength of our model but also highlights that high expression of the 20 genes 

can give insights into patients relapse free survival. Unlike other breast cancer subtypes, there 

are currently no tests in clinical use for TNBC patients to accurately predict NAC response 

and facilitate their clinical management 38. While several predictive panels have been 

published for TNBC, none have achieved clinical utility due to small sample sizes, lack of 

validation data and inability to achieve the necessary predictive strength in oestrogen and 

HER2 positive tumours 7,37,39–41. Addressing this critical unmet need, we show that our 20 

genes hold a high predictive power in determining RD or pCR (with an area under the curve 

(AUC) of 0.90) (Fig. 3B). Notably, our model utilising this minimal 20 gene set outperformed 

all previous models in predicting chemotherapy response in TNBC37,41 (Fig. 3F). The specific 

combination of these 20 genes was essential for its high performance as further removal of 

genes (top 5) significantly reduced the accuracy (AUC: 0.827) (Supplementary Fig. 3G). 

Additionally, by applying 20 cross-validation iterations we found that the predictive strength 

remained the same (Supplementary Fig. 3H). 

 

One of the key factors that result in TNBC being the most aggressive breast cancer subtype 

is tumour heterogeneity. Due to this, recent studies have emerged that have  further classified 

TNBC into four primary subtypes, with each having distinct transcriptional programs and 

differing responses to chemotherapy 7,42.  To address this and explore the role of our 20 gene 

panel in each subtype we performed pseudobulk RNA-seq analysis, on a dataset containing 

6 TNBC patients43. We successfully classified each patient into TNBC subtypes; basal-like 

(BL1 and BL2), luminal androgen receptor (LAR) and mesenchymal (M) using TNBCtype6 

(Supplementary Fig 4A-B). To broaden our model’s applicable strength, we applied our 

prediction model to the pseudobulk data, resulting in the prediction of three patients as having 

a potential for developing RD (Supplementary Fig. 4C-D). Using the R package “UCell”44 we 

measured the average expression of our 20 genes across each subtype and prediction and 

found that our signature was higher in patients with BL1 and LAR subtypes and patients 

predicted to have RD (Supplementary Fig. 4E-F). These results suggest that higher 

expression of a distinct set of genes, originating from specific cellular subpopulations, 

potentially drives chemoresistance in certain TNBC patients. Overall, our findings revealed a 

minimalistic gene signature of 20 genes that can predict chemotherapy response in treatment 

naïve TNBC patients with high accuracy and hold strong potential for prognosis in these 

patients. 

 

A distinct epigenetic landscape defines chemoresistance status 

 

Epigenomic dysregulation is known to play a critical role in disease progression in multiple 

cancers, including TNBC. The acetylation of Lysine 27 at Histone H3 (H3K27ac) is a mark of 

active proximal and distal regulatory elements including enhancers and known to govern the 

gene expression programmes associated with cell identity. Therefore, we analysed ChIP-seq) 

data for H3K27ac for eight primary TNBC patients as well as corresponding transcriptome 

(RNA-seq) datasets (ENA: accession number PRJEB33558). First, by applying our therapy 

resistance prediction model to the RNA-seq data from each patient, we were able to classify 

each as having a potential for developing RD while normal human mammary epithelial cells 

(HMEC) as pCR (Fig. 4A). We next classified each patient sample into four TNBC subtypes, 

basal-like (BL1 and BL2), luminal androgen receptor (LAR) and mesenchymal (M) using 

TNBCtype6. Using a similar approach, we also classified TNBC cancer cell lines into TNBC 
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subtypes (Fig. 4A). Furthermore, given the tumour-cell exclusive origin of our signature, we 

also attempted to classify these cells lines as pCR and RD and were successful (Fig. 4A). 

 

We next investigated how the distribution of H3K27ac changes across these subtypes. 

Towards this, we compared the overlap of all H3K27ac peaks across each TNBC subtype and 

identified regions with an increased enrichment in RD compared to pCR (Fig. 4B-C). Next, to 

characterise the chemoresistance genes using subtype-specific H3K27ac signal, we 

compared the loss and gain of H3K27ac marks within chemoresistant gene regions across 

each subtype and pCR samples. Differential enrichment of peaks between pCR and RD was 

called using the R package “Diffbind”45, with the criteria of a minimum of 50% overlap of peaks. 

This analysis further showed that there was a significant gain of H3K27ac enrichment at 

chemoresistance genes across each TNBC sample (RD) and a significant loss in pCR (Fig. 

4D). However, this analysis was not able to fully discriminate regions that gained sites (with 

positive fold change) and lost sites (negative fold change) when comparing pCR and RD. As 

we had used these criteria to call these peaks (differential enrichment), it is possible that some 

regions still had sufficient enrichment of H3K27ac that shows up in the heat map even though 

it is reduced in comparison to the other condition. 

 

To gain insights into the regulatory machinery, we next sought to identify binding sites of 

specific transcription factors at chemoresistance genes with acquired H3K27ac marks in RD 

patients. Motif analysis revealed again a strong enrichment for TFAP2C and SP1 motifs 

among others (Supplementary Table 3), with strongest regulon activity in chemoresistant 

patients (Fig. 2B-E), clearly implying them as potent drivers of the chemoresistance state (Fig. 

4E). Furthermore, chemoresistance genes that gained H3K27ac in BL1 RD patient data 

showed a stronger overlap with similar genes in the RD cell line compared to the pCR (Fig. 

4F), showing a conserved nature of contribution of these genes and their upstream regulation 

in chemoresistance across systems.  

 

Unique super-enhancers are associated with TNBC-subtype-specific transcriptional 

programs underlying chemoresistance 

 

Whilst we were able to show that many chemoresistant genes had strong H3K27ac signal in 

TNBC patients predicted to have RD, this was not sufficiently discriminatory (Fig. 4D). We, 

therefore, focused on the analysis of super-enhancers (SEs) which have increasingly been 

implicated in disease initiation and progression in various contexts including cancer15 46,47. This 

is particularly interesting as no studies have yet investigated their contribution to TNBC 

chemoresistance. We, therefore, subjected our genome wide H3K27ac profiles for TNBC 

patients to the identification of SE elements. SEs were mapped and quantified by Rank 

Ordering of Super-Enhancers (ROSE) software. In summary, ROSE analysis was performed 

with default parameters of 12.5 kb stitching distance, and TSS exclusion size set to 0, with the 

genome set to hg38 48. SE-associated genes were identified as the “nearest gene” output from 

ROSE. Samples were merged based on their subtyping, to identify common subtype-specific 

SE regions (Fig. 5A), resulting in an average of 1279 SEs identified per tumour sample (Fig. 

5B). The genome wide distribution of H3K27ac SE peaks showed its distribution mostly at 

intron (59%) and intergenic (33%) locations (Supplementary Fig. 5A). 

 

In the first instance TNBC SE regions were compared with HMEC pCR samples to identify 

TNBC-specific SE regions (Supplementary Fig. 5B). Further analysis of these data identified 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 8, 2023. ; https://doi.org/10.1101/2023.05.05.539623doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.05.539623


2692 unique and 276 overlapping SEs between each TNBC subtype (Fig. 5C-D). We 

hypothesised that these subtype-specific SEs govern the expression of a selected set of our 

marker resistance genes to drive TNBC chemoresistance. Interestingly, of our 300 marker 

genes, 158 were in close proximity to the discovered subtype-specific SEs (Fig. 5E). Next, we 

calculated the correlation of expression of SE-associated genes across all patients and 

performed unsupervised hierarchical clustering to identify SE-associated genes that show 

subtype-specific expression (Fig. 5F). This analysis identified four prominent clusters with 

unique characteristics of each subtype, and which showed no expression in HMEC cells. 

Interestingly, further Gene Ontology analysis showed enrichment of specific pathways in each 

of these subtype-specific clusters. For example, cluster 1, consisting of BL1 specific SEs, was 

enriched with EMT related signatures; cluster 2, consisting of M specific SEs, was associated 

with Apoptosis related signatures; cluster 3, consisting of BL2 specific SEs, was enriched for 

IL-6/JAK/STAT3 signalling signatures while cluster 4, consisting of LAR specific SEs, showed 

PI3K-Akt related signatures (Fig. 5F, Supplementary Fig. 5C). Of note, EGFR and RAI1, two 

markers we identified to have a high discriminatory effect in chemoresistant patients, were 

located in close proximity to a distinct set of discovered SEs in BL1 and BL2 subtypes. 

Furthermore, our analysis showed that the subtypes LAR and BL1 exhibit the highest number 

of chemoresistant SEs (Fig. 5F). These findings are in line with previous research, where LAR 

followed by the BL1 subtype showed the worst response to chemotherapy 49. To confirm that 

these SE regions were communicating with the predicted target chemoresistance genes we 

processed existing Hi-C datasets from TNBC patients50. By searching the SE regions output 

by ROSE, we indeed confirmed that many SEs of interest are looping in close physical 

proximity to their predicted target genes, including EGFR and RAI1 (Supplementary Fig. 5D). 

Altogether, these observations suggest that the super-enhancer landscape plays a key role in 

the evolution of chemoresistance by governing the expression of key driver genes/pathways 

in a TNBC subtype-specific manner.  

 

Distinct transcription factor core regulatory circuitries operate at TNBC subtype-

specific super-enhancers associated with chemoresistance 

 

Super Enhancers recruit a high density of cell type-specific master TFs to drive cell-state-

specific gene expression profiles51. Furthermore, the expression of TFs that bind SEs are often 

regulated by the activity of SEs in a forward feedback loop and is well-established in many 

malignant cell types 33–34.  To reveal critical master TF interactions responsible for driving the 

TNBC subtype-specific transcriptional program associated with chemoresistance, we 

modelled transcriptional regulatory networks mediated by SEs utilising the python package 

"CRCmapper". It scans TF motifs inside chemoresistance SE regions, and then identifies both 

TFs binding within SE regions and outward binding of SE-associated genes in a complete 

regulatory circuitry (Core Regulatory Circuitry (CRC) cliques). CRC cliques are then scored 

based on TFs which exhibit a high frequency of occurrence across each CRC clique, and the 

top CRC for each TNBC subtype is designated (Fig. 6A). 

 

Following “CRCmapper” analysis on each sample, we calculated a clique enrichment score 

(the percentage of each CRC in which a TF is a constituent member) (Fig. 6A). Following the 

scoring of each CRC, we clustered samples based on their clique enrichment scores and 

revealed intrinsic CRC differences in top TFs across TNBC subtypes and additionally 

highlighted overlapping TFs common between all subtypes (Fig. 6B, Supplementary Fig. 6A-

B).  The TFs identified in each TNBC CRC clique include known lineage-defining TFs such as 
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EN1 56. Other TFs, with a high clique score, include EGR3, STAT3, ETVS, IRF1, IRF2, and 

IRF8. Additionally, we performed CRC analysis using HMEC SE data to identify the top CRC 

in normal (pCR) (Supplementary Fig. 6C). Of note, FOXC1 was also discovered among other 

TFs to be a CRC TF in BL1 in line with the recent findings of it being a SE master regulator of 

invasion, metastasis and chemoresistance in TNBC 57,58.  

 

We next sought to explore the role of identified TNBC-subtype CRC TFs in exhibiting strong 

genetic dependency across multiple TNBC subtypes. Through this analysis we sought to 

identify possible candidate TFs that could be implicated, across subtypes, in driving 

chemoresistance and hold the potential for novel therapeutic intervention. By analysing 

viability data, (following RNAi and CRISPR knockdown) from the Broad DepMap project, we 

extracted data for each CRC TF from cell lines representing each TNBC subtype. We 

performed a regression analysis to associate the correlation between cell line viability with 

each subtype following the loss of function assays. This analysis revealed CRC TFs which 

negatively and positively affected the viability of each TNBC cell line and identified key genetic 

dependencies specific to each subtype and across all (Fig. 6C). Of note, TFAP2C and SP1 

were discovered to be essential for viability across all TNBC subtypes. Other TFs, such as 

STAT3, show genetic dependency across all subtypes, however in some subtypes, they are 

stronger when compared to others possibly due to their engagement in other networks (Fig. 

6C). Furthermore, RREB1 has been shown to be a critical integrator of TGFβ and Ras 

signalling pathways during both developmental and cancer EMT programs 59.  

 

Given our previous observations for a strong enrichment of TFAP2C motifs at the super 

enhancers associated with chemoresistance genes (Supplementary Table 3), its very high 

regulon activity and expression in chemoresistant patients (Fig. 2B-E) and now a strong 

genetic dependency in TNBC cells, we were very tempted to further investigate TFAP2C 

function in driving TNBC chemoresistance. Using the Super-Enhancer Archive61 we first 

identified SEs and their corresponding TFs and overlapped with our CRC and ROSE analysis 

outcomes, which further  resulted in a putative list of top CRC TFs predicted to be bound by 

TFAP2C. To identify direct targets of TFAP2C, we processed TFAP2C ChIP-seq from the 

TNBC cell line MDA-MB-45360. A visualization of TFAP2C binding at predicted SE regions 

indeed confirmed its strong enrichment at these locations (Fig. 6D). Of note, the SE RAI1, a 

top chemoresistance signature gene in our prediction model, showed a significant occupancy 

by TFAPC. We next overlapped all SEs bound by TFAP2C across TNBC patients (n=55) with 

all SE regions associated with chemoresistance genes, resulting in a total of 23 

chemoresistance SEs occupied by TFAP2C (Fig. 6E). Notably, these loci included our 

chemoresistance signature genes as well as other potentially interesting candidates 

(examples shown in Fig. 6D).  Interestingly, gene expression analysis of chemoresistance 

genes associated with TFAP2C bound superenhancers showed that they were expressed at 

significantly higher levels in all TNBC subtypes as compared to the healthy control cells 

(HMEC) (Fig. 6F). Altogether these observations highlight that distinct transcription factor 

CRCs operate at TNBC subtype-specific super-enhancers associated with chemoresistance 

genes and TFAP2C holds potential as one of the key TFs of this process across all TNBC 

subtypes. 

 

TNBC-type specific CRC TFs are essential for the viability of TNBC cells, and their loss 

enhances sensitivity to chemotherapy  
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We next sought to experimentally investigate whether the predicted CRC TFs actively control 

the expression of chemoresistance genes and consequently chemotherapy response. Our 

results revealed that TFAP2C is potentially a master regulator across all TNBC subtypes in 

driving chemoresistance genes by targeting their SEs. Furhermore, equally interesting was 

SP1 that similarly also showed a strong enrichment at SEs of chemoresistance genes and 

high regulon activity and expression in chemoresistance cells. We therefore performed 

depletion of TFAP2C and SP1 in four TNBC cell lines representing each TNBC subtype and 

measured expression of target SE associated genes using RT-qPCR assays (Fig. 7A & 

Supplementary Fig. 6D). Interestingly, in all types, knockdown of TFAP2C and SP1 led to a 

significant decrease in the expression of genes associated with their target chemoresistance 

SEs (Fig. 7B).  

 

Since we had found that many SEs were bound by TFAP2C and SP1, and have a strong 

genetic dependency across each TNBC subtype, we next investigated whether such loss in 

the expression of chemoresistance genes following their depletion would improve the 

response to chemotherapy. Therefore, we performed siRNA knockdowns of each candidate 

TF in four cell lines representing each TNBC subtype, accompanied by treatment with two 

chemotherapy agents (Docetaxel and Epirubicin) and measured cell viability using an MTT 

assays (Fig. 7C). Since these TFs may have other physiological roles 35,56,62–65 in TNBC  

beyond the context of chemotherapy, we did not characterise the effect of depleting these TFs 

alone, without the drugs. Interestingly, the depletion of TFAP2C and SP1 led to a significant 

decrease in cell viability following chemotherapy treatment in all TNBC subtype cell lines 

compared to the control cells (Fig. 7D). In particular, TFAP2C knockdown showed a significant 

reduction in cell viability across all subtypes, again highlighting that TFAP2C is a master, 

versatile regulator of chemoresistance across all TNBC subtypes. Overall, our results show 

that a distinct set of TFs potentially drive the epigenomic landscape and govern the gene 

expression programme that define chemoresistance-associated cell subpopulations. 

Furthermore, direct targeting of these chemoresistance-associated TFs holds the potential to 

improve patient outcomes across all TNBC subtypes (Fig. 7E). 

 

DISCUSSION 

 

Neoadjuvant chemotherapy (NAC) is used frequently in the treatment of TNBC patients due 

to the lack of targeted therapeutics and its ability to reduce tumour size, improve surgical 

outcomes and increase survival in responders. However, due to the intratumoral heterogeneity 

(ITH) associated with TNBC, patients have differing responses to NAC 66. Achieving pCR is 

associated with significantly improved survival outcomes in TNBC patients 67. Identifying those 

patients who will have RD following NAC will enable physicians to determine the best 

therapeutic option at the beginning of treatment, rather than waiting for NAC treatment results, 

to increase the chances of achieving pCR. Numerous efforts have been put into developing 

predictive signatures in TNBC, but currently, there is no clinically recommended predictive 

biomarker panel for NAC response 8,68,69. However, these studies have focused on bulk RNA 

based techniques, in small patient cohorts to identify markers to predict therapy response and 

do not account for the ITH associated with TNBC.   

 

Here, by profiling chemoresponsive and chemoresistant patients at the single-cell level to 

identify markers associated with chemotherapy, we have developed a predictive model which 
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has high accuracy in defining chemotherapy response in TNBC patients. Our 20 gene model, 

through the identification of markers in scRNA-seq and validation in over 300 patients, holds 

a high potential for aiding in the clinical management of TNBC patients by enabling the 

assessment of NAC response upfront. Additionally, we have demonstrated that it outperforms 

all existing signatures for predicting chemotherapy response in TNBC. Furthermore, higher 

expression of our models’ genes are also associated with reduced survival and could 

accurately predict the chemoresistance potential in TNBC patients from the METABRIC 

cohort. It is strongly associated with EGFR signalling, which has been shown to play a critical 

role in TNBC chemoresistance 26–28.   

 

The predictive strength of our model's combination of genes was further demonstrated by 

predicting chemotherapy response in the eight untreated TNBC patients with H3K27ac data.  

Our model was able to classify the patients as having potential for RD accurately. This 

provided the unique opportunity and the rationale to map and quantify enhancers genome-

wide to shed light on the previously uncharacterised SE landscape underlying 

chemoresistance in a subtype dependant manner for the first time. By overlapping with 

chemoresistance genes identified to have a reproducible expression in bulk RNA data, we 

could identify a subset of chemoresistance genes in close proximity to SEs.  Interestingly, BL1 

and LAR subtypes had the highest proportion of SEs. LAR followed by BL1 are the top two 

TNBC subtypes associated with increased chemoresistance and poorer outcomes 49. The SE-

associated genes were significantly involved in EMT and PI3K-Akt signalling processes in BL1 

and LAR subtypes. Both have previously been implicated in chemoresistance in multiple 

cancer types, including breast cancer and specifically TNBC 70,71. 

 

Additionally, whilst the dysregulation of gene expression in TNBC has been previously 

characterised, it has not been adequately explained by typical transcriptomic analysis alone. 

Instead, such extensive changes are attributed to the widespread transcriptional rewiring 

occurring in breast cancer cells, including the utilisation of core transcription factors, as well 

as the activation of many gene-regulatory elements, including enhancers and super 

enhancers.13,72 Defining epigenomic characteristics are instrumental to dissecting gene 

regulatory programs which underlie cancer disease progression. Here, for the first time, we 

have profiled and characterised the TF regulatory network, using subtype-specific SE profiles, 

underlying TNBC chemoresistance. This systematic identification of active TNBC subtype 

regulatory elements has led to several enabling observations. By constructing the TNBC TF 

regulatory network using subtype-specific SE profiles, we can identify the critical TF nodes 

that enforce the TNBC subtype epigenome underlying chemoresistance. Of note, TFAP2C, 

TFAF2A, and SP1 were shown to have higher expression in chemoresistance pre- and post-

single-cell data, highlighting their implication in driving chemoresistance in TNBC. Additionally, 

by profiling TFAP2C ChIP-seq in a TNBC line line we found that many chemoresistance 

associated SEs, including RAI1, were bound by TFAP2C, establishing its direct function in 

driving TNBC chemoresistance. Furthermore, we depleted key chemoresistance TFs 

predicted to function at subtype-specific chemoresistance SEs of chemoresistance genes and 

measured their expression using RT-qPCRs (Fig. 7B). These results show a clear, significant 

reduction in the expression of target chemoresistance genes, validating our proposal for the 

role of these TFs in regulating their expression. These results are also in line with our 

observations that the depletion of these TFs can significantly overcome chemoresistance (Fig. 

7D). Altogether, these observations conclude that chemoresistance is governed by a distinct 

set of genes that are controlled by CRC TF networks through a subtype-specific set of SEs. 
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Additionally, they were shown to have a high genetic dependency in each TNBC subtype cell 

line. Of note, suggesting that inhibition may provide an approach to overcome chemotherapy 

resistance in all TNBC subtype tumours. In recent years, targeting TFs using small molecules 

which bind to specific nuclear hormone receptors has proven to be successful in many cancers 
73, in particular the SP1 inhibitor Mithramycin A has been shown to inhibit  and suppress cell 

survival in in vitro models of basal TNBC 74. Along these lines, targeting TFAP2C may 

dramatically improve chemotherapy efficacy in patients with a high risk of chemoresistance. 

 

In BL1, FOXC1 was highlighted as one of the top TFs driving chemoresistance SEs. In the 

single-cell data, FOXC1 was shown to have higher expression in chemoresistant cells pre- 

and post-chemotherapy. FOXC1 has recently been shown to be a master TF, encoded by SEs 

in TNBC 57. Additionally, TFAP2C has never been shown to drive SE expression in TNBC, nor 

has it previously been implicated in TNBC chemoresistance. Its key role in potentially driving 

TNBC chemoresistance is further highlighted by our SCENIC analysis. We identified TFAP2C, 

along with several other CRC TFs, as key regulons in defining the chemoresistance 

subpopulations in the scRNA-seq data. While it was identified as a core TF in BL2, we have 

demonstrated it has a high genetic dependency and potential regulator of chemoresistance 

SEs in all TNBC subtypes. Additionally, it has been implicated in chemoresistance in several 

cancers 31,75  and, notably, Docetaxel resistance in lung adenocarcinoma 76. The TFs TFAP2C 

and SP1 were identified throughout our study from the single-cell to CRC analysis as 

potentially having a significant role in driving chemotherapy resistance-associated gene 

expression programme. We have successfully shown that direct targeting of these TFs has 

the potential to increase the efficacy of chemotherapy agents across each TNBC subtype. 

Whilst there are no clear TFs that act in a unique subtype dependant manner, we have shown 

that the TF TFAP2C is a master regulator of subtype-specific chemoresistance SEs across all 

TNBC subtypes resulting in potential for the development of novel therapeutics that can aid in 

improving the efficacy of NAC.  

 

Our results have clearly highlighted how a better understanding of gene regulatory circuitry 

allows identifying novel therapeutic avenues. This study creates the rationale for further 

functional studies to determine their mechanistic roles in chemoresistance and potentially lead 

to the development of novel targeted therapeutics. Additionally, as the model was developed 

based on a combination of NAC, it may be possible to extend its application range to develop 

drug-specific or secondary therapeutic prediction models and further stratify TNBC patients. 

One potential limitation of our study is the low number of patient samples for SE identification. 

However, the genes identified in close proximity to SEs were shown to have higher expression 

in RD TNBC patients across multiple studies and TNBC subtype-specific cell lines, validating 

their role in TNBC chemoresistance.  

 

In summary, we reveal cell subpopulations associated with TNBC chemoresistance and the 

signature genes defining these populations of which a subset acts as a best-in-class gene 

signature for an accurate prediction of chemotherapy response. Notably, we show that these 

chemoresistance genes are controlled by a specific set of transcription factor networks and 

super-enhancers in a TNBC-subtype specific manner. Importantly, we demonstrate that 

targeting these TFs holds the potential to overcome chemoresistance and ultimately improve 

patient survival. 
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METHODS 

 

Identification of chemoresistant cell types using single-cell RNA-sequencing analysis 

To identify cell types and their markers associated with TNBC chemoresistance, scRNA-seq 

analysis was performed on the data set was obtained from Kim et al 20, consisting of matched 

pre and post-chemotherapy (anthracycline and a taxane) samples from four responsive and 

four resistant patients with a total of 6,862 cells.  To integrate the single cell data from each 

patients’ samples, functions FindIntegrationAnchors and IntegrateData from Seurat v3 were 

implemented. The integrated data was then scaled and downstream analysis, including 

normalisation, variable feature selection, dimensionality reduction and UMAP clustering, was 

performed. Cluster annotation was performed using the python program "SCSA" to identify 

associated cell types and cancer-related processes. All significantly expressed markers for 

each treatment time point and therapy response were polled to identify uniquely expressed 

markers in pre-chemoresistant patients that could potentially have a crucial role in driving 

TNBC chemoresistance. 

 

Reproducible Signature Marker Identification 

For the reproducibility of the gene set identified using scRNA-seq analysis, we used five 

independent bulk RNA-seq datasets, GSE20271, GSE25055, GSE25065, GSE20194, 

GSE163882, of 397 TNBC patients where their chemotherapy response was available (RD, 

PCR). Patient samples were excluded if the therapeutic outcome (residual disease or 

pathologic complete response) was unknown and not classified as TNBC. The raw data was 

normalised, batch corrected, and log-transformed using the R package "affy” and “TDM and 

the python package "pyComBat". In total, 397 patient's data were selected for reproducibility 

analysis. The 300 genes identified in the scRNA-seq dataset were extracted from the 

normalised bulk RNA-seq count files. A custom R script was used to compare each gene's 

expression in patients with residual disease and pathologic complete response, Wilcoxon 

Rank Sum and Kruskal-Wallis tests were used to calculate significance. 

. 

Pseudobulk Analysis 

All six patient data files were downloaded from: and GSE118390 and the chemoresistant 

scRNA-seq were analysed using the same parameters in the R package "Seurat". First, cells 

with feature counts of greater than 2500 or less than 200 were removed, including 

mitochondrial reads of greater than 5%. Following the removal of cells, downstream analysis, 

including normalisation, variable feature selection, dimensionality reduction and UMAP 

clustering, was performed. Signature scoring was performed by the R package UCell44 using 

default parameters. Following downstream analysis, pseudobulk analysis was performed 

using the R package SingleCellExperiment and the function “AggregateExpression”. 

 

Implementation of GENIE3 and SCENIC 

Single-Cell regulatory Network Inference and Clustering (SCENIC) analysis was performed to 

reveal the core TFs in chemoresistant and chemosensitive clusters29. We performed the 

SCENIC analysis using the latest version of pySCENIC. The gene-motif rankings (500 bp 

upstream or 100 bp downstream of the transcription start site) were used to determine the 

search space around the TSS. The motif database was used for RcisTarget and GENIE3 

algorithms to infer the core TFs. Wilcoxon Rank Sum and Kruskal-Wallis tests were used to 

calculate significance. 
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Identification of Significant Gene Set and Construction of the Prognostic Prediction 

Model Based on Residual Disease Vs Pathologic Complete Response 

Raw microarray expression (CEL) files of all 310 TNBC patients were downloaded from Gene 

Expression Omnibus, GSE20271, GSE25055, GSE25065, GSE20194. Gene expression 

profiles were quantile normalised and log2 transformalised using "BART", followed by batch 

correction using "ComBat" from the R package "sva". To identify the most significant gene set, 

GSE20271 and GSE25055 datasets with 177 TNBC patients (57 pathologic complete 

response, 120 residual disease) were used to build the model. To verify the strength of the 

geneset, GSE25065 and GSE20194 datasets with 130 TNBC patients (46 pathologic 

complete response, 84 residual disease) were used as the external validation cohort. To 

identify the significant gene set and develop a predictive model to discriminate pCR and RD 

groups, we first used Lasso and Elastic-Net Regularized Generalized Linear Models using the 

R package "glmnet" on the 300 markers to identify the best combination with the greatest 

predictive power. Then, we used the 10-fold cross-validation method to evaluate the 

discrimination ability, between pCR and RD, to obtain a relatively unbiased estimate. After the 

LASSO regression analysis, a predictive model based on 20 was used to fit a generalised 

linear model. The predictive capability was measured by the receiver operating characteristic 

curve (ROC curve) area under the curve (AUC) using the R package "pROC". Results were 

evaluated using the area under the ROC curve. The optimal model was selected by 

maximising AUC. The model was tested on data with known and unknown chemotherapy 

response using the function predict.glm with the ideal lamda as the s variable. 

 

TNBC subtyping 

The TNBCtype web-based tool (http://cbc.mc.vanderbilt.edu/tnbc/) was used to classify each 

TNBC patient sample. Subtyping was performed on RNA expression data, normalised within 

TNBC patients as recommended by the tool, from each patient. 

 

H3K27ac ChIP-seq Analysis  

Eight primary TNBC patients as well as corresponding transcriptome (RNA-seq) datasets 

were downloaded from ENA: accession number PRJEB33558. Reads were aligned to the 

human genome (GRCh38) using Bowtie2. H3K27ac ChIP peaks were identified by the MACS 

version 2 software package with paired input samples with the callpeak function using default 

settings, genome set to ‘hs’, and peak calling set to—broad. Differential enrichment of peaks 

between pCR and RD was called using the package diffbind with the criteria of a minimum of 

50% overlap of peaks. 

 

Super Enhancer Identification and Analysis 

Samples were merged based on their subtyping using bedtools merge and enhancer and SE 

elements were mapped and quantified by MACS and ROSE software48. ROSE analysis was 

performed with default parameters of 12.5 kb stitching distance, and TSS exclusion size set 

to 0, consistent with prior studies, we did not exclude TSS elements77. Using the output SE 

bed file from ROSE we identified regions unique to each TNBC subtype using ChIPpeakanno 

with 50% overlap of SE regions. SE-associated genes were identified by ROSE by assigning 

the discovered SEs to the nearest genes. Hierarchical clustering on SE-associated uniquely 

expressed genes was performed using Euclidean distance metric and Ward’s linkage method 

and plotted using the R package “ComplexHeatmap”. Colour bars for associated pathway data 

for each subtype were determined using EnrichR. 
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Hi-C Analysis in TNBC patients 

Samples where obtained from GSE167150 and processed using HiCExplorer78. Reads were 

aligned to the human genome (GRCh38) using Bowtie2. Then the HiCExplorer pipeline was 

implemented with default parameters.  

 

TNBC Chemoresistance CRC Reconstruction 

We performed the core transcriptional regulatory circuitry analysis using CRC mapper 

(https://github.com/linlabcode/CRC) as previously described 79. Within Super Enhancer 

regions, the CRC software uses FIMO to find enriched (q value < 1e−5) TF motif occurrences. 

CRC first identified TFs that are active, regulated by a proximal, overlapping, or the closest 

SE region. The total degree is a measure of how often a given TF participates in a regulatory 

interaction with other TFs. It is defined as the number of unique TFs participating in a 

regulatory interaction that affects a given TF plus the number of unique TFs that are regulated 

by a given TF. 

 

Genetic Dependency 

Gene expression for each CRC TF was extracted from TNBC cancer cell lines from CCLE in 

DepMap (https://depmap.org/portal/). To identify genetic dependencies of subtype-specific 

CRC TFs, Achilles gene effect scores and dependency scores were downloaded for each 

subtype TNBC cell lines screened by RNAi and CRISPR from DepMap. We built linear-

regression models of each TFs correlation strength and viability each subtype across all TNBC 

cell lines tested. T-statistic testing was used to evaluate association strength between subtype 

correlation strength and viability. 

 

Cell culture  

The TNBC lines HCC1806 and HCC70 were maintained in RPMI 1640 (Gibco, 21875034) 

medium supplemented with 10% FBS, 1% glucose, 1mM sodium pyruvate (Thermo, 

11360070). MDA-MB-468, MDA-MB-453, and MDA-MB-231 cells were maintained in DMEM 

(Dulbecco’s modified Eagle’s medium) with 10% FBS. Cells were grown as monolayers at 

37°C in humidified CO2 (5%) incubator.  

 

siRNA transfection 

The scrambled siRNA control and ON-TARGETplus SMARTpool siRNA targeting human 

TFAP2C, TFAP2C, SP1, STAT3, TCF7L2, PRDMI, and FOSL2 were purchased from 

Dharmacon. Transfection was performed using Lipofectamine™ RNAiMAX (Invitrogen, 

13778150) according to the manufacturer's instructions. In brief, cells were seeded at 

180k/well for MDA-MB-231, MDA-MB-453, HCC1806 and HCC70. Cells were seeded at 

250k/well for MDA-MB-468 cell lines. All cells were seeded the day before the transfection. 

siRNA at a final concentration of 5 pmol was diluted in 45 μL of Opti-MEM (Gibco, 31985047) 

and 2.25 μl of Lipofectamine RNAiMAX was diluted in 45 μl of OPTI-MEM. The diluted siRNA 

and Lipofectamine RNAiMAX were mixed and incubated at room temperature for 10 min. 

Ninety microliters of transfection mixture were added to each well of 12 well plates. Twenty-

four hours later, the transfection cocktail was replaced with complete media for each cell lines. 

 

RNA isolation and RT-qPCR 

Total RNA was isolated from cells in culture using Trizol reagent (Ambion, 15596018) 

according to the manufacturer’s instructions. RNA concentration and purity were measured 

using the NanoDrop Spectrophotometer. cDNA was synthesised using Verso cDNA synthesis 
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kit (Thermo, 01280858). RT-qPCR was performed in SybrGreen program: 5 min pre-

incubation at 95°C; amplification 45 cycles at 95°C for 10 s, 60°C for 10 s and 72°C for 10 s; 

melting was performed at 95°C for 5 s, 65°C for 1 min, 97°C on hold; final cooling was 

performed at 40°C for 30 s. Results were analysed and normalised by the relative quantity 

(ΔΔCt) method. Wilcoxon Rank Sum and Kruskal-Wallis tests were used to calculate 

significance. 

 

MTT assay and drug sensitivity analysis 

siRNA transfected cells were cultured for 24 h and treated with Epirubicin and Docetaxel at 

desired concentration for each cell line. DMSO served as vehicle control. The treated cells 

were incubated for 48 hours, and a cytotoxicity assay was performed using an MTT assay kit 

(Roche, 11465007001) according to the manufacturer protocol. Briefly, 10 μl MTT (5 mg/ml) 

was added to each well and allowed to form formazan crystals for four hours in the incubator. 

100 μl of solubilization solution was added to each well and incubated overnight in the 

incubator in a humidified atmosphere. The next day, complete solubilization of the purple 

formazan crystals was confirmed and then the absorbance values were determined using a 

microplate reader (BMG FLUOstar Omega) at 590 nm. The experiments were repeated twice, 

and data are represented as mean ± SD from three technical replicas. Wilcoxon Rank Sum 

and Kruskal-Wallis tests were used to calculate significance. 

 

Statistical Analysis 

All the statistical analyses were performed using R (version 4.1.1) and GraphPad Prism 9. 

Student's t-test, Wilcoxon rank-sum test and Kaplan–Meier were utilised in this study. p-values 

of less than 0.05 were considered statistically significant (* = p < 0.05; **= p < 0.01; 

***=p < 0.001). 
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FIGURE LEGENDS 

 

Figure 1. scRNA-seq Analysis Reveals Subpopulations of Cells and Key Genes 

Underlying TNBC Chemoresistance  

A) Graphical abstract of study workflow B) UMAP projection of pre-treatment 

chemoresponsive and chemoresistant patients C) Volcano plot of differentially expressed 

genes highlighting key transcriptional differences between chemosensitive and 

chemoresistant patients. D) Gene Ontology analysis of markers for pre-treatment 

chemoresistant and chemoresponsive patients and the 300 genes reveals they are 

significantly involved in signalling pathways and cell migration. E) Reproducibility analysis 

reveals that 300 markers identified in pre-treatment chemoresistant patients had higher 

expression in residual disease than pathologic complete response across all datasets 

(Wilcoxon rank-sum test p=0.0017). F) Survival plot of the 300 genes in TNBC patients from 

the METABRIC Cohort (Kaplan–Meier, p=0.036). 

 

Figure 2.  SCENIC analysis reveals potential chemoresistance gene regulons 

A) SCENIC Workflow: 1) Identification of co-expression modules between resistant and 

sensitive cells using GRNBoost 2) Regulon identification using cisTarget 3-4) the regulon 

activity was quantified by assessing the enrichment of the regulon target genes using AUCell. 

B) Heatmaps show significant top regulators based on AUC score for chemosensitive and 

chemoresistant patients, top motifs are labelled (Binary Score). C) RSS Plot showing top 

regulons for chemoresistant clusters with top motifs highlighted. D) UMAP highlighting cells 

with AUC >0.07 TFAP2C regulon activity. E) Violin plots of TFAP2C, TFAP2A and SP1 

expression in Resistant and Responsive patients scRNA-seq highlighting that higher 

expression remains following treatment in chemoresistant patients (Wilcoxon rank-sum test).  

 

Figure 3. 20 Gene Models shown to have a high accuracy in predicting chemotherapy 

response in TNBC patients 

A)  Ranked score of each gene in determining RD B) ROC curve highlighting the accuracy of 

our model C) Survival plot of the 20 genes in TNBC patients from the METABRIC Cohort 

(Kaplan–Meier, p=0.0033) D) ROC curve highlighting the accuracy of our model compared to 

previously published TNBC prediction models. E) Survival plot of the 20 genes in TNBC 

patients from the METABRIC Cohort who received NAC only (Kaplan–Meier, p=0.016) F) 

Prediction of each TNBC METABRIC patients based on relapse free survival. 

 

Figure 4. A distinct epigenetic landscape defines chemoresistance status 

A)  Prediction results of 8 TNBC patients and cell lines representing each TNBC subtype. B) 

Correlation of H3K27ac peaks between each TNBC patients (RD) and HMEC (pCR) samples 

C) Identification of RD-specific H3K27ac peaks compared to pCR D) Using genomic locations 

for chemoresistant genes identified in pre-treatment scRNA-seq data we identified regions 

gained in each TNBC subtype (RD) which are lost in HMEC (pCR) E) Identification of TFAP2C 

and SP1 among key motifs at chemoresistance regions F) Comparison of gained 

chemoresistant gene regions with BL1 RD cell line MDAMB468 and BL1 pCR cell line HCC38.   

 

Figure 5. Epigenomic profiling reveals super enhancers in TNBC subtypes which drive 

the expression of chemoresistance markers 

A) Schematic showing key steps for Super Enhancer identification B) ROSE output of total 

super enhancers identified in each TNBC subtype C) Genome browser track of EGFR, a super 
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enhancer identified in BL1 and BL2 samples D) Identification of unique and overlapping super 

enhancer regions across each TNBC subtype E) Identification of SEs overlapping with 

chemoresistance genes identified in our reproducibility analysis F) Heatmap of SE associated 

genes unique expression between TNBC subtypes. Unsupervised hierarchical clustering 

demonstrated clustering of genes into 4 clusters, demonstrating unique expression of SEs 

within each TNBC subtype.  

 

Figure 6. SE - TF connectivity analysis defines core regulatory circuitry underlying 

TNBC chemoresistance 

A) Schematic of SE-based CRC analysis. For every TF associated with a chemoresistant SE, 

in degrees values are calculated by motif identification; Out degrees values are calculated for 

each TF associated with a chemoresistant SE by determining all other bound SEs at each TF 

gene loci. Node connections between TFs are used to identify auto-regulatory cliques that in 

turn regulate the chemoresistant SE network B) A heatmap of clique enrichment scores for 

the union of all TFs associated with top SEs across all TNBC samples. Gray boxes are used 

when a TF is not associated with a TNBC patient sample. TFs and samples are clustered by 

Euclidean distance. C) Subtype-specific genetic dependencies of each CRC TF from Broad 

DepMap whole-genome RNAi and CRISPR screen. Heatmaps show significant subtype-

specific genetic dependencies using a modified T-test corrected for multiple hypothesis testing 

(T-value, FDR <0.1). D) UCSC Visualization of TFAP2C occupancy using the ChIP-seq data 

at SEs predicted to be regulated by TFAP2C E) Identification of TFAP2C bound SEs across 

TNBC subtypes F) Expression of TFAP2C bound SEs across each TNBC subtype and HMEC 

  

Figure 7. TNBC-type specific CRC TFs are essential for TNBC cell survival, and their 

depletion improves chemotherapy response 

A) Schematic of depletion of selected TFs in cell culture followed by RT-qPCR experiments. 

B) Workflow for the depletion of CRC TF in selected cancer cell lines. C) RT-qPCR of subtype 

specific chemoresistant SEs following KD of TFAP2C and SP1 (Student's t-test). D) Reduced 

cell viability following chemotherapy treatment in TNBC subtype specific cell lines when 

combined with depletion of the TFs (Student's t-test). E) Targeting chemoresistance SE 

associated TFs has the potential to eradicate subpopulations associated with 

chemoresistance and improve chemotherapy efficacy.  

 

Supplementary Figure 1. Merged Pre-Treatment Samples and Gene List Selection 

A) UMAP with 8 chemoresponsive and chemosensitive patients labelled. B) UMAP with cell 

type annotations. C) Expression of NDUFA6 in merged data. (Wilcoxon rank-sum test, p=5.3e-

ll) D) Expression of NDUFA6 in unmerged data. (Wilcoxon rank-sum test) E) GO terms of all 

markers identified in pre/post chemoresistant and chemosensitive patients. 

 

Supplementary Figure 2. Quality Control Figures from microarray batch correction 

A) Expression values before and after correction. B) PCA plots before and after correction 

 

Supplementary Figure 3. Development of the 20 gene model 

A) Selection of the tuning parameter (λ), based on 10-fold cross-validation, using the LASSO 

model. Vertical lines represent lamda.min and lamda.1se, the red line represents the cross-

validation curve and mean binomial deviance against log- λ. B) The coefficients of the 20 

genes and 21 probe IDs used to construct the predictive model. C) ROC curve showing results 

in the validation cohort (AUC=0.89) D) Average expression of the 20 genes in the TCGA-
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BRCA cohort (Wilcoxon rank-sum test) E-F) Survival plot of the 20 genes in ER+ and HER2+ 

patients from the METABRIC Cohort (Kaplan–Meier) G) ROC curve showing the predictive 

capability following removal of five genes (AUC=0.678). H) ROC curve showing the results of 

20 iterations of cross validation (AUC=0.90) 

 

Supplementary Figure 4. TNBC pseudobulk RNA-seq analysis 

A) Clustering of untreated TNBC patients. B) Patients labelled based on pseudobulk subtype 

classification. C) Classification of RD or pCR of each patient using our gene panel. D) UMAP 

coloured based on our prediction. E) Expression of 20 gene panel across TNBC Subtypes 

(Wilcoxon rank-sum test) and chemotherapy response prediction (Wilcoxon rank-sum test, p 

= 6.4e-05). 

 

Supplementary Figure 5. Identification of Tumour Specific Super Enhancers 

A) Genomic Distribution of TNBC Super Enhancers. B) Venn Diagrams comparing each 

TNBC subtypes SE with SE’s identified in HMEC samples C) Signalling pathways upregulated 

for subtype specific SEs D) Hi-C plots showing loops between SE regions and predicted genes 

 

Supplementary Figure 6. CRC Analysis reveals highly connected TFs 

A) CRC of all TFs identified for each TNBC patient. B) CRC common across all TNBC 

subtypes C) CRC of HMEC Samples D) Results of RT-qPCR in M and LAR cell lines 

(Student's t-test). 
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